共查询到20条相似文献,搜索用时 15 毫秒
1.
The absorption and transport of Na and Cl from 0.1 mM and 10 mM 22Na labelled NaCl or 36Cl labelled KCl were examined in 15 days old seedlings of 3 cultivars of rice differing in their tolerance to salinity. Furthermore, the effects of 10, 100 and 1000 ppm (N)2S on their uptake were studied. It was found that in general, the salt‐tolerant cultivars BR and PNL‐1 absorbed more Na and translocated a lesser proportion of it to the shoot, compared to the salt‐sensitive IR‐8, from 0.1 mM NaCl. The presence of (N)2S reduced the uptake of Na in all the cultivars. It was also found that the presence of 100 ppm K, KN or NNreduced Na absorption from 0.1 mM NaCl significantly in all the cultivars, and the translocation to shoot in BR‐ Chloride transport from 0.1 mM NaCl was reduced by (N)2S in all the cultivars. The 3 cultivars differed significantly in the rates of absorption and transport of Na and Cl. The results indicate that PNL‐1 which is a cross of IR‐8 X BR, has inherited the salt tolerance trait from BR. Lower rates of Na translocation to the shoot can be used as an index of salt tolerance in rice. 相似文献
2.
Digestates vary in composition and studies regarding their impact on C and N dynamics in soils are scarce. The objective was to analyse the C and N dynamics of digestates originating from various substrates applied to a sandy Cambisol and a silty Anthrosol. In three laboratory experiments (4–6 weeks), the effects of digestate properties, N rate and water content were tested. Averaged over both soils, 21% of the C supplied was emitted as CO2. Potential NH3 emissions during the first week ranged between 6% and 12% of NH4+ present in the digestates. The emission factors in the sandy Cambisol were on average 1.2 and 2 times higher for CO2 and potential NH3, respectively, compared to the silty Anthrosol. Similarly, net nitrogen mineralization in the sandy Cambisol was approximately twice the N mineralized in the silty Anthrosol. Net nitrification was not influenced by soil texture or different digestates, but increased with increasing application rates and had highest values at 75% of water holding capacity. Our results indicate that the type of substrate input for anaerobic digestion influences the properties of the digestate and therefore the dynamics of C and N. However, soil texture can affect these dynamics markedly. 相似文献
3.
Ralph B. Clark 《Journal of plant nutrition》2013,36(8):1039-1057
The growth of plants in nutrient solutions is an invaluable tool for mineral nutrition studies. Successful growth of plants in nutrient solutions require special attention and consideration. Details and helpful ideas for the growth of plants in nutrient solutions are often omitted in publications where techniques like these are used. The objective of this report is to focus on some of the concerns, successes, experiences, and problems noted for the growth of sorghum and corn in nutrient solutions. Topics discussed are nutrient solution composition, pH of nutrient solutions, phosphorus concentrations, sources of Fe in solutions, plus several suggestions and comments for successful growth of sorghum and corn in nutrient solutions. 相似文献
4.
La(NO3)3 对盐胁迫下黑麦草幼苗生长及抗逆生理特性的影响 总被引:2,自引:0,他引:2
为探讨稀土元素镧(La)对牧草盐胁迫伤害的缓解作用, 采用水培法研究了叶面喷施20 mg·L-1La(NO3)3 对NaCl 胁迫下黑麦草幼苗生长及其抗逆生理特性的影响。结果表明: 盐胁迫显著抑制黑麦草幼苗的生长, 提高叶片电解质渗漏率及丙二醛(MDA)、O2- 和H2O2 含量, 其作用随盐浓度的增大而增强。超氧化物歧化酶(SOD)、过氧化氢酶(CAT)、抗坏血酸过氧化物酶(APX)活性和抗坏血酸(AsA)、谷胱甘肽(GSH)、可溶性蛋白质、脯氨酸含量随盐浓度增大呈先升后降趋势, 可溶性糖和Na+/K+比逐渐增大, 质膜H+-ATP 酶活性逐渐降低, 过氧化物酶(POD)活性及POD 同功酶数量表达增强。喷施La(NO3)3 处理可降低盐胁迫下黑麦草幼苗叶片的O2- 和H2O2 含量, 提高SOD、CAT、POD、APX 和质膜H+-ATP 酶的活性及POD 同功酶的表达, 使AsA、GSH、可溶性蛋白质、可溶性糖和游离脯氨酸含量及幼苗生物量增加, Na+/K+比降低。表明La(NO3)3 可通过提高抗氧化系统的活性和积累渗透溶质减轻盐胁迫伤害, 从而提高黑麦草的耐盐性。 相似文献
5.
典型菜地土壤剖面N2O、CH4与CO2分布特征研究 总被引:2,自引:0,他引:2
为探究菜地土壤剖面N2O、CH4与CO2时空分布特征,利用地下气体原位采集系统与气相色谱法,周年动态监测3种典型菜地,即休闲裸地、轮作地Ⅰ(芹菜?空心菜?小白菜?苋菜)以及轮作地Ⅱ(菜心?芹菜?空心菜?大青菜)7 cm、15 cm、30 cm与50 cm土层N2O、CH4与CO2浓度变化。结果表明,0~50 cm土层范围内,N2O、CH4与CO2 3种气体浓度周年变异性较大,变幅分别为0.63~1 657.0μL(N2O)?L?1、0.8~72.5μL(CH4)?L?1和0.41~36.6 m L(CO2)?L?1。轮作地Ⅰ与轮作地Ⅱ的N2O平均浓度随土壤深度增加而增加,休闲裸地则呈现先增加(0~30 cm)后降低(30~50 cm)的变化趋势。两种轮作菜地4个土层N2O平均浓度均显著高于休闲裸地,二者氮肥施用量不同并未造成相同土层间N2O平均浓度的显著差异。3种菜地CH4与CO2平均浓度均呈现50 cm30 cm15 cm7 cm的梯度特征。轮作地Ⅰ与轮作地Ⅱ0~15 cm土层CH4平均浓度均大于休闲裸地,而在15~50 cm土层则分别大于和小于休闲裸地。CO2浓度呈现明显的季节性变化,除轮作地Ⅰ50 cm土层外,两种轮作菜地其他土层CO2平均浓度均小于休闲裸地对应土层。可见,蔬菜地高氮肥施用、多频次耕作等复杂管理使得N2O、CH4与CO2表现出较大的时空变异特征,其中氮肥施用对N2O的影响大于CH4与CO2,CH4受施肥与耕作的影响均较小,CO2显著受土壤温度与耕作措施的影响,在此基础上需进一步探究N2O、CH4与CO2的其他影响因素。 相似文献
6.
《Communications in Soil Science and Plant Analysis》2012,43(7):789-798
Abstract The effects of liming (7 500 kg CaCO3/ha) and rate of urea application (0,50,100, and 200 kg N/ha) and its placement at the surface or at 5 cm depth on grain yield and nutrient uptake by corn grown on an acidic tropical soil (Fluventic Eutropept) were studied. Liming significantly increased grain yield, N uptake, and P and K uptake although Ca and Mg uptake, generally, were unaffected. Sub‐surface application of urea increased N uptake only. Yield response to applied N was observed up to 50 kg N/ha when limed but at all rates in the absence of liming. It therefore, reduced the fertilizer N requirement for optimum grain yield. Liming the acidic soil also reduced exchangeable Al but increased nitrification rate and available P in the soil profile (at least up to 0.6 m depth). 相似文献
7.
Nitric oxide (NO) and nitrous oxide (N2O) emissions were measured from experimental dung and urine patches placed on boreal pasture soil during two growing seasons and one autumn period until soil freezing. N2O emissions in situ were studied by a static chamber method. NO was measured with a dynamic chamber method using a NO analyser in situ. Mean emissions from the control plots were 47.6±4.5 μg N2ON m−2 h−1 and 12.6±1.6 μg NON m−2 h−1. N2O and NO emissions from urine plots (132±21.2 μg N2ON m−2 h−1 and 51.9±7.6 μg NON m−2 h−1) were higher than those from dung plots (110.0±20.1 μg N2ON m−2 h−1 and 14.7±2.1 μg NON m−2 h−1). There was a large temporal variation in N2O and NO emissions. Maximum N2O emissions were measured a few weeks after dung or urine application, whereas the maximum NO emissions were detected the following year. NO was responsible on average 14% (autumn) and 34% (summer) of total (NO+N2O)N emissions from the pasture soil. NO emissions increased with increasing soil temperature and with decreasing soil moisture. N2O emissions increased with increasing soil moisture, but did not correlate with soil temperature. Therefore we propose that N2O and NO were produced mainly during different microbial processes, i.e., nitrification and denitrification, respectively. The results show that the overall conditions and mechanism especially for emissions of NO are still poorly understood but that there are differences in the mechanisms regulating N2O and NO production. 相似文献
8.
《Communications in Soil Science and Plant Analysis》2012,43(4):317-333
Abstract Four extractants for soil Mn were compared for their sensitivity to changes in Mn availability caused by rates and sources of added soil Mn and soil pH variations. Their ability to extract amounts of Mn correlated with plant Mn concentrations was also determined. Two field experiments were conducted on a sandy, high water table soil (Ultic Haplaquod‐Arenic Plinthaquic Paleudult) which included 5 Mn rates, 4 Mn sources and 3 soil pH levels. Soybeans [Glycine max (L.) Merr. cultivar Ransom] were grown and leaf tissue and soils sampled at the late pod‐fill stage. All four extractants separated the high‐ Mn rates, but the small exchange method did not separate the low Mn rates. Few differences were observed among extractants due to Ma sources. The DTPA method was the only procedure to correctly distinguish soil pH levels by showing decreasing extractable Ma with increasing soil pH. Including pH in multiple regressions significantly increased the plant Mn‐soil Mn correlation coefficients. The DTPA method and the 0.1N H3PO4 method had the highest correlation coefficients and the double acid method the lowest. The small exchange method was intermediate. Considering all the results, the DTPA was the most promising method for extracting Mn from this sandy, southern Coastal Plain soil. 相似文献
9.
The effects of elevated CO2 supply on N2O and CH4 fluxes and biomass production of Phleum pratense were studied in a greenhouse experiment. Three sets of 12 farmed peat soil mesocosms (10 cm dia, 47 cm long) sown with P. pratense and equally distributed in four thermo-controlled greenhouses were fertilised with a commercial fertiliser in order to add 2, 6 or 10 g N m−2. In two of the greenhouses, CO2 concentration was kept at atmospheric concentration (360 μmol mol−1) and in the other two at doubled concentration (720 μmol mol−1). Soil temperature was kept at 15 °C and air temperature at 20 °C. Natural lighting was supported by artificial light and deionized water was used to regulate soil moisture. Forage was harvested and the plants fertilised three times during the basic experiment, followed by an extra fertilisations and harvests. At the end of the experiment CH4 production and CH4 oxidation potentials were determined; roots were collected and the biomass was determined. From the three first harvests the amount of total N in the aboveground biomass was determined. N2O and CH4 exchange was monitored using a closed chamber technique and a gas chromatograph. The highest N2O fluxes (on average, 255 μg N2O m−2 h−1 during period IV) occurred just after fertilisation at high water contents, and especially at the beginning of the growing season (on average, 490 μg N2O m−2 h−1 during period I) when the competition of vegetation for N was low. CH4 fluxes were negligible throughout the experiment, and for all treatments the production and oxidation potentials of CH4 were inconsequential. Especially at the highest rates of fertilisation, the elevated supply of CO2 increased above- and below-ground biomass production, but both at the highest and lowest rates of fertilisation, decreased the total amount of N in the aboveground dry biomass. N2O fluxes tended to be higher under doubled CO2 concentrations, indicating that increasing atmospheric CO2 concentration may affect N and C dynamics in farmed peat soil. 相似文献
10.
Tomoaki Morishita Kyotaro Noguchi Yongwon Kim Yojiro Matsuura 《Soil Science and Plant Nutrition》2013,59(1):98-105
AbstractForest fires can change the greenhouse gase (GHG) flux of borea forest soils. We measured carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) fluxes with different burn histories in black spruce (Picea mariana) stands in interior Alaska. The control forest (CF) burned in 1920; partially burned (PB) in 1999; and severely burned (SB1 and SB2) in 2004. The thickness of the organic layer was 22 ± 6 cm at CF, 28 ± 10 cm at PB, 12 ± 6 cm at SB1 and 4 ± 2 cm at SB2. The mean soil temperature during CO2 flux measurement was 8.9 ± 3.1, 6.4 ± 2.1, 5.9 ± 3.4 and 5.0 ± 2.4°C at SB2, SB1, PB and CF, respectively, and differed significantly among the sites (P < 0.01). The mean CO2 flux was highest at PB (128 ± 85 mg CO2-C m?2 h?1) and lowest at SB1 (47 ± 19 mg CO2-C m?2 h?1) (P < 0.01), and within each site it was positively correlated with soil temperature (P < 0.01). The CO2 flux at SB2 was lower than that at CF when the soil temperature was high. We attributed the low CO2 flux at SB1 and SB2 to low root respiration and organic matter decomposition rates due to the 2004 fire. The CH4 uptake rate was highest at SB1 [–91 ± 21 μg CH4-C m?2 h?1] (P < 0.01) and positively correlated with soil temperature (P < 0.01) but not soil moisture. The CH4 uptake rate increased with increasing soil temperature because methanotroph activity increased. The N2O flux was highest [3.6 ± 4.7 μg N2O-N m?2 h?1] at PB (P < 0.01). Our findings suggest that the soil temperature and moisture are important factors of GHG dynamics in forest soils with different fire history. 相似文献
11.
Cadmium (Cd) pollution in agricultural soils has exerted a serious threat due to continuous application of pesticides, fertilizers, and wastewater irrigation. The present study aimed to test the efficiency of KOH-modified and non-modified rice straw-derived biochar (KBC and BC, respectively) for reducing Cd solubility and bioavailability in Cd-contaminated soil. Cadmium-contaminated soil was incubated for 60 d with 15 and 30 g kg-1 BC and KBC. At the end of incubation, Cd mobility was estimated by the European Community Bureau of Reference sequential extraction and toxicity characteristic leaching procedure (TCLP), while bioavailability was determined using 1 mol L-1 NH4NO3 extraction. The bioavailability risk index and bioaccessibility, assessed by a simple bioaccessibility extraction test, of Cd were used to examine the potential effects of Cd on living organisms. The results indicated that application of both KBC and BC significantly increased soil pH, cation exchange capacity, nutrients, and organic carbon. The soluble fraction of Cd was significantly decreased by 30.3% and 27.4%, respectively, with the addition of KBC and BC at 30 g kg-1 compared to the control (without biochar addition). Similarly, the bioaccessible Cd was significantly decreased by 32.4% and 25.2%, respectively, with the addition of KBC and BC at 30 g kg-1 compared to the control. In addition, both KBC and BC significantly reduced Cd leaching in the TCLP and NH4NO3-extractable Cd in the amended soil compared to the control. The reduction in Cd solubility and bioaccessibility by KBC and BC may be due to significant increases in soil pH and surface complexation. Overall, KBC at an application rate of 30 g kg-1 demonstrated positive results as soil amendment for Cd immobilization, and reduced bioaccessible Cd in contaminated soil. 相似文献
12.
Abstract It is well known that some fungal species are remarkably tolerant of high copper concentration, although copper is toxic to most fungi (Garraway and Evans 1984). Bedford (1936) and Jurkowska (1952) reported that Penicillium and Aspergillus species can grow in liquid media saturated or nearly saturated with copper sulfate. Okamoto and Fuwa (1974) isolated Penicillium ochro-chloron from the laboratory air, and found that the fungus was able to grow in a medium saturated with copper sulfate. 相似文献
13.
The effects of NO2 and O3 exposure alone or in combination were investigated with respect to the amino acid content and composition in kidney bean. The short-term exposure (up to 8 h) to NO2 at a concentration of 4.0 ppm alone or in combination with O3 at a concentration of 0.4 ppm induced a rapid increase in the total amino acid content among which glutamine accounted for most of the part. Total amino acid content was also increased by O3 exposure at 0.4 ppm after 2 hours’ lag period. Ammonium level became higher in the case of combined exposure to NO2 and O3, while it remained constant in the case of exposure to NO2 and O3 alone. When the exposure period was extended to 2 to 7 days (long-term exposure), the increase in the content of the total amino acids was observed in most of treatments. Roots of the plants exposed to various concentrations of NO2 and O3 showed the most remarkable increase in the content of total amino acids. Asparagine, in place of glutamine, became a major amino acid. The percentage of asparagine was especially increased by the mixed exposure to NO2 and O3 These results indicate that glutamine which accumulates considerably in the early phase of the gas exposure (short-term exposure) seems to be gradually converted into other amino acids, mainly asparagine. The correlation between the content of each amino acid, ammonium and total amino acids was calculated using data from the above experiment. Most of the amino acids in the primary and trifoliate leaves showed a high correlation with the total amino acids, suggesting that the changes in the amount of total amino acids caused by the air pollutants may be reflected not only by a particular amino acid, but also by an individual amino acid composing soluble metabolite pool. A high correlation was obtained among amino acids belonging to the serine family such as glYCine, serine, and cysteine. 相似文献
14.
Ariana. E. Sutton-Grier Cynthia Gilmour J. Patrick Megonigal 《Soil biology & biochemistry》2011,43(7):1576-1583
Anaerobic decomposition in wetland soils is carried out by several interacting microbial processes that influence carbon storage and greenhouse gas emissions. To understand the role of wetlands in the global carbon cycle, it is critical to understand how differences in both electron donor (i.e., organic carbon) and terminal electron acceptor (TEA) availability influence anaerobic mineralization of soil organic matter. In this study we manipulated electron donors and acceptors to examine how these factors influence total rates of carbon mineralization and the pathways of microbial respiration (e.g., sulfate reduction versus methanogenesis). Using a field-based reciprocal transplant of soils from brackish and freshwater tidal marshes, in conjunction with laboratory amendments of TEAs, we examined how rates of organic carbon mineralization changed when soils with different carbon contents were exposed to different TEAs. Total mineralization (the sum of CO2 + CH4 produced) on a per gram soil basis was greater in the brackish marsh soils, which had higher soil organic matter content; however, on a per gram carbon basis, mineralization was greater in the freshwater soils, suggesting that the quality of carbon inputs from the freshwater plants was higher. Overall anaerobic metabolism was higher for both soil types incubated at the brackish site where SO42− was the dominant TEA. When soils were amended with TEAs in the laboratory, more thermodynamically favorable respiration pathways typically resulted in greater organic matter mineralization (Fe(III) respiration > SO42− reduction > methanogenesis). These results suggest that both electron donors and acceptors play important roles in regulating anaerobic microbial mineralization of soil organic matter. 相似文献
15.
Greenhouse gas emissions in response to straw incorporation,water management and their interaction in a paddy field in subtropical central China 总被引:2,自引:0,他引:2
Cong Wang Hong Tang Kazuyuki Inubushi Georg Guggenberger 《Archives of Agronomy and Soil Science》2017,63(2):171-184
A field experiment was conducted to study the effects of combination of straw incorporation and water management on fluxes of CH4, N2O and soil heterotrophic respiration (Rh) in a paddy field in subtropical central China by using a static opaque chamber/gas chromatography method. Four treatments were set up: two rice straw incorporation rates at 0 (S1) and 6 (S2) t ha?1 combined with two water managements of intermittent irrigation (W1, with mid-season drainage) and continuous flooding (W2, without mid-season drainage). The cumulative seasonal CH4 emissions for the treatments of S1W2, S2W1 and S2W2 increased significantly by 1.84, 5.47 and 6.63 times, respectively, while seasonal N2O emissions decreased by 0.67, 0.29 and 1.21 times, respectively, as compared to S1W1 treatment. The significant increase in the cumulative Rh for the treatments S1W1, S2W1 and S2W2 were 0.54, 1.35 and 0.52 times, respectively, in comparison with S1W2. On a seasonal basis, both the CO2-equivalents (CO2e) and yield-scaled CO2e (GHGI) of CH4 and N2O emissions increased with straw incorporation and continuous flooding, following the order: S2W2>S2W1>S1W2>S1W1. Thus, the practices of in season straw incorporation should be discouraged, while mid-season drainage is recommended in paddy rice production from a point view of reducing greenhouse gas emissions. 相似文献
16.
Tomato plants were grown in sand culture with NH4 or NO3 forms of N and at two levels of light. Plants were harvested at 0, 5, 9, or 12 days after starting treatments. NH4‐N nutrition reduced growth, suppressed K, Ca, and Mg accumulation in shoot, increased P and N content and markedly reduced K, Ca, and Mg uptake per unit of root surface. Reduced light level decreased the toxic effects of NH4 and markedly decreased NH4 accumulation in shoots. 相似文献
17.
Abstract Tomato plants were grown in sand culture with NH+ 4, and NO? 3, forms of N and three levels of light. Plants supplied with NH+ 4, nutrition under high light intensity had symptoms of stunting, leaf roll, wilting, interveinal chlorosis of the older leaves, and one third the dry weight of N03‐fed plants. In contrast, growth of plants receiving NH+ 4, nutrition under shade appeared normal although dry weight was reduced. NH4‐N nutrition suppressed K, Ca and Mg accumulation in tissues and increased P contents as compared to NO3‐N nutrition. 相似文献
18.
The effect of ammonium:nitrate (NH4:NO3) ratio in nutrient solution on growth, photosynthesis (Pn), yield, and fruit quality attributes in hydroponically grown strawberry (Fragaria × ananassa Duch) cvs. ‘Camarosa’ and ‘Selva’ was evaluated. There were four nutrient solutions of differing NH4:NO3 ratios as follows: 0:100, 25:75, 50:50, and 75:25. Plants grown in solution with 75% NH4 had lower leaf fresh and dry weights and leaf area than those with 25% NH4 in both cultivars. High ratios of NH4 and NO3 in the solution always reduced the yield. The yield was increased by 38% and 84% in ‘Camarosa’ and ‘Selva,’ respectively, when the plants were grown in the 25NH4:75NO3 solution compared with plants grown in a higher NH4 ratio solution. The increased yield at the 25 NH4:75NO3 ratio was the result of the increase in fruit size, i.e., length and fresh weight of fruits. Plants grown in the 25NH4:75NO3 solution had the highest rate of Pn, while those grown in 75NH4:25NO3 solution had the lowest Pn rates in both cultivars. Increasing the NH4 ratio in the solution from 0 to 75% significantly reduced the calcium (Ca) concentration and postharvest life of the fruits in both cultivars. Both higher leaf area and Pn rate appeared to be the reason for the increased yield and plant growth in the 25:75 ratios of nitrogen (N). The results indicate the preference of strawberry plant growth toward a greater nitrate N form in a hydroponic solution. Therefore, a combination of two forms of N in an appropriate ratio (25NH4:75NO3) appears to be beneficial to plant growth, yield, and quality of strawberry fruits. 相似文献
19.
In boreal forests, canopy-scale emissions of biogenic volatile organic compounds (BVOCs) are rather well characterised, but knowledge of ecosystem-scale BVOC emissions is still inadequate. We used adsorbent tubes to measure BVOCs from a boreal Scots pine (Pinus sylvestris L.) forest floor in southern Finland and analysed the compounds with a gas chromatograph-mass spectrometer. The most abundant compound group was the monoterpenes (averaging 5.04 μg m−2 h−1), in which α-pinene, Δ3-carene and camphene contributed over 90% of the emissions. Emissions of other terpenoids (isoprene and sesquiterpenes) were low (averaging 0.05 and 0.04 μg m−2 h−1, respectively). BVOC emissions from the forest floor varied seasonally, peaking in early summer and autumn, with most of the compounds following similar patterns. The emission pattern was sustained throughout the measurement period, suggesting that the main sources of the emissions remained more or less stable. We compared the BVOC fluxes with environmental parameters such as temperature, precipitation and PAR, and with fluxes of other trace gases (CO2, CH4, N2O), as well as with ground vegetation photosynthesis and with litter input. Several of these parameters were correlated with the presence of BVOCs. The sources of soil BVOC emissions are very poorly understood, but our results suggest, that changes in litter quantity and quality, soil microbial activity and the physiological stages of plants are linked with changes in BVOC fluxes. 相似文献
20.
Argyro Zerva 《Soil biology & biochemistry》2005,37(11):2025-2036
We examined the effects of forest clearfelling on the fluxes of soil CO2, CH4, and N2O in a Sitka spruce (Picea sitchensis (Bong.) Carr.) plantation on an organic-rich peaty gley soil, in Northern England. Soil CO2, CH4, N2O as well as environmental factors such as soil temperature, soil water content, and depth to the water table were recorded in two mature stands for one growing season, at the end of which one of the two stands was felled and one was left as control. Monitoring of the same parameters continued thereafter for a second growing season. For the first 10 months after clearfelling, there was a significant decrease in soil CO2 efflux, with an average efflux rate of 4.0 g m−2 d−1 in the mature stand (40-year) and 2.7 g m−2 d−1 in clearfelled site (CF). Clearfelling turned the soil from a sink (−0.37 mg m−2 d−1) for CH4 to a net source (2.01 mg m−2 d−1). For the same period, soil N2O fluxes averaged 0.57 mg m−2 d−1 in the CF and 0.23 mg m−2 d−1 in the 40-year stand. Clearfelling affected environmental factors and lead to higher daily soil temperatures during the summer period, while it caused an increase in the soil water content and a rise in the water table depth. Despite clearfelling, CO2 remained the dominant greenhouse gas in terms of its greenhouse warming potential. 相似文献