首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Rice is the staple food crop for about 50% of the world's population. It is grown mainly under two ecosystems, known as upland and lowland. Lowland rice contributes about 76% of the global rice production. The anaerobic soil environment created by flood irrigation of lowland rice brings several chemical changes in the rice rhizosphere that may influence growth and development and consequently yield. The main changes that occur in flooded or waterlogged rice soils are decreases in oxidation–reduction or redox potential and increases in iron (Fe2+) and manganese (Mn2+) concentrations because of the reductions of Fe3+ to Fe2+ and Mn4+ to Mn2+. The pH of acidic soils increased and alkaline soils decreased because of flooding. Other results are the reduction of nitrate (NO3 ?) and nitrogen dioxide (NO2 ?) to dinitrogen (N2) and nitrous oxide (N2O); reduction of sulfate (SO4 2?) to sulfide (S2?); reduction of carbon dioxide (CO2) to methane (CH4); improvement in the concentration and availability of phosphorus (P), calcium (Ca), magnesium (Mg), Fe, Mn, molybdenum (Mo), and silicon (Si); and decrease in concentration and availability of zinc (Zn), copper (Cu), and sulfur (S). Uptake of nitrogen (N) may increase if properly managed or applied in the reduced soil layer. The chemical changes occur because of physical reactions between the soil and water and also because of biological activities of anaerobic microorganisms. The magnitude of these chemical changes is determined by soil type, soil organic-matter content, soil fertility, cultivars, and microbial activities. The exclusion of oxygen (O2) from the flooded soils is accompanied by an increase of other gases (CO2, CH4, and H2), produced largely through processes of microbial respiration. The knowledge of the chemistry of lowland rice soils is important for fertility management and maximizing rice yield. This review discusses physical, biological, and chemical changes in flooded or lowland rice soils.  相似文献   

2.
A study has been conducted in a salt marsh, located in the coast of the Mar Menor lagoon (SE Spain), in which three watercourses overflow. Water samples were regularly collected over a one-year period from two transects established through the salt marsh towards the lagoon. All the samples were analysed for electrical conductivity, pH, sulphides, chlorides, nitrate, ammonium and dissolved phosphorus. The quality of the water flowing from the watercourses to the salt marsh showed a seasonal pattern, with higher contents of nitrates (> 200 mg NO? 3 L?1) in periods of maximum agricultural activities in the nearby areas, as well as a higher content of ammonium (> 30 mg NH+ 4 L?1) and phosphorus (> 10 mg PO3? 4?P L?1) when the human population increased in the zone as a result of tourism. The general spatial pattern of nutrient retention in the salt marsh, indicated by a reduction in the nutrient concentrations in the water closer to the lagoon, was modulated depending on the season. In the driest months, the marsh was 100% effective in reducing nutrient concentrations, but in the rainy periods the effectiveness was reduced. This reduction was more evident for phosphorus in autumn, whose concentration increased in the lower part of the salt marsh closer to the lagoon until it reached that of the inflow. This could mainly be explained by the accumulation of water in some sites near the lagoon, which can act as sinks of pollutants. Our data support the existence of polluted water in the surface watercourses of the area, and the associated risk can include soil salinization and the eutrophication of aquatic systems. Based on our data, the Mar Menor coastal marshes have an important role as filters to reduce pollution in this lagoon.  相似文献   

3.
Wood ash has been used to alleviate nutrient deficiencies and acidification in boreal forest soils. However, ash and nitrogen (N) fertilization may affect microbial processes producing or consuming greenhouse gases: methane (CH4), nitrous oxide (N2O) and carbon dioxide (CO2). Ash and N fertilization can stimulate nitrification and denitrification and, therefore, increase N2O emission and suppress CH4 uptake rate. Ash may also stimulate microbial respiration thereby enhancing CO2 emission. The fluxes of CH4, N2O and CO2 were measured in a boreal spruce forest soil treated with wood ash and/or N (ammonium nitrate) during three growing seasons. In addition to in situ measurements, CH4 oxidation potential, CO2 production, net nitrification and N2O production were studied in laboratory incubations. The mean in situ N2O emissions and in situ CO2 production from the untreated, N, ash and ash + N treatments were not significantly different, ranging from 11 to 17 μg N2O m?2 h?1 and from 533 to 611 mg CO2 m?2 h?1. However, ash increased the CH4 oxidation in a forest soil profile which could be seen both in the laboratory experiments and in the CH4 uptake rates in situ. The mean in situ CH4 uptake rate in the untreated, N, ash and ash + N plots were 153 ± 5, 123 ± 8, 188 ± 10 and 178 ± 18 μg m?2 h?1, respectively.  相似文献   

4.
Most important, yet least understood, question, how microbial activity in soil under saline water irrigation responds to carbon (C) varying qualitatively (most labile form to extreme recalcitrant form) with or without maintaining C/N ratio was investigated in an incubation experiment. Soil samples from a long-term saline-water (electrical conductivity, EC ≈ 0, 6, and 12 dS m?1)- irrigated field were incorporated with three different C substrates, viz., glucose, rice straw (RS), and biochar with or without nitrogen (N as ammonium sulfate, NH4SO4) and were incubated at 25 °C for 56 days. Cumulative respiration (CR), microbial biomass carbon (MBC), microbial biomass nitrogen (MBN), and dehydrogenase activity (DEA) concentrations decreased with increasing EC (P < 0.05), but less so in soils amended with glucose followed by RS and biochar. The addition of N to soils amended with different C substrates significantly decreased CR, MBC, DEA, and available phosphorus (P) concentrations at a given EC level.  相似文献   

5.
Anaerobic ammonium oxidation (anammox process) widely occurs in paddy soil and may substantially contribute to permanent N removal; however, little is known about the factors controlling this process. Here, effects of temperature, pH, organic C, and substrates on potential rate of anammox and the relative contribution of anammox to total N2 production in a paddy soil were investigated via slurry incubation combined with 15N tracer technique. Anammox occurred over a temperature range from 5 to 35 °C with an optimum rate at 25 °C (1.7 nmol N g?1 h?1) and a pH range from 4.8 to 10.1 with an optimum rate at pH 7.3 (1.7 nmol N g?1 h?1). The presence of glucose and acetate (5–100 mg C L?1) significantly inhibited anammox activities and the ratio of anammox to total N2 production. The response of potential rates of anammox to ammonium concentrations fitted well with Michaelis-Menten relationship showing a maximum rate (Vmax) of 4.4 nmol N g?1 h?1 and an affinity constant (Km) of 6.3 mg NH4+-N L?1. Whereas, nitrate addition (5–15 mg 15NO3?-N L?1) significantly inhibited anammox activities and the ratio of anammox to total N2 production. Our results provide useful information on factors controlling anammox process and its contribution to N loss in the paddy soil.  相似文献   

6.
Abstract

This study investigated whether small additions to soil of primary paper-mill sludge, a wood fibre residue from paper production (fibre sludge), caused temporary N immobilization and thereby reduced the amount of inorganic nitrogen leached from agricultural land. This was achieved by measuring respiration and immobilization of N in incubation studies at 8°C, with fibre sludge added at rates varying from 63 to 1000?mg?C?kg?1 soil. Glucose added at rates of 63–250?mg?C?kg?1 soil was used as a reference. Respiration in soil after glucose addition followed an exponential course with the highest rates on days 2–4. During this period maximum peaks of net N immobilization were measured. Even addition of only 63?mg glucose-C?kg?1 soil caused significant immobilization of N in soil. Fibre sludge additions to soil caused lower respiration activities, characterized by two initial peaks followed by somewhat higher respiration rates during the remaining incubation than for glucose. It was likely that hemicellulose, which amounted to 14% of the total C, was the initial available energy source in the sludge as concentrations of water-soluble C were very low. Addition of at least 250?mg?C?kg?1 soil as fibre sludge was required to cause significant N immobilization in soil corresponding to 5?kg?N?ha?1. Both nitrate and ammonium were immobilized. Relating maximum N immobilization data during days 2 to 10 to corresponding respiration data for glucose and fibre sludge revealed that microbes utilised similar amounts of C per unit N immobilized. On average, 175.6±74.8?mg CO2-C were respired to immobilize 1?mg?N and the relationship between C respiration and N immobilization was linear (R 2=0.984). To make soil application of fibre sludge a realistic counter-measure against N leaching from agricultural soils, pre-treatment is necessary to increase the content of energy readily available to microbes.  相似文献   

7.
Abstract

The effects of nitrogen (N) and sulfur (S) deposition on methane (CH4) and nitrous oxide (N2O) emissions under low (10 cm below soil surface) and high (at soil surface) water tables were investigated in the laboratory. Undisturbed soil columns from the alpine peatland of the Tibetan Plateau were analyzed. CH4 emission was higher and N2O emission was lower at the high water table than those at the low water table regardless of nutrient application. Addition of N (NH4NO3 (ammonium nitrate), 5 g N m?2) decreased CH4 emission up to 57% and 50% at low and high water tables, respectively, but correspondingly increased N2O emission by 2.5 and 10.4 times. Addition of S (Na2SO4 (sodium sulfate), 2.5 g S m?2) decreased CH4 and N2O emission by 64% and 79% at the low water table, respectively, but had a slightly positive effect at the high water table. These results indicated that the responses of CH4 and N2O emissions to the S deposition depend on the water table condition in the high-altitude peatland.  相似文献   

8.
Anaerobic decomposition in wetland soils is carried out by several interacting microbial processes that influence carbon storage and greenhouse gas emissions. To understand the role of wetlands in the global carbon cycle, it is critical to understand how differences in both electron donor (i.e., organic carbon) and terminal electron acceptor (TEA) availability influence anaerobic mineralization of soil organic matter. In this study we manipulated electron donors and acceptors to examine how these factors influence total rates of carbon mineralization and the pathways of microbial respiration (e.g., sulfate reduction versus methanogenesis). Using a field-based reciprocal transplant of soils from brackish and freshwater tidal marshes, in conjunction with laboratory amendments of TEAs, we examined how rates of organic carbon mineralization changed when soils with different carbon contents were exposed to different TEAs. Total mineralization (the sum of CO2 + CH4 produced) on a per gram soil basis was greater in the brackish marsh soils, which had higher soil organic matter content; however, on a per gram carbon basis, mineralization was greater in the freshwater soils, suggesting that the quality of carbon inputs from the freshwater plants was higher. Overall anaerobic metabolism was higher for both soil types incubated at the brackish site where SO42− was the dominant TEA. When soils were amended with TEAs in the laboratory, more thermodynamically favorable respiration pathways typically resulted in greater organic matter mineralization (Fe(III) respiration > SO42− reduction > methanogenesis). These results suggest that both electron donors and acceptors play important roles in regulating anaerobic microbial mineralization of soil organic matter.  相似文献   

9.
The ratios of soil carbon (C) to nitrogen (N) and C to phosphorus (P) are much higher in Chinese temperate forest soils than in other forest soils, implying that N and P might limit microbial growth and activities. The objective of this study was to assess stoichiometric responses of microbial biomass, enzyme activities, and respiration to N and P additions. We conducted a nutrient (N, P, and N + P) addition experiment in two temperate soils under Korean pine (Pinus koraiensis) plantation and natural broadleaf forest in Northeast China and measured the microbial biomass C, N, P; the activities of β-glucosidase (BG), N-acetyl-β-glucosaminidase (NAG), and acid and alkaline phosphomonoesterase (AP); and the microbial respiration in the two soils. Nitrogen addition increased microbial biomass N and decreased microbial biomass C-to-N ratio and microbial respiration in the two soils. Nitrogen addition decreased NAG activity to microbial biomass N ratio, P addition decreased AP activity to microbial biomass P ratio, and N, P, and N + P additions all increased BG activity to microbial biomass C ratio. These results suggest that microbial stoichiometry is not strictly homeostatic in response to nutrient additions, especially for N addition. The responses of enzyme activities to nutrient additions support the resource allocation theory. The N addition induced a decline in microbial respiration, implying that atmospheric N deposition may reduce microbial respiration, and consequently increase soil C sequestration in the temperate region.  相似文献   

10.
Soil microbes are frequently limited by carbon (C), but also have a high phosphorus (P) requirement. Little is known about the effect of P availability relative to the availability of C on soil microbial activity. In two separate experiments, we assessed the effect of P addition (20 mg P kg?1 soil) with and without glucose addition (500 mg C kg?1 soil) on gross nitrogen (N) mineralization (15N pool dilution method), microbial respiration, and nitrous oxide (N2O) emission in a grassland soil. In the first experiment, soils were incubated for 13 days at 90% water holding capacity (WHC) with addition of NO3? (99 mg N kg?1 soil) to support denitrification. Addition of C and P had no effect on gross N mineralization. Initially, N2O emission significantly increased with glucose, but it decreased at later stages of the incubation, suggesting a shift from C to NO3? limitation of denitrifiers. P addition increased the N2O/CO2 ratio without glucose but decreased it with glucose addition. Furthermore, the 15N recovery was lowest with glucose and without P addition, suggesting a glucose by P interaction on the denitrifying community. In the second experiment, soils were incubated for 2 days at 75% WHC without N addition. Glucose addition increased soil 15N recovery, but had no effect on gross N mineralization. Possibly, glucose addition increased short-term microbial N immobilization, thereby reducing N-substrates for nitrification and denitrification under more aerobic conditions. Our results indicate that both C and P affect N transformations in this grassland soil.  相似文献   

11.
Abstract

Canola (Brassica napus) is the primary oilseed crop in western Canada; however, it is often grown on sulfur (S)-deficient soils. Moreover, canola has a high S demand compared to cereals and, therefore, is particularly sensitive to S deficiency. This study examined the growth and nutrient uptake responses of a high-yielding canola hybrid cultivar to S fertilization when grown on three contrasting soils differing in S fertility, with and without the addition of fertilizer S. The soils were collected from three soil-climatic zones within Saskatchewan (Brown, Black, and Gray) and three different fertilizer S forms were used: ammonium sulfate (AS); ammonium thiosulfate (ATS); and a composite fertilizer containing nitrogen (N), phosphorus (P), and S (NPS; 50-50 blend of sulfate (SO4) salt and elemental S). Sulfur fertilization increased the canola biomass, along with plant uptake of N, P, and S on all three soils. Fertilizer S use efficiency (i.e. recovery) ranged from 11-75%. For all three soils, the general trend among fertilizer S forms for biomass, nutrient uptake, and fertilizer use efficiency was AS?>?ATS?>?NPS. The greatest differences were observed with the Gray soil, which had the poorest S fertility. Residual soil SO4 after harvest was greater for ATS and NPS; reflecting continued oxidation of thiosulfate and elemental S to SO4. Principal component analysis demonstrated the importance of tissue N:S ratio as a key diagnostic measurement related to canola growth and nutrient uptake in S-deficient soils.  相似文献   

12.
Abstract

The objective of this research was to assess the long‐term effects of broiler litter applications on soil phosphorus (P), copper (Cu), zinc (Zn), manganese (Mn), and arsenic (As) concentrations in Chesapeake Bay watershed Coastal Plain soils. Litter and soil samples were collected from 10 farms with more than 40 years of broiler production and from wooded sites adjacent to fields and were analyzed for P and metal contents. Averaged over farms, total P and metal concentrations in the litter were 12.8 g kg?1 P and 332, 350, 334, and 2.93 mg kg?1 Cu, Zn, Mn, and As, respectively. Surface (0–15 cm) soil pH values were greater than (5.7–6.4) the 0‐ to 15‐cm depth at wooded sites (3.5–4.3). Surface soil Bray 1 P values (149–796 mg kg?1) in amended fields were greater than wooded sites (4.4–17 mg kg?1). The 1N nitric acid (HNO3)–extractable metal concentrations were higher in amended soils than in wooded areas and were 7.7–32, 5.7–26, 12.3–71, and 0.6–3.0 mg kg?1 for Cu, Zn, Mn, and As, respectively, compared to 0.76–14, 4.6–22, 1.6–70, and 0.14–0.59 mg kg?1 for the same metals, respectively, in wooded areas. Results from this study demonstrated that long‐term broiler litter applications have altered the chemical properties of the Coastal Plain soils of the Maryland Eastern Shore. Metal concentrations were low in the surface layer of amended fields and typically decreased with depth. Phosphorus additions rather than metals are most likely to contribute to the degradation of the Chesapeake Bay watershed.  相似文献   

13.
ABSTRACT

Lucerne or alfalfa (Medicago sativa L.) is grown as a forage crop on many livestock farms. In calcareous soils in eastern Turkey, lucerne production requires phosphorus (P) additions as the soils are naturally P deficient. Phosphorus sorption isotherms were used to estimate P fertilizer needs for lucerne grown for two years in a 3-cut system on a calcareous P deficient Aridisol in eastern Anatolia, Erzurum province, Turkey. Annual P applications ranged from 0–1200 kg P ha?1. The Langmuir two-surface adsorption equation was used to derive the maximum P sorption capacity of unamended soil and to determine soil solution P, maximum buffer capacity (MBC), equilibrium buffer capacity (EBC), and P saturation at the optimum economic P rate (OEPR) for dry matter (DM) production. Soils were tested for Olson P at the onset of the study and after two years of P applications. In both years, tissue was analyzed for P content at flowering prior to first cutting. The OEPR (2-year average) was 754 kg P ha?1 yr?1 corresponding with a soil solution P concentration of 0.30 mg L?1, a DM yield of 8725 kg DM ha?1, and $528 ha?1 annual profit. The P content of leaves at flowering increased linearly with P application beyond 100 kg P ha?1 and was 3.2 g kg?1 P at the OEPR. The unfertilized soil had an EBC, MBC, P saturation, and Xmax of 3304 mL g?1, 3401 mL g?1, 6%, and 1086 mL g?1, respectively, whereas two years of fertilization to the OEPR decreased EBC and MBC to 358 mL g?1 and 540 mL g?1, and increased P saturation and Olsen P to 56% and 32 mg kg?1, respectively. These results suggest a P saturation >50% or Olsen P >30 mg kg?1 are needed to maintain an optimum soil solution concentration of 0.30 mg L?1 in this calcareous Aridisol. Similar studies with different soils and initial soil test P levels are needed to conclude if these critical soil test values can be applied across the region.  相似文献   

14.
Abstract

As a means of economic disposal and to reduce need for chemical fertilizer, waste generated from swine production is often applied to agricultural land. However, there remain many environmental concerns about this practice. Two such concerns, contribution to the greenhouse effect and stratospheric ozone depletion by gases emitted from waste‐amended soils, have not been thoroughly investigated. An intact core study at Auburn University (32 36′N, 85 36′W) was conducted to determine the source‐sink relationship of three greenhouse gases in three Alabama soils (Black Belt, Coastal Plain, and Appalachian Plateau regions) amended with swine waste effluent. Soil cores were arranged in a completely random design, and treatments used for each soil type consisted of a control, a swine effluent amendment (112 kg N ha?1), and an ammonium nitrate (NH4NO3) fertilizer amendment (112 kg N ha?1). During a 2‐year period, a closed‐chamber technique was used to determine rates of emission of nitrous oxide (N2O)–nitrogen (N), carbon dioxide (CO2)–carbon (C), and methane (CH4)–C from the soil surface. Gas probes inserted into the soil cores were used to determine concentrations of N2O‐N and CO2‐C from depths of 5, 15, and 25 cm. Soil water was collected from each depth using microlysimeters at the time of gas collection to determine soil‐solution N status. Application of swine effluent had an immediate effect on emissions of N2O‐N, CO2‐C, and CH4‐C from all soil textures. However, greatest cumulative emissions and highest peak rates of emission of all three trace gases, directly following effluent applications, were most commonly observed from sandier textured Coastal Plain and Appalachian Plateau soils, as compared to heavier textured Black Belt soil. When considering greenhouse gas emission potential, soil type should be a determining factor for selection of swine effluent waste disposal sites in Alabama.  相似文献   

15.
Abstract

The transformation of added phosphorus (P) to soil and the effect of soil properties on P transformations were investigated for 15 acid upland soils with different physicochemical properties from Indonesia. Based on oxide-related factor scores (aluminum (Al) plus 1/2 iron (Fe) (by ammonium oxalate), crystalline Al and Fe oxides, cation exchange capacity, and clay content) obtained from previous principal component analyses, soils were divided into two groups, namely Group 1 for soils with positive factor scores and Group 2 for those with negative factor scores. The amounts of soil P in different fractions were determined by: (i) resin strip in bicarbonate form in 30 mL distilled water followed by extraction with 0.5 mol L?1 HCl (resin-P inorganic (Pi) that is readily available to plant), (ii) 0.5 mol L?1 NaHCO3 extracting Pi and P organic (Po) (P which is strongly related to P uptake by plants and microbes and bound to mineral surface or precipitated Ca-P and Mg forms), (iii) 0.1 mol L?1 NaOH extracting Pi and Po (P which is more strongly held by chemisorption to Fe and Al components of soil surface) and (iv) 1 mol L?1 HCl extracting Pi (Ca-P of low solubility). The transformation of added P (300 mg P kg?1) into other fractions was studied by the recovery of P fractions after 1, 7, 30, and 90 d incubation. After 90 d incubation, most of the added P was transformed into NaOH-Pi fraction for soils of Group 1, while for soils of Group 2, it was transformed into resin-Pi, NaHCO3-Pi and NaOH-Pi fractions in comparable amounts. The equilibrium of added P transformation was reached in 30 d incubation for soils of Group 1, while for soils of Group 2 it needed a longer time. Oxide-related factor scores were positively correlated with the rate constant (k) of P transformation and the recovery of NaOH-Pi. Additionally, not only the amount of but also the type (kaolinitic) of clay were positively correlated with the k value and P accumulation into NaOH-Pi. Soils developed from andesite and volcanic ash exhibited significantly higher NaOH-Pi than soils developed from granite, volcanic sediments and sedimentary rocks. Soil properties summarized as oxides-related factor, parent material, and clay mineralogy were concluded very important in assessing P transformation and P accumulation in acid upland soils in Indonesia.  相似文献   

16.
Limited research has been conducted on how atmospheric carbon dioxide (CO2) affects water and soil nitrogen (N) transformation in wetland ecosystems. A stable isotope technique is suitable for conducting a detailed investigation of mechanistic nutrient transformations. Nutrient ammonium sulfate (NH4)2SO4 input in culture water under elevated CO2 (700 μL L?1) and ambient CO2 (380 μL L?1) was studied to analyze N transformations with N blanks for both water and soil. It was measured by 15N pool dilution using analytical equations in a riparian wetland during a 3-month period. Soil gross ammonium (NH4 +) mineralization and consumption rates increased significantly by 22% and 404%, Whereas those of water decreased greatly by??57% and??57% respectively in enriched CO2. In contrast, gross nitrate (NO3 ?) consumption and nitrification rates of soil decreased by??11% and??14% and those of water increased by 29% and 27% respectively in enrichment CO2. These may be due to the extremely high soil microbial biomass nitrogen (MBN), which increased by 94% in elevated soil. The results can show when CO2 concentrations are going to rise in the future. Consequently soil microbial activity initiates the decreased N concentration in sediment and increased N concentration in overlying water in riparian wetland ecosystems.  相似文献   

17.
Greenhouse gas (GHG) emissions from farmed organic soils can have a major impact on national emission budgets. This investigation was conducted to evaluate whether afforestation of such soils could mitigate this problem. Over the period 1994–1997, emissions of methane (CH4) and nitrous oxide (N2O) were recorded from an organic soil site in Sweden, forested with silver birch (Betula pendula Roth), using static field chambers. The site was used for grazing prior to forestation. Soil pH and soil carbon content varied greatly across the site. The soil pH ranged from 3.6 to 5.9 and soil carbon from 34 to 42%. The mean annual N2O emission was 19.4 (± 6.7) kg N2O‐N ha?1 and was strongly correlated with soil pH (r = ?0.93, P < 0.01) and soil carbon content (r = 0.97, P < 0.001). The N2O emissions showed large spatial and temporal variability with greatest emissions during the summer periods. The site was a sink for CH4 (i.e. ?0.8 (± 0.5) kg CH4 ha?1 year?1) and the flux correlated well with the C/N ratio (r = 0.93, P < 0.01), N2O emission (r = 0.92, P < 0.01), soil pH (r = ?0.95, P < 0.01) and soil carbon (r = 0.97, P < 0.001). CH4 flux followed a seasonal pattern, with uptake dominating during the summer, and emission during winter. This study indicates that, because of the large N2O emissions, afforestation may not mitigate the GHG emissions from fertile peat soils with acidic pH, although it can reduce the net GHG because of greater CO2 assimilation by the trees compared with agricultural crops.  相似文献   

18.
Compost amendment to agricultural soils has been reported to reduce disease incidence, conserve soil moisture, control weeds, or improve soil fertility. Application rate and placement of compost largely depends on the proposed beneficial effects and the rate may vary from 25 to 250 Mg ha?1 (N content up to 4 percent). Application of high rates of compost with high N or P levels may result in excessive leaching of nitrate, ammonium, and phosphate into the groundwater. Leaching could be a serious concern on the east coast of Florida with its inherent high annual rainfall, sandy soils and shallow water table. In this study, five composts (sugarcane filtercake, biosolids, and mixtures of municipal solid wastes and biosolids) were applied on the surface of an Oldsmar sand soil (in 7.5 cm diameter leaching columns) at 100 Mg ha?1 rate and leached with deionized water (300 ml day?1, for five days; equivalent to 34 cm rainfall). The concentrations of NO3-N, NH4-N, and PO4-P in leachate reached as high as 246, 29, and 7 mg L?1, respectively. The amount of N and P leached accounted for 3.3-15.8 percent of total N and 0.2-2.8 percent of total P in the compost. The leaching peaks of NO3-N occurred following the application of only 300-400 ml water (equivalent to 6.8-9.1 cm rainfall).  相似文献   

19.
Surface and subsurface horizons of 16 representative sugarcane growing soils with varying soil properties in the eastern region of Thailand were collected to determine the potassium (K) fertility status and its availability by using the quantity/intensity relationship (potential buffering capacity of K (PBCk)). The results showed that most soils had a low K fertility status and lack of reserved K from K-bearing minerals. The PBCk values of the studied soils ranged from 3.75 to 168 cmol kg?1/(mol L?1)1/2, and the coarse-textured soil group showed much lower PBCk values; these results suggested a low capability of these soils to replenish K removal by plant uptake compared with that of the fine-textured soil group. The negative delta K (ΔK°) values of the coarse-textured soil group also indicated a large quantity of readily available K for plant uptake that easily leaches at the same time. The higher K activity ratio (ARke) of the coarse-textured soil group (>0.001 mol L?1)1/2) than that of the fine-textured soil group (<0.001 mol L?1)1/2) suggested that readily available K was desorbed from the non-specific sites of 1:1 clay minerals and specific sites of 2:1 clay minerals, respectively. The ΔK° value of the studied soils was more significantly correlated to K concentration in sugarcane stalks (R2 = 0.64) than that of readily available K content (R2 = 0.54). Therefore, the results of this study suggested that ΔK° represents a better parameter to estimate K availability in these soils compared to conventional ammonium acetate (NH4OAc)-extractable K content.  相似文献   

20.
Afforestation and reforestation of pastures are key land-use changes in New Zealand that help sequester carbon (C) to offset its carbon dioxide (CO2) emissions under the Kyoto Protocol. However, relatively little attention has been given so far to associated changes in trace gas fluxes. Here, we measure methane (CH4) fluxes and CO2 production, as well as microbial C, nitrogen (N) and mineral-N, in intact, gradually dried (ca. 2 months at 20 °C) cores of a volcanic soil and a heavier textured, non-volcanic soil collected within plantations of Pinus radiata D. Don (pine) and adjacent permanent pastures. CH4 fluxes and CO2 production were also measured in cores of another volcanic soil under reverting shrubland (mainly Kunzea var. ericoides (A. Rich) J. Thompson) and an adjacent pasture. CH4 uptake in the pine and shrubland cores of the volcanic soils at field capacity averaged about 35 and 14 μg CH4-C m−2 h−1, respectively, and was significantly higher than in the pasture cores (about 21 and 6 μg CH4-C m−2 h−1, respectively). In the non-volcanic soil, however, CH4-C uptake was similar in most cores of the pine and pasture soils, averaging about 7-9 μg m−2 h−1, except in very wet samples. In contrast, rates of CO2 production and microbial C and N concentrations were significantly lower under pine than under pasture. In the air-dry cores, microbial C and N had declined in the volcanic soil, but not in the non-volcanic soil; ammonium-N, and especially nitrate-N, had increased significantly in all samples. CH4 uptake was, with few exceptions, not significantly influenced by initial concentrations of ammonium-N or nitrate-N, nor by their changes on air-drying. A combination of phospholipid fatty acid (PLFA) and stable isotope probing (SIP) analyses of only the pine and pasture soils showed that different methanotrophic communities were probably active in soils under the different vegetations. The C18 PLFAs (type II methanotrophs) predominated under pine and C16 PLFAs (type I methanotrophs) predominated under pasture. Overall, vegetation, soil texture, and water-filled pore space influenced CH4-C uptake more than did soil mineral-N concentrations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号