共查询到20条相似文献,搜索用时 11 毫秒
1.
施磷量对小麦物质生产及吸磷特性的影响 总被引:14,自引:7,他引:14
在低磷土壤条件下,以中筋小麦扬麦12号和弱筋小麦扬麦9号为材料,研究了施磷量对小麦物质生产和吸磷特性的影响。结果表明,在施磷量(P2O5)0~180.kg/hm2范围内,植株对磷的吸收量、吸收速率和磷的积累量随施磷量增加而上升;以施磷量108.kg/h2处理的叶面积指数(LAI)、植株茎蘖数、茎蘖成穗率、干物质积累量、花后干物质积累量和子粒产量最高。当施磷量超过108.kg/hm2时,相关物质生产指标则呈下降趋势,说明即使在缺磷土壤上,施磷量有其适宜值。小麦一生对磷的吸收存在两个高峰,出苗至越冬始期为第一个吸收高峰,拔节至孕穗期为第二个吸收高峰。植株磷素积累量的70%~75%是在拔节后吸收,表明拔节期施磷对满足小麦第二个吸磷高峰和磷的最大积累期需磷有重要意义。 相似文献
2.
Muhammad Abbas Javaid Ahmed Shah Muhammad Irfan Muhammad Yousuf Memon 《Journal of plant nutrition》2018,41(12):1522-1533
A solution culture study was conducted to compare the phosphorus (P) remobilization efficiency of four wheat cultivars under induced P deficiency. Wheat cultivars, i.e. Sarsabz, NIA-Sunder, NIA-Amber and NIA-Saarang were initially grown on adequate P nutrition for 30 days and then exposed to P-free nutrient solution for next 15 days to study P remobilization. Completely randomized design (CRD) with ten replicates per cultivar was employed. Cultivars varied for biomass production, P concentration, P uptake, and P utilization efficiency at both harvests. Overall, more than 75% of absorbed P was mobilized from older leaves to younger leaves as well as roots of all cultivars during P-omission period. However, cultivars could not produce significant variations (P < 0.05) in P remobilization, which implied that P remobilization was only a stress response to P deficiency in wheat cultivars and it could not be related to P utilization efficiency of these cultivars. 相似文献
3.
不同施磷量对小麦旗叶光合性能和产量性状的影响 总被引:13,自引:1,他引:13
为揭示磷肥调控光合作用的可能机制,1999~2001年度在河北农业大学教学基地进行了不同施磷水平的田间试验。供试品种为河农859,设3个磷肥水平(分别为P2O575,225和375.kg/hm2)。结果表明,在施用P2O575~375.kg/hm2的范围内,随施磷量增加,旗叶净光合速率(Pn)、气孔导度(Gs)、叶绿素含量(Chl)、可溶性蛋白质含量(Pro)和ATP酶活性都增加,叶绿素含量缓降期(RSP)和光合速率高值持续期(PAD)延长,而胞间CO2浓度(Ci)随施磷量的变化并不规律。高施磷量(P2O5375.kg/hm2)时,旗叶的叶绿素b含量(Chlb)减少、希尔反应和非环式光合磷酸化活性受到抑制,对磷肥的响应规律基本一致。但此条件下,Pn并不低,产量构成因素和子粒产量也最高。表明,尽管以上三个指标对磷肥响应敏感,但在一定范围内波动并不影响碳固定能力,不致成为光合作用的主要限制因素。 相似文献
4.
长期不同施肥对水稻干物质和磷素积累与转运的影响 总被引:3,自引:3,他引:3
【目的】磷是制约黄壤生产力的重要限制因子,提高作物的磷效率是农业科学研究的热点之一。探讨不同施肥模式对水稻干物质和磷素积累与转运的影响,为黄壤稻田合理施用磷肥提供理论依据。【方法】依托22年的黄壤(水田)长期定位试验,选取其中6种施肥模式:不施肥(CK);不施磷肥(NK);平衡施用化肥(NPK);单施有机肥(M);1/2有机肥替代1/2 NP (0.5 MNP);有机肥化肥配施(MNPK)。除CK和MNPK外,NK、NPK、M、1/2 MN处理为等氮量165 kg/hm^2,施磷量依次为P2O5 0、82.5、79.4、81.0 kg/hm^2,MNPK施N330 kg/hm^2、P2O5 161.9 kg/hm^2。于水稻分蘖期、开花期及成熟期,采集水稻植株样品,分析比较各处理水稻产量、干物质和磷素积累与转移特征、磷肥吸收利用效率的差异。【结果】水稻产量、干物质和磷素积累量大小顺序均表现为MNPK> M> 0.5 MNP> NPK> CK> NK。磷素积累快速增长开始(t1)和结束(t2)时间均较干物质积累提前2~8 d和5~20 d,且磷素积累快速增长持续时间(Δt)也较干物质缩短了4~12 d,表明磷素快速吸收较干物质早,且持续时间短。处理NK、NPK、0.5 MNP、MNPK干物质最大增长速率(Vm)出现时间(t0)以及t1、t2分别比CK和M处理滞后5~10 d、1~4 d、6~16 d,Δt延长了1~14 d。各处理干物质和磷素积累的Vm均表现为M、MNPK> 0.5 MNP、CK> NPK> NK。水稻籽粒干物质积累量主要来源于花后干物质积累,磷素积累量则主要来源于花前磷素积累向籽粒的转运,各处理花后干物质积累率为29.5%~43.4%,施用化肥各处理显著高于CK和M处理,各处理花前磷素积累率为60.5%~85.6%,大小为CK> NPK、M> NK、0.5 MNP、MNPK。与NPK处理相比,M和0.5 MNP处理磷肥吸收效率、磷肥偏生产力、磷肥利用率分别显著提高了0.43kg/kg、48.9 kg/kg、40.8个百分点和0.26 kg/kg、32.2 kg/kg、25.3个百分点。【结论】黄壤地区水稻栽培中长期缺磷不利于花后干物质的积累,也不利于花前磷素的积累,严重制约水稻产量和磷吸收量的提高。在氮磷钾投入平衡前提下,长期单施有机肥可促进花前干物质和磷素的积累及其向籽粒的转运,但不利于花后干物质和磷素的积累,长期单施化肥可延长干物质和磷素积累的快速增长持续时间,但最大增长速率较小,而长期有机无机配施均较有利于促进水稻花前和花后干物质和磷素的积累,水稻产量和磷肥利用率均较高,是最合理的施肥方式。 相似文献
5.
Qinglin Li Hanping Mao Zhiyu Zuo Xiaodong Zhang Jiheng Ni Jun Sun 《Journal of plant nutrition》2017,40(12):1773-1783
This study aims to evaluate the effects of nitrogen (N) and phosphorus (P) on tomato leaves at the microscale in order to propose new methods to detect N and P conditions of plants. N and P solutions composed of three N levels (N0.25, 1.75; N1, 7; and N1.5, 10.5 mmol L?1) and three P levels (P0.25, 0.17; P1, 0.67; and P1.5, 1.01 mmol L?1) with ten replications. Results showed a significant decrease in the leaf thickness among plants treated with N0.25, N1.5N and P0.25, whereas showed an increase among plants treated with P1.5 (p < 0.05). Stomatal density was reduced in P0.25- and N0.25-treated plants, whereas increased in N1.5- and P1.5-treated plants (p < 0.05). Moreover, N0.25-treated plants showed reduced trichome density, whereas N1.5-treated plants exhibited the highestamount of trichome density (p < 0.05). The densest veins occurred in the leaves of P1.5P-treated plants, then density reduced in plants with N1.5, N1P1, N0.25, P0.25 treatments, in a decreasing order (p < 0.05). 相似文献
6.
植物耐低磷胁迫的遗传调控机理研究进展 总被引:3,自引:1,他引:3
土壤中总磷的含量很高,但其中能被植物吸收利用的有效磷浓度往往很低,因此,缺磷已经成为农业生产中重要的限制因子之一。由于磷在植物生长发育过程中的重要作用,植物在进化的过程中形成了一系列的适应机制以应对低磷胁迫。随着分子生物技术在植物营养研究中的广泛应用,研究人员相继克隆了大量参与植物体内磷动态平衡调控的基因,其中包括磷转运子、 转录因子、 非编码的小RNA及其它低磷胁迫诱导基因等。这些基因相互作用共同形成了复杂的植物耐低磷胁迫遗传调控网络。另外,利用数量遗传学的研究思路,大量与植物磷效率相关的数量性状位点(quantitative trait locus, QTL)也被定位出来。这些研究结果对于理解植物耐低磷胁迫的遗传调控机制具有重要作用。本文就以上研究的国内外最新进展进行综述。 相似文献
7.
《Communications in Soil Science and Plant Analysis》2012,43(6):969-979
Abstract The effects of different kinds and concentrations of salts on dry matter yield and nitrogen (N) and phosphorus (P) contents of rice plants under greenhouse conditions were determined for two silt loam soils, one from southern Ohio (Clermont) and one from Arkansas (Crowley). Yield and N and P contents tended to be enhanced by low salt concentration but to be depressed at higher concentration. The chloride salts (NaCl, CaCl2) were most detrimental to yield and N and P contents, while the sulfate salts (especially Na2SO4,) were beneficial when the electrolyte concentration and P in the soil were not high. The degree of adverse response to salts in the irrigation water and of favorable response to P fertilizer were reflected in the levels of electrolyte and available P in the soils studied. Total N content of the rice tissue increased much more from N and P additions than did total P content. The NaCl (1.5 mmhos/cm) and NaCl + Na2SO4 (3.0 mmhos/cm) salt treatments vere generally least detrimental, and NaCl and NaCl + CaCl2both at 3.0 mmhos/cm were most detrimental to yield and N and P contents of tissue. In the non‐lethal response range, salt‐depression of yield and N and P contents of tissue may well be largely or partially overcome by fertilizer application. In this study, the best combination of fertilizer and salt was the highest level of N (268 kg N/ha) and intermediate level of P (67 kg P/ha), in combination with NaCl + Na2SO4. 相似文献
8.
D. M. S. B. Dissanayaka Sho Nishida Keitaro Tawaraya 《Soil Science and Plant Nutrition》2018,64(3):282-290
ABSTRACTOur earlier study demonstrated that the landrace of Japonica rice, Akamai exhibits low-P (phosphorous) tolerance mechanisms compared to the conventional type cultivar, Koshihikari. The present study examined the genotypic difference of yield, plasticity of root growth, and internal utilization of acquired P (allocation pattern of biomass and P among different vegetative and reproductive organs) of two contrasting cultivars in response to P-deficiency. Each cultivar was grown until maturity with (+P) and without (–P) P supply in pots (two plants per pot) filled with 15 kg of Regosol soil. Grain yield and yield components were determined along with biomass and P accumulation in different vegetative and reproductive organs. To assess the plasticity of root growth, the soil column in the pot was divided into two equal portions (upper and lower soil layers) in which the root dry weight and length were measured separately. Among the investigated yield components, the number of filled grains per panicle was the key parameter determining genotypic differences of grain yield of two cultivars. P-deficiency had a marked influence on grain filling of Koshihikari where the filled grain percentage under –P condition was reduced by 29% compared to that under +P condition. However, the respective reduction for Akamai was only 11%. Low-P tolerance ability of Akamai imparts a yield advantage over Koshihikari under P-deficient conditions because of the production of the higher number of filled grains per panicle. Akamai explored both upper and lower soil layers of the pot more efficiently in search of P through greater root biomass and length. Akamai grown under P-deficient conditions had remarkably lower P concentrations in less active vegetative tissues (partly and fully senesced leaves) than those of Koshihikari; whereas, more active organs (green leaves and panicles) contained a greater amount of P. Akamai’s higher plasticity to external P availability can be a genetic resource for developing low-P tolerant, high-yielding rice genotypes suitable for predicted future P-limited environments. 相似文献
9.
不同生长期柑橘叶片磷含量的高光谱预测模型 总被引:2,自引:2,他引:2
针对传统柑橘叶片磷含量检测耗时费力、操作繁琐且损伤叶片等弊端,该研究引入高光谱信息探索柑橘叶片磷含量快速无损检测与预测模型,选ASD Field Spec 3光谱仪采集柑橘4个重要生长期的叶片反射光谱,同步采用硫酸-双氧水消煮-钼锑抗比色法测定叶片的磷含量;先用正交试验确定小波去噪的最佳去噪参数组合,再分别选拉普拉斯特征映射(laplacian eigenmaps,LE)、局部线性嵌入(locally-linear embedding,LLE)、局部切空间对齐(local tangent space alignment,LTSA)、等距映射(isometric mapping,Isomap)和最大方差展开(maximum variance unfolding,MVU)5种典型的流形学习算法对去噪后的光谱数据进行降维和特征提取,进而建立基于支持向量机回归(support vector regression,SVR)的柑橘叶片磷含量预测模型。结果表明,基于一阶导数谱的Isomap-SVR建模结果最佳,全生长期校正集和验证集模型决定系数分别为0.9430和0.8949。试验表明,5种流形学习算法皆适用于对柑橘叶片磷含量的预测,为高光谱检测技术用于柑橘树长势监测和营养诊断提供了参考。 相似文献
10.
The effect of long-term fertilization with organic or inorganic fertilizers on mycorrhiza-mediated phosphorus uptake in subterranean clover 总被引:3,自引:0,他引:3
E. J. Joner 《Biology and Fertility of Soils》2000,32(5):435-440
A pot experiment was conducted with soil from a long-term (74-year) fertilization field experiment to compare the effects
of organic and mineral fertilizers on mycorrhiza formation in clover, and mycorrhiza-mediated plant P uptake. Five treatments
were selected from the field experiment representing different forms and levels of P. Mycorrhizal effects on plant growth
and P uptake were estimated by comparing plants grown in untreated soil containing indigenous arbuscular mycorrhizal (AM)
fungi, with plants grown in pasteurized soil. Short-term versus residual effects of fertilizer/manure were also measured by
comparing treatments with or without fertilizers added at the start of the pot experiment. Mycorrhiza formation was greatest
in soil that had received no P for 74 years, followed by soil having received 30 or 60 Mg ha–1 farmyard manure (FYM), and soil having received 25 or 44 kg P ha–1 in NPK fertilizers. Plant growth and P uptake were severely reduced in the absence of AM fungi for all mineral fertilizer
treatments. In contrast, plants growing in soil that had received FYM grew equally well or better when non-mycorrhizal. Recent
additions of NK fertilizer and FYM had no effect on mycorrhiza formation, while additions of NPK led to reduced colonization.
It thus seems that moderate quantities of FYM have less adverse effects on AM than equivalent amounts of nutrients in NPK
fertilizers, a phenomenon that is most likely due to a temporal difference in P availability and its gradual release that
balance plant demand.
Received: 4 November 1999 相似文献
11.
In this paper the evolution of total phosphorus, as well as its more interesting fractions (inorganic‐P, organic‐P, lipidic‐P, P‐RNA, P‐DNA and proteic‐P) are studied over an one year period, in Verna lemon tree leaves, not only greenones, but also on others with slight manganese deficiency symptoms, as well as with medium and strong manganese chlorosis. The results show that manganese notably influences the concentration of the before mentioned phosphorus compounds. So the total phosphorus levels, soluble acid phosphorus and inorganic phosphorus decrease according to the intensity of the chlorosis. The yearly fluctuations of the both lipidic and RNA phosphorus, fractions act in the same way. Nevertheless, the influence of manganese on the P‐DNA and proteic‐P is not clear. 相似文献
12.
以玉米品种‘正红2号’和‘正红115’为材料,通过2014年和2015年的田间小区定位试验,研究低磷土壤条件下,硅磷肥配施对玉米拔节期和吐丝期的净光合速率、蒸腾速率和叶面积指数,拔节期、吐丝期、灌浆期和成熟期干物质积累和分配,产量及产量构成因素的影响,探讨施硅及硅磷配施的增产效果。结果显示,与对照(不施磷肥和硅肥)相比,施磷、施硅和硅磷配施处理均可提高玉米拔节期和吐丝期的叶面积指数和净光合速率,增加拔节期、吐丝期、灌浆期和成熟期各生育阶段的干物质积累量,降低灌浆期和成熟期叶片的干物质分配比例和灌浆期茎鞘的干物质分配比例,提高籽粒干物质分配比例和收获指数,降低秃尖长度,增加穗长,最终提高穗粒数、千粒重和籽粒产量;其中施用磷肥增加或降低上述指标的效应明显大于施用硅肥,硅磷配施增加或降低上述指标的效应又明显大于单施磷肥或单施硅肥,硅和磷表现出明显的协同作用和配合效应。2014年和2015年玉米籽粒产量均与拔节期、吐丝期、灌浆期和成熟期干物质积累量呈显著正相关;与单施磷肥相比,硅磷配施处理分别增产1 288.57 kg·hm~(-2)(2014年)和1 313.61 kg·hm~(-2)(2015年),且2015年的增幅明显大于2014年,硅、磷表现出稳定的增产效应。综上所述,在四川丘陵低磷土壤条件下,合理进行硅磷肥配施,既能提高玉米生育前期物质生产能力和干物质积累量,又能改善生育后期干物质在玉米各器官中的分配,促进籽粒灌浆结实,最终提高籽粒产量。 相似文献
13.
为解决现有基于光谱相似性的局部样本搜索方法存在样本误选引起模型预测性能降低的问题,该研究提出先利用环境因子对叶片样本进行类别划分,然后在与待估测样本具有相同类别的样本集内进行局部样本搜索的方法。为验证该方法的有效性,将其用于实际案例中。在案例研究中,分3个时期(4-6月:抽叶期,7-9月:成熟期,10-12月:衰老期)在相同地块采集橡胶树叶片样品,然后利用该方法分别构建每个时期橡胶树叶片磷含量高光谱估测模型,并将模型预测精度与利用现有局部样本搜索方法构建的模型进行比较。为体现该研究提出方法的稳定性和可靠性,将每个时期采集的叶片样本随机分割5次,然后利用方差分析比较不同模型之间的预测精度是否存在显著差异。结果表明,利用该研究提出的方法构建的3个时期的橡胶树叶片磷含量高光谱估测模型预测精度(抽叶期:RMSE分别为(0.031±0.003)%和(0.030±0.004)%,成熟期:RMSE分别为(0.030±0.002)%和(0.029±0.003)%,衰老期:RMSE分别为(0.026±0.002)%和(0.024±0.003)%)都要高于利用现有局部样本搜索方法构建的高光谱估测模型(抽叶期:RMSE分别为(0.034±0.002)%和(0.034±0.002)%,成熟期:RMSE分别为(0.042±0.002)%和(0.042±0.003)%,衰老期RMSE分别为(0.034±0.003)%和(0.035±0.003)%),且在成熟期和衰老期的差异达到了P<0.05的显著性水平,这就证明了在进行局部样本搜索时必须要考虑橡胶树叶片样本所处环境的差异,以避免选择到与待估测样本不属于同一环境条件的局部样本,进而可显著提高估测模型的预测性能。 相似文献
14.
为探讨不同施磷水平下接种丛枝菌根真菌(Arbuscular Mycorrhizae Fungi,AMF)与解磷细菌对苜蓿干物质产量及其磷素利用效率的影响,筛选出苜蓿最佳的施肥模式,为紫花苜蓿高效生产及高效复合型菌肥的研制提供理论依据。该研究试验采用双因素随机区组设计,AMF选用摩西管柄囊霉,解磷细菌选用巨大芽孢杆菌,设置4个施菌水平:分别为接种摩西管柄囊霉(Fm,J1)、巨大芽孢杆菌(Bm,J2)、混合菌种(Fm×Bm,J3)和未接菌处理对照组(J0)。施磷(P2O5)设置4个水平P0~P3分别为:0、50、100和150 mg/kg,菌磷互作共16个处理。结果表明:1)相同施菌条件下,苜蓿各茬次干物质产量、总干物质产量和植株磷含量均随施磷量的增加呈先增加后降低的趋势。除J2条件下,J2P1处理下的苜蓿总干物质产量达到最大值外,其他施菌条件下,苜蓿的总干物质产量均在P2... 相似文献
15.
Environmental stresses are one of the most limiting factors in agricultural productivity. A large portion of the annual crop yield is lost to pathogens (biotic stress) or the detrimental effects of abiotic‐stress conditions. There are numerous reports about chemical characterization of quantitatively significant substrate fluxes in plant responses to stress factors in the root‐rhizosphere system, e.g., nutrient mobilization, heavy‐metal and aluminum immobilization, or establishment of plant‐growth‐promoting rhizobacteria (PGPR) by exudation of organic anions, phytosiderophores, or carbohydrates into the soil, respectively. The hormonal regulation of these responses is not well understood. This paper highlights this complex process, stressing the involvement of phytohormones in plant responses to drought and phosphorus deficiency as examples. Beside ethylene, abscisic acid (ABA) plays an important role in drought‐stress adaptation of plants. This hormone causes morphological and chemical changes in plants, ensuring plant survival under water‐limited conditions. For example, ABA induces stomata closure, reduction in leaf surface, and increase in root : shoot ratio and, thus, reduction in transpiration and increase in soil volume for water uptake. Furthermore, it supports water uptake in soil with decreasing water potential by osmotic adjustment. Suitability of hormonal parameters in the selection for improving stress resistance is discussed. Auxins, ethylene, and cytokinins are involved in morphological adaption processes to phosphorus (P) deficiency (increase in root surface, e.g., by the formation of more dense root hairs or cluster roots). Furthermore, indole‐3‐acetic acid increases root exudation for direct and indirect phosphorus mobilization in soil. Nevertheless, the direct use of the trait “hormone content” of a particular plant organ or tissue, for example the use of the drought‐stress‐induced ABA content of detached leaves in plant breeding for drought‐stress‐resistant crops, seems to be questionable, because this procedure does not consider the systemic principle of hormonal regulation in plants. 相似文献
16.
基于几种土壤测试方法的华南菜田磷素丰缺指标研究 总被引:4,自引:0,他引:4
依托2002—2009年开展的蔬菜田间试验结果,土样分别用Olsen法、Mehlich 1法、Mehlich 3法和ASI法测定其有效磷含量,建立上述测试方法的菜田土壤磷素丰缺指标,并进行不同测试方法的相关研究。以蔬菜产量<75%、75%~90%、90%~95%和>95%为标准,将菜田土壤有效磷分为“低”、“中”、“高”和“极高”4个肥力等级; 对应的土壤有效磷丰缺指标Olsen-P为<23、23~59、59~81和>81 mg/kg; M1-P为<19、19~102、102~179和>179 mg/kg; M3-P为<19、19~96、96~165和>165 mg/kg; ASI-P为<22、22~68、68~98和>98 mg/kg。Olsen法、M3法、M1法和ASI法4种方法,两两的相关性均达到极显著水平。 相似文献
17.
Roots are the main plant organs that supply nutrients, water, hormones and physical support for the plant. Phosphorus (P) is one of the most limiting and important elements in root growth and crop production. The aims of this study were to investigate the effects of different sources of phosphorus treatments on root growth (root length, diameter and dry matter) of barley. The two glasshouse pot experiments results showed that under P deficiency, the weight of dry root significantly decreased and the total root length of whole plant significantly increased with decrease of root diameter. Our results suggested that soil fertility and root structure are widely recognized as important role of the soil community and plant growth, the root structure and root extension can directly and indirectly affected by soil fertility and specially P nutrient of the soil. Accordingly, root characteristics can determine the circumstance of plant growth and crop production. 相似文献
18.
不同品种小麦根际磷转化及VA菌根对小麦根际磷转化的影响 总被引:7,自引:2,他引:7
采用三室根箱研究了磷高效小麦 81( 85)-5-3-3-3及磷低效NC37两个小麦品种根际磷转化及VA菌根对根际土壤磷转化的影响。结果表明 ,磷胁迫下 ,81( 85)-5-3-3-3的吸磷量略高于NC37,两种小麦品种根际土壤均形成了明显的Olsen-P ,Ca2-P ,Ca8-P ,Al P等形态磷的耗竭区。两种小麦品种在不施磷肥和施用磷肥下接种VA菌根 ,小麦的生物量、植株磷浓度、小麦根际Olsen-P,Ca2-P ,Ca8-P,Al-P ,Fe-P的消耗量均显著增加 ;根际、非根际土壤各形态磷素的浓度梯度明显降低。 相似文献
19.
白首乌氮、磷、钾积累分配特点及其与物质生产的关系 总被引:11,自引:1,他引:11
在大田条件下研究了白首乌的干物质积累与植株氮、磷、钾积累的特点及其相互关系。对白首乌的干物质积累动态及植株氮、磷、钾含量进行了测定。结果表明,白首乌干物质积累总量随氮、磷、钾积累总量及养分平衡指数(NBI)的增加呈直线增加趋势,相关系数均达显著水平。不同时期白首乌对氮、磷、钾的吸收量不同,在移栽后60.d内对氮、磷、钾的吸收较少,仅占全部吸收量的16.8%、14.4%1、5.6%;移栽后601~20.d吸收量迅速增加,氮、磷、钾的吸收量占全部吸收量的68.7%5、2.3%、58.2%;移栽120.d之后又有所下降。总的来说,植株对钾的吸收量最多,氮次之,磷最少,全生育期内对氮、磷、钾的吸收比例为1∶0.8∶1.5。 相似文献
20.
Effects of soil flooding and organic matter addition on plant accessible phosphorus in a tropical paddy soil: an isotope dilution study 下载免费PDF全文
Plant growth experiments were conducted to reveal the mechanism by which organic matter (OM) and soil flooding enhance phosphorus (P) bioavailability for rice. It was postulated that reductive dissolution of iron‐(III) [Fe(III)] oxyhydroxides in soil releases occluded phosphate ions (PO4), i.e., PO4 that is not isotopically exchangeable in the original soil prior to flooding. Rice was grown in P‐deficient soil treated with factorial combinations of addition of mineral P (0, 50 mg P kg?1), OM (0, ≈ 20.5 g OM kg?1 as cattle manure +/– rice straw) and water treatments (flooded vs. non‐flooded). The OM was either freshly added just before flooding or incubated moist in soil for 6 months prior to flooding; nitrogen and potassium were added in all treatments. The soil exchangeable P was labeled with 33PO4 prior to flooding. The plant accessible P in soil, the so‐called L‐value, was determined from the 33P/31P ratio in the plants. The L‐values were inconsistently affected by flooding in contrast with the starting hypothesis. The OM and P addition to soil clearly increased the L‐value and, surprisingly, the increase due to OM application was larger than the total P addition to soil. An additional isotope exchange study in a soil extract (E‐value) at the end of the experiment showed that the E‐value increased less than the total P addition with OM. This suggests that plants preferentially take up unlabeled P from the OM in the rhizosphere compared to labeled labile inorganic P. The effects of soil flooding on P bioavailability is unlikely related to an increase of the quantity of bio‐accessible P in soil (L‐value) but is likely explained by differences in P mobility in soil. 相似文献