首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 133 毫秒
1.
Abstract

The performance of a commercial automated CHN elemental analyzer was evaluated by comparison with classical wet methods and with another commercial analyzer. With proper standardization, calibration, and sample preparation, the Perkin‐Elmer 2400 CHN elemental analyzer was shown to give reliable carbon (C) and nitrogen (N) analyses of plant and soil materials. Precision was demonstrated by the consistent reference rice straw C and N results obtained (1.6 to 2.8% CV for N, and 0.3 to 0.7% CV for C) when 11 samples were analyzed consecutively within a day or on other days. A simple linear regression analysis showed generally higher plant N values measured by the CHN analyzer than the Kjeldahl method. Predicted analyzer plant N values were only slightly lower than Kjeldahl N, with plant materials containing less than 1% N. Recovery of different amounts of nitrate‐N (NO3‐N) added to rice straw samples was better with the CHN analyzer than with both the common and the salicylic acid‐modified Kjeldahl method. A very good 1:1 relationship between analyzer soil N values and the permanganate‐reduced iron modified Kjeldahl N values was also shown at the range measured (0.005–0.200% N). However, the soil C values determined by the analyzer were generally lower than the Walkley‐Black C values. Based on precision, analyzer soil C results with 0.4 to 5% CV appear to be more reliable than the Walkley‐Black C results with 0.3 to 18% CV. In spite of its reliability, speed of analysis, and low manpower requirement, studies showed the high cost of analyzing samples (minimum of US$2.38 per plant and US$3.83 per soil sample) with the CHN analyzer and of maintaining such a sensitive equipment.  相似文献   

2.
Abstract

Walkley‐Black method is a simple and rapid method for organic carbon analysis. Because of incomplete oxidation of organic carbon (C), the recovery of organic C is low with this method. Assuming the 77% recovery of organic C with Walkley‐Black method, the results are corrected with a correction factor of 1.30. The objective of this study is to determine the soil organic C recovery rate and appropriate correction factor for Walkley‐Black (wet combustion) method for tilled soils in southern Illinois. Soil samples were collected in 1995 and 1996 from a trial established in southern Illinois on a moderately well drained, Grantsburg (fine‐silty, mixed, mesic Oxyaquic Fragiudalf) soil. Organic C contents with the Leco analyzer (dry combustion) were significantly higher as compared to the Walkley‐Black method in different tillage systems (no‐till, chisel plow and moldboard plow), soil organic matter fractions (whole soil and mineral fraction) and soil depths (0–5 and 5–15 cm). The recovery percentage of organic C was lower than the assumed percentage with the Walkley‐Black method. No significant differences in organic C recovery percentage were found due to differences in tillage systems and depths, whereas the recovery percentage was lower in mineral fraction as compared to the whole soil. The lower organic C recovery percentage was due to the more stable organic C compounds in the mineral fraction. On the basis of these findings, correction factors of 1.35 and 1.41 are proposed for whole soil and mineral organic C analysis with Walkley‐Black method, respectively for tilled Grantsburg and other similar soils in southern Illinois.  相似文献   

3.
Abstract

The effect of soil series, cultivation, soil depth, and parent material on the correction factor which should be applied to organic carbon values determined by the method of Walkley and Black, has been examined using 450 low‐activity‐clay soil samples from high rainfall tropical Queensland. There were minimal effects due to soil depth, and differences between virgin and cultivated soils were greatest in soils formed on beach sands. However, soils formed on granitic or metamorphic rocks require a factor of 1.24, whereas the originally recommended factor of 1.32 (Walkley and Black) has been confirmed for soils formed on basalt, alluvium, and beach sands.  相似文献   

4.
Abstract

Organic carbon (OC) in leaves of seven nitrogen (N2)‐fixing trees and fifteen lignite‐based fertilizers was measured by loss‐on‐ignition (LOI at 500°C), wet oxidation by the Walkley‐Black method (CWB), Tinsley Dichromate Method (CTS), and dry combustion method using a LECO SC444 Carbon/ Sulphur Resistance Furnace Analyzer (CTO). There were significant differences in the capabilities of the methods in measuring OC from the organic materials with the quantity measured in the following order: LOI > CTO > CTS > CWB. A highly significant difference between LOI and CTO values suggested that components other than organic carbon (C) were removed by LOI since CTO gives total C value. The result also showed that N content in the organic materials was highly correlated with OC measured by individual methods. The LOI, CWB, and CTS were significantly correlated with CTO. The regression equations which were specific for either plant leaves or lignite‐based fertilizers indicated that any of the methods could be used to predict total C in the organic materials with a high degree of precision. In addition to the regression approach, an estimated correction factor of 1.4550 would be more appropriate to predict CTO from CWB for plant leaves than the 1.30 factor usually used for estimating oxidizable C in soils when CWB method is used. Also, a factor of 0.36180 could be used to estimate total C from LOI method for lignite fertilizers instead of merely regarding the difference in weight loss as the total organic matter.  相似文献   

5.
Abstract

The Walkley‐Black Method is shown to recover charcoal carbon (C) from both charcoal samples made in the laboratory from a range of plant materials as well as from soils containing various amounts of relic charcoal. The rate of recovery of charcoal C depends on the nature of the material from which it is derived and its particle size but not on its surface area. From the data presented, it is clear that the Walkley‐Black Method recovers charcoal C with a high enough efficiency so that, at the concentrations of charcoal found in soil, given its fine particle size and the potentially diverse nature of its origin, it is not possible to differentiate between charcoal C and other organic forms found in soil by this method.  相似文献   

6.
Abstract

In acid soils, where organic carbon (C) corresponds to total C, direct determination of organic C by dry combustion is possible, whereas in soils with carbonates also a separate measurement of inorganic C is required. In this case, direct quantification of organic C can be accomplished by the Walkley‐Black method, which is time‐consuming and involves greatly polluting by‐products. Hence, a method able to determine directly organic C by dry combustion is strongly needed for soils with carbonates. This study proposes such a method, after it was found to be highly reliable in calcareous soils of a Mediterranean island. The correction factor to use in the Walkley‐Black method to account for nonrecoverable C was calculated. It does not show any overall relationship with the contents of either organic C or inorganic C, and for all land uses examined in the island, it is not significantly different from the commonly suggested value 1.30.  相似文献   

7.
There is considerable interest in the computation of national and regional soil carbon stocks, largely as the result of the provisions of the Kyoto Protocol. Such stocks are often calculated and compared without proper reference to the uncertainties induced by different analytical methodologies. We illustrate the nature and magnitude of these uncertainties with the present soil organic carbon (SOC) study in Belgium. The SOC recovery of the Walkley‐Black method was investigated based on a database of 475 samples of silt loam and sandy soils, which cover different soil depths and vegetation types in northern Belgium. The organic carbon content of the soil samples was measured by the original Walkley‐Black method and by a total organic carbon analyser. The recovery was computed as the ratio of these two results per soil sample. Land use, texture and soil sampling depth had a significant influence on the recovery as well as their three‐way interaction term (land use × texture × sampling depth). The impact of a land use, texture and sampling depth dependent Walkley‐Black correction on the year 2000 SOC inventory of Belgium was determined by regression analysis. Based on new correction factors, the national SOC stocks increased by 22% for the whole country, ranging from 18% for cropland to 31% for mixed forest relative to the standard corrected SOC inventory. The new recovery values influenced therefore not only C stocks in the year 2000, but also the expected SOC change following land use change. Adequate correction of Walkley‐Black measurements is therefore crucial for the absolute and comparative SOC assessments that are required for Kyoto reporting and must be computed to take into account the regional status of soil and land use. ‘Universal’ corrections are probably an unrealistic expectation.  相似文献   

8.
DETERMINATION OF ORGANIC CARBON IN SOIL   总被引:1,自引:0,他引:1  
The organic carbon contents of a range of soils and of various organic materials (mostly of plant origin) were determined by the titrimetric methods of Tinsley and Walkley and Black, and the results compared with those obtained by Shaw's wet combustion method. Tinsley's method gave more reliable results with soils than Walkley and Black's method, but neither is satisfactory for precise work. Both give high results with organic materials less oxidized than elemental carbon and low results with organic materials more oxidized, although this effect is masked with materials which do not react completely under Walkley and Black conditions. Quantitative results were obtained on a range of whole plant materials with both Tinsley's and Walkley and Black's methods. The latter thus provides a very rapid method for the determination of carbon in plants. The carbon contents, determined by Tinsley's method, of a range of pure organic compounds agreed with the predicted values. Tinsley's method does not give quantitative results with certain soils, partly because of the oxidation level of the organic matter in these soils and partly because oxidation is incomplete.  相似文献   

9.
Abstract

This study compared three dichromate‐oxidation methods adapted for use with 100‐mL digestion tubes and 40‐tube block digester (for controlled heating), the Walkley‐Black method, a loss‐on‐ignition procedure and an automated dry combustion method for the determination of organic carbon in soils of the northwestern Canadian prairie. The Walkley‐Black method required a correction factor of 1.40. The modified Tinsley method and the Mebius procedure, adapted for use with 100‐mL digestion tubes, recovered 95% and 98%, respectively, of soil carbon against the dry combustion procedure. The presence of elemental carbon in some soils probably caused, at least partially, the slightly incomplete recovery; thermal decomposition of dichromate may not have been accurately corrected for. A dichromate‐oxidation procedure with controlled digestion at 135°C gave 100% recovery, but somewhat more variable results. The loss‐on‐ignition procedure, even when allowance was made for clay content of the soils, was the least satisfactory of the methods tested. All procedures produced correlation coefficients of 0.980 or better against the dry combustion method.  相似文献   

10.
Abstract

The effects of various soil properties on ammonia (NH3) volatilization from soils treated with urea were studied by measuring the NH3 evolved when 20 soils selected to obtain a wide range in properties were incubated at ‐0.034 mPa soil moisture potential and 30°C for 10 days after treatment with urea. The nitrogen (N) volatilized as NH3 from these soils represented from 0 to 65% of the urea‐N applied and averaged 14%. Simple correlation analyses showed that loss of NH3 was negatively correlated (P<0.1%) with cation‐exchange capacity, silt content, and clay content and was positively correlated (P <0.1%) with sand content. Loss of NH3 was also negatively correlated with total nitrogen content (P<1.0%), organic carbon content (P<1.0%), hydrogen ion buffering capacity (P<5.0%), and exchangeable acidity (P<5.0%), and was positively correlated with calcium carbonate equivalent (P <1.0%) and with soil pH after incubation with urea (P<1.0%), but was not significantly correlated with initial soil pH or soil urease activity. Multiple linear regression analyses indicated that the amount of urea N volatilized as NH3 from the 20 soils studied increased with increase in sand content and decreased with increase in cation‐exchange capacity. They also indicated that soil texture and cation‐exchange capacity are better indicators of potential loss of urea N as NH3 from soils fertilized with urea than are hydrogen ion buffering capacity or initial soil pH.  相似文献   

11.
Mapping soil organic carbon (SOC) and establishing any change over time are important because of CO2 fluxes between soil and atmosphere and cropland decreases in SOC. The latter is one of the main causes of soil fertility decline and increased erodibility. As most analytical methods underestimate total SOC content, correction factors are needed to avoid methodological bias when comparing SOC data from sampling campaigns using different analytical procedures. The traditional method for SOC analysis used to be, and in most cases still is wet oxidation in potassium dichromate, better known as the Walkley & Black method. In this study, we aim to estimate correction factors for the classic and modified version of the Walkley & Black method for different land use and soil type combinations for agricultural soils in north Belgium. General correction factors of 1.47 for the classic Walkley & Black method and 1.20 for the modified Walkley & Black method are proposed. The results show that sandy grassland soils are characterised by lower recoveries than silt loam grassland soils. Furthermore, the correction factor appears to increase with soil wetness.  相似文献   

12.
There is growing interest in the use of near-range and/or midrange infrared (IR) diffuse reflectance spectroscopy (NIR and MIR) as nondestructive alternatives to chemical testing of soils. This trend is supported by research on how best to correlate IR spectral data with results obtained by conventional laboratory measurements. While for soils there is growing interest in developing local and national calibrations using “legacy” data, the proven analytical performance of provider laboratories now and earlier, the moisture status of reported results, and the method of soil preparation warrant greater attention. Examples for soil carbon (C) and total soil nitrogen (N) from Australasian interlaboratory proficiency testing across multiple years from 1993 are provided to demonstrate the magnitude of past and present measurement uncertainties, including the effects of method and different concentrations. The evidence is sufficient to require those commissioned to develop NIR and MIR calibrations to subject their prototype calibrations to external peer review by participating in credible, independent interlaboratory proficiency testing programs for ≥12 months, including checks on soil moisture status and possible effects of sample preparation. To rate as credible for most uses, the prototype results should be within the interquartile range for each sample and ideally there should be no outliers and few stragglers. Across the period of assessment (1993–2008), users of Walkley and Black organic C and Kjeldahl digestion for total soil N (Kjeldahl method does not measure total N, but most of the organic N plus an undetermined proportion of nitrate and nitrate present in the sample; quantitative inclusion of both requires a modification of the Kjeldahl procedure) declined as use of furnace technologies for soil C and N increased linearly. There is a strong case to commission two or three well-performing and experienced laboratories to reanalyze samples in “legacy” soil collections prior to finalizing predictive relationships with NIR/MIR spectra for the same samples.  相似文献   

13.
ASI法速测土壤指标与植物N吸收的相关性研究   总被引:1,自引:0,他引:1  
本研究选用ASI法对山西褐土41个、河南潮土73个、辽宁棕壤43个、黑龙江黑土69个土样进行了土壤硝态N(ASI-NO3--N)、铵态N(ASI-NH4+-N)、碱溶有机质(ASI-OM)的测定,同时用常规方法测定了碱解N和有机质。并对测定值进行了相关性分析。同时选取土壤进行盆栽试验以验证ASI法测定值与植物吸N量的相关性。结果表明:四类土壤ASI-NO3--N与碱解N测定结果达到了极显著相关(褐土r=0.89**,潮土r=0.79**,棕壤r=0.90**,r=0.47**),四类土壤ASI-OM与常规方法有机质测定结果均达到了极显著正相关(褐土r=0.92**,潮土r=0.88**,棕壤r=0.93**,黑土r=0.96**),ASI-NH4+-N与碱解N测定结果也均达到了极显著正相关(褐土r=0.76**,潮土r=0.64**,棕壤r=0.97**,黑土r=0.61**)。褐土、棕壤土壤ASI-NO3--N含量与植物吸N量呈极显著正相关(P<0.01),潮土、黑土土壤ASI-NO3--N含量与植物吸N量呈显著正相关(P<0.05)。褐土、棕壤土壤ASI-NH4+-N含量与植物吸N量呈显著正相关(P<0.05),潮土、黑土土壤ASI-NH4+-N含量与植物吸N量相关性不显著(P>0.05)。除褐土土壤ASI-OM含量与植物吸N量呈显著正相关外(P<0.05),潮土、棕壤、黑土土壤ASI-OM含量与植物吸N量相关性不显著(P>0.05)。  相似文献   

14.
Abstract

The knowledge of nitrogen (N) losses in direct‐drilling agrosystems is essential to develop strategies to increase fertilizer efficiency and to minimize environmental damage. The objectives were i) to quantify the magnitude of N volatilization and leaching simultaneously as affected by different urea fertilization rates and ii) to evaluate the capacity of these specific plant–soil systems to act as a buffer to prevent nitrate leaching. Two experiments were conducted during 2001/02 and 2002/03 growing seasons in Alberti, Argentina. The crop was direct‐drilled maize and the soil a Typic Argiudoll. Ammonia losses, N uptake by crop at flowering and harvest, grain yield, N in previous crop residues, and soil nitrate content up to 2‐m depths were determined. Nitrogen availability, soil nitrate (NO3)‐N up to 1 m plus fertilizer N, was linearly and highly associated with crop N uptake at flowering (R2=0.93, P<0.01) and at harvest (R2=0.852, P<0.01). Around 17.5% of fertilizer N was lost by volatilization in 10 days. The obtained values of residual nitrate N up to the 150‐cm depth were associated (R2=0.960, P<0.001) with those predicted by the nitrate leaching and economic analysis package (NLEAP) model. Maize in the direct‐drilling system was able to cycle N from the previous crop residues, N from soil organic matter, and N from fertilizers with few losses.  相似文献   

15.
Abstract

A phosphorus (P) greenhouse experiment was carried out with maize (Zea Mays L.) using surface horizons of three contrasted acid soils from southern Cameroon. The objectives were (i) to assess causal factors of maize differential growth and P uptake and (ii) to explore plant–soil interactions in acid soils under increasing P supply. Shoot and root dry‐matter yield and P uptake were significantly influenced by soil type and P rate (P<0.000), but the interaction was not significant. Soil properties that significantly (P<0.05) influenced maize growth variables were available P, soil pH, exchangeable bases [calcium (Ca), magnesium (Mg)], and exchangeable aluminium (Al). Data ordination through principal‐component analysis highlighted a four‐component model that accounted for 88.1% of total system variance (TSV) and summarized plant reaction in acid soil condition. The first component, associated with 36.1% of TSV, pointed at increasing root–shoot ratio with increasing soil acidity and exchangeable Al. The second component (24.6% of TSV) highlighted soil labile P pool increase as a function of P rate. The third and fourth components reflected nitrogen (N) accumulation in soils and soil texture variability, respectively.  相似文献   

16.
Abstract

A greenhouse experiment was conducted to determine the effect of rice straw residue on growth and uptake of added 15N‐labeled ammonium nitrogen (NH4‐N) (3% 15N abundance at the rate of 150 kg N ha?) by rice in Crowley silt loam soil (Typic Albaqualfs). Higher rates of rice straw addition had an adverse affect on plant growth from the first to sixth week. After 6 weeks, the high rice straw treatment had a positive effect on plant growth (P<0.05). The 15N‐labeled ammonium or fertilizer nitrogen (N) uptake by rice was significantly lower (P<0.05) in the high rice straw treatment as compared to lower rice straw treatments. Greater plant growth was recorded under alternate flooding and draining condition as compared to continuously flooded treatment (P<0.01).  相似文献   

17.
Using a simple case study approach, this research tested the hypothesis that soil organic carbon (C) concentrations would decline when mineral soils from cool, nitrogen (N)–rich, high‐elevation (>1400 m) forests were transplanted to warmer, N‐poor, low‐elevation (~545 m) forests. Two short‐term (<5 year) experiments were performed in the Great Smoky Mountains National Park (Tenn./N.C.) in the southern Appalachian Mountains. In the first experiment, C concentrations in whole soils, particulate organic matter (POM), and mineral‐associated organic matter (MOM) declined significantly (P 0.001) when soils from a high elevation site (1H) were transplanted to a low‐elevation site (1L). In the second experiment, there was a significant (P  0.05) decline in POM C concentrations when high elevation soils (2H) were moved to a lower elevation (2L) as well as declines in whole soil C concentrations that were significant at P  0.10. In both cases, reciprocal transplants of low elevation soils to high elevations resulted in no detectable change in soil C concentrations. Warming of higher quality soil organic matter (whole soil C‐to‐N ratio <20) resulted in greater soil C loss. Consistent with prior predictions, the results suggest that a future warmer and drier climate may cause losses of forest soil C at high elevations in the southern Appalachian Mountains.  相似文献   

18.
Abstract

The determination of soil organic matter by wet digestion techniques is a slow and laborious analysis. Loss‐on‐ignition (LOI) provides a simple alternative technique for the estimation of soil organic carbon in non‐calcareous A horizon soils of the Natal midlands and Zululand forestry regions. Using multiple regressional techniques, the relationships between loss‐on‐ignition, Walkley organic carbon and soil texture for 55 soils were determined over a range of ignition temperatures. The relationships hold best for soil samples with relatively low organic carbon contents (< 5%). The optimum temperature for ignition was found to occur at 450°C and resulted in the relationship: Soil organic carbon = 0.284*LOI percent. No advantage is gained through ignition at higher temperatures due to the loss of clay mineral structural water, even if the soil texture is accurately known.  相似文献   

19.
Abstract

The conventional dichromate (Walkley and Black), carbon analyzer, and weight loss‐on‐ignition (WLOI) methods are compared for determination of organic matter contents in composts and organic mulches. The objective of this study was to evaluate these three methods for their reliability in determining the organic matter contents of composts and organic mulches that also contain inorganic carbon. The carbon analyzer method overestimated organic matter contents for samples containing inorganic carbon (C) as carbonate or charcoal C. The removal of inorganic C improved the correlation coefficients (r) of results obtained by the carbon analyzer method and the Walkley and Black method (0.95 vs. 0.89). The WLOI method produced results more similar to those obtained with the Walkley and Black method than with a carbon analyzer. Oven drying samples for 16–24 h at 105°C as a basal temperature for WLOI improved results compared with a basal temperature at 70°C, which is commonly used. A heating temperature of 500°C for 12 h resulted in organic matter determinations by the WLOI method in the closest agreement with those obtained by the Walkley and Black method.  相似文献   

20.
ABSTRACT

The precise assessment of soil organic matter (SOM) is required when studying soil pedology, chemistry, physics, and fertility. Besides, it is a key for evaluating soil quality, plant growth, and sustainable land management. This research aims to correlate the SOM resulted from loss-on-ignition (LOI) with those from wet combustion (Walkley–Black, WB). A total of 130 soil samples were collected from Egypt and analyzed using WB and LOI. In LOI, samples exposed to the combustion temperatures of 300, 375, 430, and 550°C for 2 and 4 hours. Using RStudio, simple linear regressions were conducted to estimate the most suitable temperature/time combinations. The results showed that applying lower temperatures (300 and 375°C) for 2 hours provided a strong correlation between LOI and WB with R2 of 93 and 94% for all dataset and sandy soils, respectively. For clay soils the respective R2 values at 300 and 375°C were 83 and 85%. The proposed combinations were valid to estimate SOM content for different soils with correlation up to 0.99 for sandy soils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号