首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Land use is a key factor that affects soil quality. The purpose of the present study was to investigate changes of selected soil chemical properties related to soil function under different land uses. Five experimental sites arranged in a complete randomized blocks located within the Kalloni watershed (Lesvos Island, Greece) corresponding to different land uses (Pinus brutia forest, brushwood pasture, rain-fed olive grove, wheat, and maize) were compared for soil pH, electrical conductivity (EC), total nitrogen (N), nitrate N (NO3-N), Olsen phosphorus (P), and organic matter. Soil nitrate and P concentration were in the order corn > wheat > olive > pasture > forest. Soil EC and NO3-N showed significant within-year variability only in the corn and wheat systems. Corn and wheat had the lowest soil organic-matter content followed the order forest > pasture > olive grove = wheat = corn. However, total N did not significantly differ among land uses.  相似文献   

2.
I. Celik   《Soil & Tillage Research》2005,83(2):270-277
Forest and grassland soils in highlands of southern Mediterranean Turkey are being seriously degraded and destructed due to extensive agricultural activities. This study investigated the effects of changes in land-use type on some soil properties in a Mediterranean plateau. Three adjacent land-use types included the cultivated lands, which have been converted from pastures for 12 years, fragmented forests, and unaltered pastures lands. Disturbed and undisturbed soil samples were collected from four sites at each of the three different land-use types from depths of 0–10 cm and 10–20 cm in Typic Haploxeroll soils with an elevation of about 1400 m. When the pasture was converted into cultivation, soil organic matter (SOM) pool of cultivated lands for a depth of 0–20 cm were significantly reduced by, on average 49% relative to SOM content of the pasture lands. There was no significant difference in SOM between the depths in each land-use type, and SOM values of the forest and pasture lands were almost similar. There was also a significant change in soil bulk density (BD) among cultivation (1.33 Mg m−3), pasture (1.19 Mg m−3), and forest (1.25 Mg m−3) soils at depth of 0–20 cm. Only for the pasture, BD of the depth of 0–10 cm was significantly different from that of 10–20 cm. Depending upon the increases in BD and disruption of pores by cultivation, total porosity decreased accordingly. Cultivation of the unaltered pasture obviously increased the soil erodibility measured by USLE-K factor for each soil depth, and USLE-K factor was approximately two times greater in the cultivated land than in the pasture indicating the vulnerability of the cultivated land to water erosion. The mean weight diameter (MWD) and water-stable aggregation (WSA) were greater in the pasture and forest soils compared to the cultivated soils, and didn’t change with the depth for each land-use type. Aggregates of >4.0 mm size were dominant in the pasture and forest soils, whereas the cultivated soils comprised aggregates of the size ≤0.5 mm. I found that samples collected from cultivated land gave the lowest saturated hydraulic conductivity values regardless of soil depths, whereas the highest values were measured on samples from forest soils. In conclusion, the results showed that the cultivation of the pastures degraded the soil physical properties, leaving soils more susceptible to the erosion. This suggests that land disturbances should be strictly avoided in the pastures with the limited soil depth in the southern Mediterranean highlands.  相似文献   

3.
The aim of this study was to systematically quantify differences in soil carbon and key related soil properties along a replicated land‐use intensity gradient on three soil landscapes in northwest New South Wales, Australia. Our results demonstrate consistent land‐use effects across all soil types where C, N and C:N ratio were in the order woodland > unimproved pasture = improved pasture > cultivation while bulk density broadly showed the reverse pattern. These land‐use effects were largely restricted to the near surface soil layers. Improved pasture was associated with a significant soil acidification, indicating that strategies to increase soil carbon through pasture improvement in these environments might also have associated soil degradation issues. Total soil carbon stocks were significantly larger in woodland soils, across all soil types, compared with the other land‐uses studied. Non‐wooded systems, however, had statistically similar carbon stocks and this pattern persisted whether or not carbon quantity was corrected for equivalent mass. Our results suggest that conversion from cultivation to pasture in this environment would yield between 0.06 and 0.15 t C/ha/yr which is at the lower end of predicted ranges in Australia and well below values measured in other cooler, wetter environments. We estimate that a 10% conversion rate (cultivation to pasture) across NSW would yield around 0.36 Mt CO2‐e/yr which would contribute little to emission reductions in NSW. We conclude that carbon accumulation in agricultural soils in this environment might be more modest than current predictions suggest and that systematically collected, regionally specific data are required for the vegetation communities and full range of land‐uses before accurate and reliable predictions of soil carbon change can be made across these extensive landscapes.  相似文献   

4.
This study evaluates soil properties in organically managed olive groves and natural zones in a mountainous area of Andalusia, Spain. Two soil types (Eutric Regosol and Eutric Cambisol) and the most common soil management methods (tillage and two intensities of grazing) were studied. Both soil types in the groves had values not much lower than those in the natural areas. Average (±SE) values in the groves were 1.58 ± 0.71% for organic carbon, 323 ± 98 g kg?1 for macroaggregate stability, 1.11 ± 0.16 g cm?3 for bulk density, 3.5 ± 1.6 mm h?1 for saturated hydraulic conductivity and 1209 ± 716 mg CO2 kg?1 for soil respiration. Overall, these values tended to be lower in the tilled compared with that in the grazed groves. The average phosphorus soil content (5.83 ± 5.22 mg kg?1) was low for olive production and within adequate ranges for N (0.12 ± 0.05%) and K (142 ± 81 mg kg?1). Soil erosion was high in the tilled groves (35.5 ± 18.2 t ha?1 year?1) with soil loss correlating with indicators of soil degradation such as organic carbon content and water stable macroaggregates. In the grazed groves, soil loss was moderate with no clear indications of soil degradation. Overall, there was significant farm‐to‐farm variability within the same soil and land management systems. Olive production had a moderate effect on soil degradation compared with natural areas and olive cultivation could be sustained in future if cover crop soil management replaced tillage, especially in the most sloping areas.  相似文献   

5.
ABSTRACT

Land use may modify certain soil properties while soil physicochemical characteristics can influence metal partitioning in soils. Therefore, the total content and various forms of aluminum (Al) in solid phase of schist-developed topsoils (0–20 cm) in NW Spain under different land uses (i.e., forest, pasture, and cultivation) were evaluated to identify the Al-bearing phases. Aluminum fractionation was performed, using a six-step sequential extraction procedure with ammonium acetate, hydroxylamine hydrochloride, ammonium oxalate in darkness, hydrogen peroxide, ammonium oxalate under ultraviolet radiation, and acid digestion. Mean concentrations of total Al were similar in the soils under three land uses. Mean percentage of the various Al forms in all soils were in the following order: residual fraction > amorphous compounds > crystalline compounds > water-soluble/exchangeable/specifically adsorbed > bound to oxidizable organic matter > manganese oxides. The forest soils contained considerably higher contribution of amorphous compounds (16.3%) to total Al concentration compared with the soils under other two uses (mean about 9%). Maximum mean concentration of exchangeable Al was also observed in forest soils (mean 8.8% of total Al vs. about 4% in pasture soils and cultivated soils); this is attributed to lower pH and higher organic matter content of the forest soils. Thus, this study revealed the impact of land use on the Al-bearing phases and, hence, in its bioavailability to plants.  相似文献   

6.
The conversion of pasture to cropland leads to a decline of aggregation in topsoils and to a decrease of aggregate-binding agents such as carbohydrates and glomalin-related soil protein (GRSP). Till now, studies on soil aggregation focused either on carbohydrates or on GRSP as a binding agent in aggregates. In this study we analyse the development of the relationship between carbohydrates, GRSP, TOC and aggregate-stability following land-use change. Furthermore, we discuss the contents of carbohydrates, GRSP and TOC in each of the aggregate fractions. For these purposes, a chronosequence of sites, which were converted from pasture to cropland at different periods in history, was established. To get further insight into the impact of different types of land-use, also soils under forest, either afforested or permanent, were studied. The mean-weight diameter (MWD) of water-stable aggregates, the carbohydrate, and the GRSP content were determined in 49 soils. It was found that the MWD of the water-stable aggregates decreased monoexponentially (R2 = 0.66) by 66% during the first 46 years after conversion of the soils from pasture to cropland. During the same period, the carbohydrate content decreased very rapidly after the land use change by 64% and the GRSP content decreased more slowly by 57%. The MWD of the forest soils were in the same range as those of the permanent pasture soils although they exhibit significantly higher TOC contents, which indicate that other stabilization mechanisms are dominant in forest soils, less important in the chronosequence soils. TOC, carbohydrates and the GRSP contents were sigmoidally correlated with the MWD. Among the four water-stable aggregate fractions TOC and carbohydrates exhibited high contents in the macroaggregates and were less present in the microaggregates. GRSP, in contrast, was more equally distributed among the four water-stable aggregate fractions.  相似文献   

7.
We investigated the impact of land-use changes on the soil biomass at several soil sites in Indonesia under different types of land-use (primary forest, secondary forest, coffee plantation, traditional orchard, and deforested area), located within a small geographical area with similar parent material and climatic conditions. Various parameters of soil microbial biomass (biomass C, biomass N, content of anthrone-reactive carbohydrate carbon, and soil ergosterol content) were examined. Our results suggested that the removal of the natural plant cover did not cause any appreciable decrease in the amount of microbial biomass; on the contrary it led to a short-time increase in the amount of microbial biomass which may be due to the availability of readily decomposable dead roots and higher sensitivity to the decomposition of residual litter in recently deforested soils. However, the amount of microbial biomass tended to decrease in proportion to the duration of the land history in coffee plantation soils. This may be ascribed to the effect of the loss of available substrates associated with soil erosion in the long term. Lower ergosterol contents in recently deforested areas reflected a reduction in the amount of fungal biomass which may be due to the destruction of the hyphal network by the slash and burn practice. On the other hand, the higher soil ergosterol content at the sites under bush regrowth indicated that microbial biomass was able to recover rapidly with the occurrence of a new plant cover.  相似文献   

8.
[目的]分析华东地区土地覆被变化过程对土壤水分的影响,以期能够揭示土地覆被变化对土壤水分的影响机理.[方法]应用MODIS三级土地覆被产品MCD12Q1,采用轨迹分析方法描述20032010年耕地和林地轨迹变化过程;选择基于AMSR-E土壤水分数据的降尺度反演结果作为描述土壤水分变化的数据,研究华东地区土地覆被变化对土壤水分的影响.[结果](1)每种土地覆被类型均有3种轨迹变化形式:研究年限内面积增加的轨迹、面积减少的轨迹、研究年限内未发生面积变化的轨迹;(2)在耕地和林地3种轨迹变化过程中,土壤水分含量均表现出下降的趋势.(3)在林地的3种轨迹变化过程中,土壤水分含量大小顺序为:未发生轨迹变化的林地>林地面积增加的轨迹>林地面积减少的轨迹;在耕地的3种轨迹变化过程中,土壤水分含量大小排序为:耕地面积减少的轨迹>耕地面积增加的轨迹>未发生轨迹变化的耕地;(4)耕地、林地轨迹变化过程对土壤水分的影响均与时间年限有关,至少需要7 a林地土壤水分含量达到最大值,此时耕地土壤水分含量达到最小值.[结论]作为华东地区主要的土地覆被类型,耕地和林地在2003-2010年的所有变化轨迹过程中,土壤水分均呈现下降趋势,且土壤水分随着育林年限和耕种年限的增长分别增加和减小,并在第7 a分别达到最大和最小.  相似文献   

9.
Since land use change can have significant impacts on regional biogeochemistry, we investigated how conversion of forest and cultivation to pasture impact soil C and N cycling. In addition to examining total soil C, we isolated soil physiochemical C fractions in order to understand the mechanisms by which soil C is sequestered or lost. Total soil C did not change significantly over time following conversion from forest, though coarse (250–2,000 m) particulate organic matter C increased by a factor of 6 immediately after conversion. Aggregate mean weight diameter was reduced by about 50% after conversion, but values were like those under forest after 8 years under pasture. Samples collected from a long-term pasture that was converted from annual cultivation more than 50 years ago revealed that some soil physical properties negatively impacted by cultivation were very slow to recover. Finally, our results indicate that soil macroaggregates turn over more rapidly under pasture than under forest and are less efficient at stabilizing soil C, whereas microaggregates from pasture soils stabilize a larger concentration of C than forest microaggregates. Since conversion from forest to pasture has a minimal impact on total soil C content in the Piedmont region of Virginia, United States, a simple C stock accounting system could use the same base soil C stock value for either type of land use. However, since the effects of forest to pasture conversion are a function of grassland management following conversion, assessments of C sequestration rates require activity data on the extent of various grassland management practices.  相似文献   

10.
Abstract

Vegetative cover plays an important role for the quality of soil especially in hilly and mountainous areas such as Azad Jammu and Kashmir where erosion is a major threat to the ecosystem and productivity. The study focuses on the impact of land-use types on soil quality by measuring the differences in chemical and physical properties at three sites in adjacently located natural forest land (forest), fallow grassland (grass) and arable land (arable). Soil samples from 0-15 and 15-30 cm depth were collected and examined for particle distribution, dry bulk density, organic matter (OM), pH, macro- and micro-nutrients. Land-use types had a significant effect on primary soil particle distribution. Highest clay content was found in forest and highest sand content in arable. Forest had relatively the highest levels of OM, macro- and micro-nutrients and arable the lowest. Most of the properties of the 0-15 cm surface level of grass were similar to those observed in the 15-30 cm level in forest. Arable exhibited lowest nutrient status and poorest physical conditions, indicating a degrading effect of arable cultivation practices on soil. Grass and arable showed, compared to forest, a 30–60% average increase in bulk density and 26–66% average decrease in OM. Regression analysis showed a significant correlation of OM with available phosphorus and potassium while it had negative correlation with dry bulk density and pH. Natural vegetation appeared to be a main contributor of soil quality as it maintained the organic carbon stock, and increased the nutrient status of soil and is therefore important for sustainable development of Azad Jammu and Kashmir and other similar areas. Furthermore, OM was shown to be an important indicator of soil quality.  相似文献   

11.
An analysis has been undertaken of the land‐use evolution in the island of Lesvos for the last 5000 years, based on historical and archaeological documents and recent soil and vegetation survey data. A series of maps were compiled using historical documents for the period from 3300 bc to 1886 bc and vegetation field survey data for the period from 1886–1996. A soil survey (scale 1:50 000) was conducted in 1996 in order to relate the land‐use changes to the present physical environment. Cultivation of the land started around 3300 bc and intensified during the 18th century bc . During the Roman period forests were already significantly reduced to satisfy the increasing demands for agricultural products, timber and heating. In the Byzantine period (4th–15th century), vineyards and pastures expanded, mainly by clearing the forests. Olive plantations increased during the 13th century, motivated by the allocation of subsidies. During the first centuries of the Ottoman period, there was a further expansion of olive groves and pastures by reducing forests, while vineyards declined. Great changes occurred in the last century in the geographical distribution and the total area occupied by the various types of land use. Olive groves significantly expanded and were redistributed covering more fertile and productive land on hilly areas by clearing mainly pine forests. Oak forests increased on previous pasture areas. Today, pasture is the main type of land use in hilly areas. These previously forested areas have been cleared without any accompanying measures against soil erosion. This highly degraded land with shallow and severely eroded soils is not able to sustain any profitable agricultural use or natural forest. However, areas cultivated with olives remained sustainable for more than seven centuries without being significantly degraded. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

12.
The native vegetation in the Tropics is increasingly replaced by crops, pastures, tree plantations, or settlements with contradictory effects on soil organic carbon (SOC). Therefore, the general objective was to estimate the SOC stock depth distribution to 100-cm depth in soils of Costa Rica and to assess their theoretical carbon (C) sink capacity by different management practices. A study was established in three ecoregions of Costa Rica: the Isthmian-Atlantic Moist Forest (AM), the Pacific Dry Forest (PD), and the Montane Forest (MO) ecoregions. Within each ecoregion, three agricultural land uses and a mature forest were sampled to 100-cm depth. The SOC stock in 0–100 cm depth was 114–150 Mg C ha?1 for AM, 76–165 Mg C ha?1 for PD, and 166–246 Mg C ha?1 for MO. Land use had only weak effects on SOC concentrations and stocks except at PD where both were lower for soils under mango (Mangifera indica) and pasture. This may indicate soil degradation which was also supported by data on SOC stratification. However, it was generally unclear whether differences among land uses within each ecoregion already existed particularly at deeper depths before land-use change, and whether the sampling approach was sufficient to investigate them. Nevertheless, about 26–71% of Costa Rica's total C emissions may be offset by SOC sequestration in agricultural and forest soils. However, ecoregion-specific practices must be implemented to realize this potential.  相似文献   

13.
《Applied soil ecology》1999,11(2-3):271-275
Identifying amino sugar pools from different land-use systems may advance our knowledge of land-use effects on the fate of microbially-derived substances. Surface soils (0–10 cm) from (1) native pasture, (2) a >80-years-arable site, and (3) a >80-years-afforested site were fractionated into clay, silt, fine-, and coarse-sand fractions. Then, soil organic carbon, N, glucosamine, galactosamine, mannosamine, and muramic acid were analyzed.Afforestation did not influence the amino sugar content in bulk soil, whereas cultivation reduced the content by 54%. The concentrations of amino sugars in g kg−1 SOM declined after both long-term cropping and afforestation by 6% and 13%, respectively, relative to that in the grassland. The amino sugar depletion at the forest site occurred mainly from the silt fraction (by 25%), while that in the cultivated site was mainly due to preferential loss of amino sugars from clay (by 19% compared with the grassland). Both ratios of glucosamine to galactosamine and glucosamine to muramic acid increased when the prairie was converted to forest or cultivated land, suggesting that bacterial N especially is better preserved than fungal N under prairie conditions.  相似文献   

14.
Microbial biomass, β-glucosidase and β-glucosaminidase activities, and availability, storage, and age of soil organic C were investigated after 26 years of conversion from sugarcane (Saccharum officinarum) to forest (Eucaliptus robusta or Leucaena leucocephala), pasture (mixture of tropical grasses), and to vegetable cropping (agriculture) in a vertisol in Puerto Rico. Soil organic C (SOC) at 0–100 cm was similar under Leucaena (22.8 kg C/m2), Eucalyptus (18.6 kg C/m2), and pasture (17.2 kg C/m2), which were higher than under agriculture (13.0 kg C/m2). Soil organic N (SON) at 0–100 cm was similar under the land uses evaluated which ranged from 1.70 (under agriculture) to 2.28 kg N/m2 (under Leucaena forest). Microbial biomass C (MBC) and N (MBN) of the 0–15-cm soil layer could be ranked as: pasture > Leucaena = Eucalyptus > agriculture. The percentages of SOC and SON present as MBC and MBN, respectively, were nearly 1% in pasture and less than 0.50% in forest under Leucaena or Eucalyptus and agricultural soil. The activity of β-glucosidase of the 0–15-cm soil layer could be ranked as: Leucaena = Eucalyptus > pasture > agriculture; while β-glucosaminidase activity was ranked as: Eucalyptus > Leucaena = pasture > agriculture. The soil δ 13C changed from 1996 to 2006 in forest under Eucalyptus (18.7‰ to 21.2‰), but not under Leucaena (20.7‰ to 20.8‰). The soil under Leucaena preserved a greater proportion of old C compared to the forest under Eucalyptus; the former had an increased soil mineralizable C from the current vegetation inputs. The soil under agriculture had the lowest enzyme activities associated with C cycling, lowest percentage of SOC as MBC, highest percentage of SOC present as mineralizable C, and highest percentage of MBC present as mineralizable C compared to the other land uses.  相似文献   

15.
The concept of carbon (C) saturation implies that soils have a finite capacity to store C in a stable form, depending on their silt + clay content. We hypothesized that the stabilization of added organic C would be low in C saturated soil. We tested experimentally the influence of C saturation deficit on stabilization of added grass residue. We incubated 12 highly weathered, oxic soil samples collected from three contrasting land uses (i.e. cropping, improved pasture, and forest) with grass residue for 8 months. Carbon saturation deficit of the forest soils was lower than pasture and cropping soils. After incubation, we found increases in silt + clay associated C in grass residue treatment positively correlated with C saturation deficit of soils. Our results suggest that stabilization of added C was high in soil with low C saturation level and hence higher C saturation deficit.  相似文献   

16.
The aim of this study was to determine the effect of land‐use and forest cover depletion on the distribution of soil organic carbon (SOC) within particle‐size fractions in a volcanic soil. Emphasis was given to the thermal properties of soils. Six representative sites in Mexico were selected in an area dominated by Andosols: a grassland site, four forested sites with different levels of degradation and an agricultural site. Soils were fractionated using ultrasonic energy until complete dispersion was achieved. The particle‐size fractions were coarse sand, fine sand, silt, clay and particulate organic matter from the coarse sand sized fraction (POM‐CS) and fine sand (POM‐FS). Soil organic carbon decreased by 70% after forest conversion to cropland and long‐term cultivation; forest cover loss resulted in a decrease in SOC of up to 60%. The grassland soil contained 45% more SOC than the cropland one. Soil organic carbon was mainly associated with the silt‐size fraction; the most sensitive fractions to land‐use change and forest cover depletion were POM followed by SOC associated with the silt and clay‐sized fractions. Particulate organic matter can be used as an early indicator of SOC loss. The C lost from the clay and silt‐sized fractions was thermally labile; therefore, the SOC stored in the more degraded forest soils was more recalcitrant (thermally resistant). Only the transformation of forest to agricultural land produced a similar loss of thermally stable C associated with the silt‐sized fraction.  相似文献   

17.
Land use change (LUC) alters soil structure and, consequently, the functions and services provided by these soils. Conversion from extensive pasture to sugarcane is one of the largest land transitions in Brazil as a result of the growth of the domestic and global demands of bioenergy. However, the impacts of sugarcane expansion on the soil structure under extensive pasture remains unclear, especially when considering changes at the microscale. We investigated whether LUC for sugarcane cultivation impacted soil microstructure quality. Undisturbed soil samples were taken from two soil layers (0–10 and 10–20 cm) under three contrasting land uses (native vegetation—NV, pasture—PA and sugarcane—SC) in three different locations in the central-southern Brazil. Oriented thin sections (30 μm) were used for micromorphological analysis. The total area of pores decreased following the LUC in the following order: NV > PA > SC in both soil layers. The area of large complex packing pores (>0.01 mm²) also decreased with the LUC sequence: NV>PA>SC. Qualitative and semi-quantitative micromorphological analysis confirmed porosity reduction was driven by the decrease in complex packing pores and that biological features decreased in the same LUC sequence as the quantitative parameters. Therefore, LUC for sugarcane expansion reduced microscale soil porosity, irrespectively of soil type and site-specific conditions, indicating that the adoption of more sustainable management practices is imperative to preserve soil structure and sustain soil functions in Brazilian sugarcane fields.  相似文献   

18.
The lower Himalayan regions of north‐west India experienced a severe land‐use change in the recent past. A study was thus conducted to assess the effect of grassland, forest, agricultural and eroded land uses on soil aggregation, bulk density, pore size distribution and water retention and transmission characteristics. The soil samples were analysed for aggregate stability by shaking under water and water drop stability by using single simulated raindrop technique. The water‐stable aggregates (WSA) >2 mm were highest (17·3 per cent) in the surface layers of grassland, whereas the micro‐aggregates (WSA < 0·25 mm) were highest in eroded soils. The water drop stability followed the similar trend. It decreased with the increase in aggregate size. Being lowest in eroded soils, the soil organic carbon also showed an adverse effect of past land‐use change. The bulk density was highest in eroded lands, being significantly higher for the individual aggregates than that of the bulk soils. The macroporosity (>150 µm) of eroded soils was significantly (p < 0·05) lower than that of grassland and forest soils. The grassland soils retained the highest amount of water. Significant (p < 0·05) effects of land use, soil depth and their interaction were observed in water retention at different soil water suctions. Eroded soils had significantly (p < 0·05) lower water retention than grassland and forest soils. The saturated hydraulic conductivity and maximum water‐holding capacity of eroded soils were sufficiently lower than those of forest and grassland soils. These indicated a degradation of soil physical attributes due to the conversion of natural ecosystems to farming system and increased erosion hazards in the lower Himalayan region of north‐west India. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

19.
The rate of phosporus (P) release from soils can significantly influence P fertility of soils. The objectives of this study were to investigate the effects of land‐use types on the kinetics of P release under different management practices and the relationship between kinetic parameters and soil physical and chemical properties from calcareous soils. The kinetics of P release in 0.01 M CaCl2 was studied in surface samples of 30 calcareous soils planted to garlic, garden, pasture, potato, vegetables, and wheat. Trend in P‐release kinetics was similar between land‐use types. Significantly different quantities of P were released under different land use. The maximum amount (average of five soils) (46.4 mg kg–1) of P was released in soil under potato and the minimum amount (10.4 mg kg–1) under pasture. The kinetics of P release from soils can be described as an initial rapid rate followed by a slower rate. Different models were used to describe P release. In general, parabolic diffusion and power equation were found to be appropriate for modeling P release. The P‐release rate for the soils was estimated by parabolic equation for the studied land‐use types. The constant b was lower for pasture and wheat than for garlic and potato. The relationship between the rate of P release with Olsen‐P was linear, while it was curved with respect to the CaCl2‐P, indicating that release of P was diffusion‐controlled. When the kinetic parameters of models were regressed on soil properties, CaCl2‐P and CaCO3 appeared to be the most important soil properties influencing P‐release rates in these soils.  相似文献   

20.
《Applied soil ecology》2007,35(1):35-45
Enzyme activities play key roles in the biochemical functioning of soils, including soil organic matter formation and degradation, nutrient cycling, and decomposition of xenobiotics. Knowledge of enzyme activities can be used to describe changes in soil quality due to land use management and for understanding soil ecosystem functioning. In this study, we report the activities of the glycosidases (β-glucosidase, α-galactosidase, and β-glucosaminidase), acid phosphatase, and arylsulfatase, involved in C (C and N for β-glucosaminidase), P, and S cycling, respectively, as affected by soil order and land use within a watershed in north-central Puerto Rico (Caribbean). Representative surface soil (0–15 cm) samples were taken from 84.6% of the total land area (45,067 ha) of the watershed using a completely randomized design. The activity of α-galactosidase was greater in soils classified as Oxisols than in soils classified as Ultisols and Inceptisols, and it was not affected by land use. The activity of β-glucosidase was greater in Oxisols compared to the Inceptisols and Ultisols, and it showed this response according to land use: pasture > forest > agriculture. The activity of β-glucosaminidase was higher in Oxisols than the other soil orders, and it was higher under pasture compared to forest and agriculture. Acid phosphatase and arylsulfatase activities were greater in Oxisols and Ultisols than in Inceptisols, and they decreased in this order due to land use: forest = pasture > agriculture. As a group, β-glucosaminidase, β-glucosidase, and acid phosphatase activities separated the sites under forest and pasture from those under agriculture in a three-dimensional plot. Thus, enzyme activities in Inceptisols under agriculture could be increased to levels comparable to other soil orders with conservative practices similar to those under pasture and secondary forest growth. Our findings demonstrate that within this watershed, acid and low fertility soils such as Oxisols and Ultisols have in general higher enzyme activities than less weathered tropical soils of the order Inceptisols, probably due to their higher organic matter content and finer texture; and that the activities of these enzymes respond to management with agricultural practices decreasing key soil biochemical reactions of soil functioning.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号