首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

The relationship between water soluble and exchangeable cations (Ca, Mg, Na, and K) was investigated for surface horizons of 195 soils including many taxonomic categories and a wide range in physical and chemical properties from around the world. This will provide information on exchangeable soil cation solubility for use in estimating plant uptake and leaching potential. Amounts of water soluble and exchangeable cations were not consistently related (r2 of 0.50, 0.08, 0.77, and 0.49 for Ca, Mg, Na, and K). High correlations were biased by high water soluble and exchangeable cation levels of a few soils that had 3.8‐ and 2.5‐fold greater mean than median values. The ratio of exchangeable to water soluble cations was closely related to cation saturation (r2 of 0.87, 0.95, 0.95, and 0.93 for Ca, Mg, Na, and K, respectively). As the degree of saturation of the exchange complex by a certain cation increased, solubility Increased. A change in saturation had less effect on K than on Na, Mg, and Ca solubility. Only exchangeable soil cations (NH4OAc extractable) are routinely measured and reported in soil survey reports, thus, water soluble levels may be determined from cation saturation. This will allow estimation of the amounts of cation that can potentially move in solution through the soil or be taken up by plants. Use of cation saturation, in addition to exchangeable content, will better characterize soil cation availability by representing quantity, intensity, and buffer factors.  相似文献   

2.
The leaching of Ca, Mg, and K from canopies is a major pathway of these cations into forest soils. Our aim was to quantify rates of canopy leaching and to identify driving factors at the regional scale using annual fluxes of bulk precipitation and throughfall from 37 coniferous and deciduous forests of North and Central Europe. Total deposition of Ca, Mg, K, and H+ was estimated with Na as an index cation. The median canopy leaching increased in the order: Mg (0.11 kmolc ha–1 a–1) < Ca (0.31 kmolc ha–1 a–1) < K (0.39 kmolc ha–1 a–1). Canopy leaching of Ca and K was positively correlated with the calculated total H+ deposition and H+ buffered in the canopy, whereas canopy leaching of Mg was not. With contrasting effects, fluxes of SO4‐S and NH4‐N in throughfall explained to 64 % (P<0.001) of the Ca canopy leaching. Fluxes of NH4‐N and Ca were negatively correlated, suggesting that buffering of H+ by NH3 deposition reduced canopy leaching of Ca. Amount of bulk precipitation and SO4‐S in throughfall were identified as much weaker driving factors for canopy leaching of K (r2=0.28, P<0.01). Our results show that Ca is the dominant cation in buffering the H+ input in the canopy. At the regional and annual scale, canopy leaching of Mg appears to be unaffected by H+ deposition and H+ buffering in the canopy.  相似文献   

3.
The deposition of magnesium (Mg)‐rich dust from magnesite mining activities has resulted in serious land degradation. However, the main factors limiting plant growth in Mg‐contaminated soils are unclear. Moreover, little information is available on the remediation of Mg‐contaminated soils. In this study, remediation of soils contaminated with Mg‐rich dust was investigated in a pot experiment using maize as the indicator plant. There were five treatments: (i) control; (ii) leaching; (iii) application of CaCl2; (iv) leaching + CaCl2 application; and (v) application of Ca(H2PO4)2 · H2O. Soil properties and growth of maize (Zea mays L.) seedlings were measured. Leaching alone significantly decreased soluble Mg concentration. Leaching + CaCl2 application greatly increased exchangeable Ca concentration and decreased soil pH by 0·3 units. Application of CaCl2 alone increased soluble Mg concentration sharply, which directly inhibited the germination of maize seeds. Application of Ca(H2PO4)2 · H2O significantly increased the concentrations of exchangeable Ca and available phosphorus and decreased soil pH by 1·7 units. The biomass of maize seedlings increased in the order of control = leaching < leaching + CaCl2 < < Ca(H2PO4)2 · H2O. These results suggested that the plant growth in Mg‐contaminated soils was limited primarily by Ca deficiency and secondarily by high soil pH when exchangeable Ca was sufficient. High soil pH suppressed plant growth probably mainly by inhibiting phosphate uptake from the soil. Applying acid Ca salt with low solubility is an attractive option for the remediation of Mg‐contaminated soils. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

4.
Cation exchange is often studied with disturbed and dried soils, but the applicability of the results to undisturbed soils is not straightforward. We investigated the value of exchange coefficients obtained from standard procedures for predicting cation exchange in soil. Columns of undisturbed and disturbed subsoil of a Luvisol (SBt horizon) were leached under saturated conditions with 0.4, 4, 20, 41, 102 and 205 mm BaCl2 at a Darcy velocity of 1400 mm day?1. The model PHREEQC was used to calculate one‐dimensional transport, inorganic complexation and multiple cation exchange. Two model variants were tested: m1 (exchangeable cations obtained by percolation with NH4Cl) and m2 (exchangeable cations obtained by shaking the soil with BaCl2). The exchange coefficients (Gaines–Thomas formalism) were calculated from the ion activities in solution and exchangeable cations obtained by NH4Cl percolation (m1) or shaking with BaCl2 (m2). Variant m1 predicted cation exchange of the disturbed (homogenized) soil for the entire BaCl2 concentration range, whereas variant m2 resulted in a two‐fold overestimation of desorbed K for all experiments, which was related to large amounts of K released from the soil by shaking with BaCl2. In experiments with undisturbed soil, variant m1 predicted the concentrations of Mg, Ca, K, and Na in the solution phase and the sum of cations released from exchange sites. However, variant m2 predicted changes in ion concentrations and exchangeable cations somewhat less well. This study suggests that the amounts of exchangeable cations and exchange coefficients obtained from experiments with homogenized soil by percolation are useful to predict cation concentrations in column experiments with undisturbed soils.  相似文献   

5.
Abstract

The objective of this work was to appraise the double acid (0.05N HCl+0.025N H2SO4) extraction agent for assessing the availability of Ca, Mg, and K in organic soils. The evaluation was done by determining the relation and interactions between the concentrations of Ca, Mg and K extracted from soils and those found in onion and alfalfa tissues.

The extraction procedure was found to give good relations (r 0.848**) between the concentrations of Ca and Mg extracted from soils and those present in onion and alfalfa tissues, though interactions between the amounts of Ca and Mg extracted from soils were found.

A differentiation among soils was found upon relating the amounts of soil extracted K to its concentration in onion and alfalfa tissues. Soil extracted K was shown to be related to its preponderance (K x 100/K Ca Mg) over other extracted bases (r = 0.975**). A critical preponderance of 11% K was identified for alfalfa. The critical preponderance of K in crops appraises some of the interactions among available soil cations and, consequently, is suggested as an improved approach for predicting crop response to potassium fertilization.  相似文献   

6.
A Method for the Determination of Exchangeable Cations in Forest Soils A simple extraction method with NH4Cl was developed for determining exchangeable cations in forest soils. The influence of selected parameters (reaction time, concentration of NH4Cl, filter medium etc.) affecting the amount of extractable cations was tested and a standardisation was done. The cation exchange was completed in less than 4 h. For a quantitative extraction of K, Mg, Ca, and Mn a concentration of 0.05 M NH4Cl was sufficient. The extractable amount of these cations was always clearly defined. However, extracted Al and Fe increased with the NH4Cl-concentration. Depending on the soil samples, the exchange is not quantitative even when using a saturated solution. The extractable H+ is nearly independent of the NH4Cl-concentration. Probably considerable amounts are dissociated from organic acids. The optimized method is feasible and can be used for K, Mg, Ca, and Mn as an alternative to percolation methods.  相似文献   

7.
Abstract

The effect of soil pH on the exchangeability and solubility of soil cations (Ca, Mg, Na, K, and NH4‐N) and anions (NO3‐N, Cl, and P) was investigated for 80 soils, spanning a wide range in physical and chemical properties and taxonomic groups. This information is needed from environmental and agronomic standpoints to estimate the effect of changes in soil pH on leachability and plant availability of soil nutrients. Soils were incubated with varying amounts of acid (H2SO4) and base (CaCO3) for up to 30 days. Although acid and base amendments had no consistent effect on cation exchangeability (as determined by neutral NH4OAc), amounts of water‐soluble Ca, Mg, Na, K, NH4‐N, and P decreased, while NO3‐N and Cl increased with an increase in soil pH. The increase in cation solubility was attributed to an increase in the negative charge of the soil surface associated with the base addition. The change in surface electrostatic potential had the opposite effect on amounts of NO3‐N and Cl in solution, with increases in N mineralization with increasing soil pH also contributing to the greater amount of NO3‐N in solution. The decrease in P solubility was attributed to changes in the solubility of Fe‐, A1‐, and Ca‐P complexes. The logarithm of the amount of water‐soluble cation or anion was a linear function of soil pH. The slope of this relationship was closely related (R2 = = 0.90 ‐ 0.96) to clay content, initial soil pH, and size of the cation or anion pool maintaining solution concentration. Although the degree in soil pH buffering increased with length of incubation, no effect of time on the relationship between cation or anion solubility and pH was observed except for NO3‐N, due to N mineralization. A change in soil pH brought about by acid rain, fertilizer, and lime inputs, thus, affects cation and anion solubility. The impact of these changes on cation and anion leachability and plant availability may be assessed using the regression equations developed.  相似文献   

8.
Summary

A simple, single‐step extraction with LiEDTA for the estimation of CEC and exchangeable bases in soils has been developed. Multivalent cations are stripped from the soil adsorption sites by the strongly chelating agent EDTA, and are replaced by Li. In soils without CaCO3 or water soluble salts, exchangeable divalent cations (Ca, Mg) are chelated by EDTA and exchangeable monovalent cations (Na, K) are replaced in a single extraction step using 0.25–2.5 g of soil and 10.0 ml of extractant.

In calcareous soils the CEC can be determined in the same way, but for the extraction of exchangeable Ca and Mg, another separate extraction is needed because dissolution of calcite by EDTA is unavoidable. This extraction is done with as much NaEDTA as needed to extract only exchangeable Ca and Mg in a 1:2 (m/V) soil/alkaline‐50% (V/V) aethanolic solution to minimize dissolution of calcite.

In gypsiferous soils gypsum is transformed into insoluble BaSO4 and soluble CaEDTA by LiBaEDTA thus avoiding interference of Ca from dissolution of gypsum, which renders the traditional methods for determining CEC unsuitable for such soils. To determine exchangeable Ca and Mg, Na4EDTA is used as for calcareous soils.

In saline/sodic soils replacement of Na by Li is incomplete but the Na/Li‐ratio at the complex after extraction is proportional to the molar Na/Li‐ratio in the extracts, so that the CEC and original exchangeable sodium (ESP) content can be calculated. Additional analysis of Cl and, if necessary, SO4 in the extracts of saline soils can be used to correct for the effect of dissolution of the salts on the sum of exchangeable cations.

This new method is as convenient as the recently developed AgTU (silverthiourea), but is better suitable for calcareous and gypsiferous soils.  相似文献   

9.
On the determination of exchangeable cations in acid forest soils Different samples from acid forest soils were percolated with large amounts of H2O. Significant amounts of anions, especially sulfate, were found in the percolates mainly accompanied by Na. K, Ca and Mg (Mb-cations). The dissolution of Al-Sulfates and subsequent exchange of Mb-cations by Al as dominant mechanism is proposed. Thus the common method for determination of the cation exchange capacity (CEC) of acid forest soils, the percolation with NH4Cl may overestimate the CEC. The overestimation may be related to the sulfate content of the soil and also influences the calculation of relative CEC proportions of individual cations.  相似文献   

10.
Abstract

Forage intake with potassium/(calcium + magnesium) [K/(Mg + Ca)] values in excess of 2.2 are associated with grass tetany and Mg deficiencies in ruminants. This study was conducted to determine the degree to which forage K and Mg concentrations and K/(Ca + Mg) ratios could be predicted from soil bicarbonate (HCO3) extractable phosphate‐phosphorus (PO4‐P), and saturation extract Ca, Mg, K, sodium (Na), and nitrate‐nitrogen (NO3‐N) concentrations. Crested wheatgrass (Agropyron spp) strains and cultivars representing four ploidy levels were grown in the greenhouse on eight calcareous soils with different saturation extract Ca, Mg, K and K/Mg ratios. The plants were harvested three times. Soil solution K/(Ca + Mg) and K/Mg ratios were the only measured soil parameters that showed a consistent correlation with plant K/(Ca + Mg) ratios. Bicarbonate extractable soil P was positively related to plant P and K uptake in the first harvest, but was not related in the second and third harvests nor was soil P related to plant Ca or Mg content. There was a tendency for the higher ploidy level entries to have higher plant K/(Ca + Mg) ratios. It was concluded that soil K/(Ca + Mg) ratios can be used to predict relative forage K/(Ca + Mg) ratios for grasses grown under similar conditions.  相似文献   

11.
利用长期定位试验 ,比较了长期施用含SO42-和Cl- 化肥 22年后稻田土壤的 pH值、养分状况及其吸附解吸特性。结果表明 ,长期施用含SO42-化肥 ,土壤有机质、速效氮和速效钾的含量较高 ,但全量氮磷钾的含量较低 ;长期施用含Cl- 化肥 ,土壤全量氮磷钾和速效磷的含量较高 ,但pH值相对较低。长期施用含上述二种阴离子的化肥后 ,土壤对H2PO4-的最大吸附量均较大 ,且在Cl- 处理下土壤对H2PO4-吸附的结合能较大 ,而SO42-处理下土壤在同等吸附量时对H2PO4-的解吸量相应较多。长期施用含SO42-的化肥亦使土壤对钾素的供应强度较大 (ΔK0的绝对值较大 )、缓冲能力增强 (AR0值较高 ) ,而长期施用含Cl- 的化肥时则与SO42-相反  相似文献   

12.
Abstract

In Oxisols, acidity is the principal limiting factor for crop production. In recent years, because of intensive cropping on these soils, deficiency of micronutrients is increasing. A field experiment was conducted on an Oxisol during three consecutive years to assess the response of common bean (Phaseolus vulgaris L.) under a no‐tillage system to varying rates of lime (0, 12, and 24 Mg ha?1) and boron (0, 2, 4, 8, 12, 16, and 24 kg ha?1) application. Both time and boron (B) were applied as broadcast and incorporated into the soil at the beginning of the study. Changes in selected soil chemical properties in the soil profile (0- to 10‐ and 10- to 20‐cm depths) with liming were also determined. During all three years, gain yields increased significantly with the application of lime. However, B application significantly increased common bean yield in only the first crop. Only lime application significantly affected the soil chemical properties [pH; calcium (Ca2+); magnesium (Mg2+); hydrogen (H+)+ aluminum (Al3+); base saturation; acidity saturation; cation exchange capacity (CEC); percent saturation of Ca2+, Mg2+, and potassium (K+); and ratios of exchangeable Ca/Mg, Ca/K, and Mg/K] at both soil depths (0–10 cm and 10–20 cm). A positive significant association was observed between grain yield and soil chemical properties. Averaged across two depths and three crops, common bean produced maximum grain yield at soil pHw of 6.7, exchangeable (cmolc kg?1) of Ca2+ 4.9, Mg2+ 2.2, H++Al3+ 2.6, acidity saturation of 27.6%, CEC of 4.1 cmolc kg?1, base saturation of 72%, Ca saturation of 53.2%, Mg saturation of 17.6%, K saturation of 2.7%, Ca/Mg ratio of 2.8, Ca/K ratio of 25.7, and Mg/K ratio of 8.6. Soil organic matter did not change significantly with addition of lime.  相似文献   

13.
14.
The results of physico-chemical investigations of an Ultisol subsoil under a 2-year old fallow in eastern Amazonia are presented. Subsoil chemistry was studied using 4 different approaches: i) concentrations of H, Na, K, Ca, Mg, Mn, Al, and Fe in seepage water were measured under field conditions, ii) the equilibrium soil chemistry was studied in sequential batch experiments where the soil was treated with different solutions, iii) results of batch experiments were simulated with a chemical equilibrium model, and iv) the seepage data were calculated using selectivity coefficients obtained by modelling the batch experiments. The model included multiple cation exchange, precipitation/dissolution of Al(OH)3 and inorganic complexation. Cation selectivity coefficients were pKx/Casel: X = Na: 0.3, K: 0.8, Mg: ?0.1, and Al: 0.4. The amount of cations sorbed ranged from ?0.2 to 2.0 (K), ?0.7 to 2.3 (Mg), ?1.6 to 1.8 (Ca), ?4.8 to 3.6 (Al) and 0.0 to 8.5 (Na) mmolc kg?1. The model predictions were good with values lying within 0.3 pH units (for the pH range 3.7 to 7.2), and 3% of CEC for individual cations. The most important proton buffer reaction seemed to be the dissolution of gibbsite and a large release of Al into the soil solution. When selectivity coefficients obtained by the modelling procedure were used to predict the field data for cation concentrations in the seepage water, they decreased in the following order: Na > K > Ca > Mg > Al. These calculated values were similar to the measured order: Na > Ca > K ≈ Mg > Al. Thus the options for managing these soils should be carefully chosen to avoid soil acidification which may result from inappropriate use of fertilizer during the cropping period.  相似文献   

15.
The decrease in anthropogenic deposition, namely SO42— and SO2, in European forest ecosystems during the last 20 years has raised questions concerning the recovery of forest ecosystems. The aim of this study was to evaluate if the long term data of element concentrations at the Fichtelgebirge (NE‐Bavaria, Germany) monitoring site indicates a relationship between the nutrient content of needles and the state of soil solution acidity. The soil at the site is very acidic and has relatively small pools of exchangeable Ca and Mg. The trees show medium to severe nutrient deficiency symptoms such as needle loss and needle yellowing. The Ca and Mg concentrations in throughfall decreased significantly during the last 12 years parallel to the significant decline in the throughfall of H+ and SO42— concentrations. Soil solution concentrations of SO42—, Ca and Mg generally decreased while the pH value remained stable. Aluminum concentrations decreased slightly, but only at a depth of 90 cm. Simultaneously a decrease in the molar Ca/Al and Mg/Al ratios in the soil solution was observed. Ca and Mg contents in the spruce needles decreased, emphasizing the relevance of soil solution changes for tree nutrition. The reasons for the delay in ecosystem recovery are due to a combination of the following two factors: (1) the continued high concentrations of NO3 and SO42— in the soil solution leading to high Al concentrations and low pH values and, (2) the decreased rates of Ca and Mg deposition cause a correlated decrease in the concentration of Ca and Mg in the soil solution, since little Ca and Mg is present in the soil's exchangeable cation pools. It is our conclusion that detrimental soil conditions with respect to Mg and Ca nutrition as well as to Al stress are not easily reversed by the decreasing deposition of H+ and SO42—. Thus, forest management is still confronted with the necessity of frequent liming to counteract the nutrient depletion in soils and subsequent nutrient deficiencies in trees.  相似文献   

16.
Abstract

The effects of irrigating with saline water on native soil fertility and nutrient relationships are not well understood. In a laboratory experiment, we determined the extent of indigenous nutrient [calcium (Ca), magnesium (Mg), potassium (K), manganese (Mn), and zinc (Zn)] release in salt-saturated soils. Soils were saturated with 0, 75, and 150 mmolc L?1 sodium chloride (NaCl) solution and incubated for 1, 5, 10, and 15 days. The saturation extracts were analyzed for pH, ECe, and water‐soluble Ca, Mg, K, Mn, and Zn, and the remainder soil samples were analyzed for exchangeable forms of these elements. In a subexperiment, three soil types (masa, red‐yellow, and andosol) were saturated individually either with 100 mmolc L?1 of NaCl, sodium nitrate (NaNO3), or sodium sulfate (Na2SO4) salt. These salts were also compared for nutrient release. Soils treated with NaCl released higher amounts of water‐soluble than exchangeable nutrients. Except for Zn, the average concentrations of these nutrients in the soil solution increased significantly with time of incubation, but concentrations of the exchangeable forms varied inversely with time of incubation. The masa soil exhibited the highest concentrations of Ca and Mg, whereas K was highest in andosol. The extract from soils treated with NaCl contained greater amounts of soluble cations, whereas soils treated with Na2SO4 produced the lowest concentration of these elements irrespective of the type of soil used.  相似文献   

17.
Heats of adsorption and adsorption isotherms of ammonia gas were measured at 300 K (27 °C) on outgassed soil saturated with Na+, K+, NH4+, Ca2+, or Mg2+ ions. The Ca and Mg soils adsorbed apparently one more NH2 molecule per exchangeable ion than the Na and K soils, mostly in the relative pressure range o to 0.005, but not much more than the NH4 soil. The initial heat of adsorption was c. 75 kJ mol-1 on the Ca and Mg soils and c. 60 kJ mol-1 on the other soils. The results suggest that most NH, is sorbed on these soils through reactions not involving exchangeable cations.  相似文献   

18.
Tomato plants were grown in a greenhouse in 100 liter containers containing nutrient solutions. A 4 × 3 × 3 factorial experiment of Cl × N × P was conducted. The Cl concentrations were 0, 10, 35 and 70 meq/1; NO 3 concentrations were 7.5, 15, and 20 meq/1; and H2PO 4 concentrations were 1, 2, and 5 meq/1. Fifteen different plant parameters were analyzed. There was a decline in dry matter yield with increasing Cl concentration in solution at all NO, and H2PO 4 levels. The effect of NO 3 levels on dry matter at each Cllevel was varied and resulted in a significant Cl x NO 3 interaction. The Cl affected all measured plant parameters but K and P content in the plant. Chloride content in the plant was depressed by increasing NO 3 concentration in the solution at all levels of Cl in the solution. There was a little effect of H2 PO 4 on Cl and Mg content in the plant. The possibility of using NO 3 fertilizers to depress Cl uptake by the plants is discussed.

Interaction between solution salinity and plant nutrition was investigated for several crops by Bernstein et al. (1974). Their experiments were conducted at relatively low nutrient solution concentrations which contained only 2 and 4 meq/l of NO 3. Low NO 3 concentrations are justified when very low C1 concentrations are present in solution. Letey et al. (1982) did not find any response of tomato to increases in NO 3 concentration beyond 1 meq/l in a chloride‐free solution. Hiatt and Leggett (1974) reported that increasing Cl concentration in the solution suppressed NO 3 uptake by the plant. Direct competition between NO 3 and Cl on uptake by plants was also reported by DeWit et al. (1963). There is therefore a possibility that yield reduction due to increased salinity is not entirely from Cl toxicity, but may be partially due to induced deficiency of NO 3 by the increased external Clconcentration (Wallace and Berry, 1981).

Reports on the effect of H2FO 4 interaction with salinity are conflicting (Champagnol, 1979). Some investigators report positive and others report negative effects of increased H2PO 4 concentrations on plant resistance to salinity. Nieman and Clark (1976) found that decreasing H2PO 4 from 1 to 0.1 meq/l increased resistance of the plant to salinity.

The purpose of the work reported herein was to check the hypotheses that increasing NO 3 and H2PO 4 concentrations in the nutrient solution will decrease Cl uptake and thus increase plant resistance to Cl salinity or conversely high Cl in the water requires higher NO 3 concentration for adequate N supply as compared to low Cl.  相似文献   


19.
The chile pepper plant seldom responds to N and P fertilizers on fertile soils. Surplus industrial H2SO4 and elemental S have created interest in “mining”; calcareous soils for additional supplies of P, Ca, Mg and micronutrients. The effect of variable S, on the growth of chile and broccoli was evaluated holding other nutrients constant. Growth of chile and broccoli plants was significantly increased in the greenhouse and chile yield increased in the field. Incremental S additions increased the water extractable and desorbable Ca + Mg and P contents of soil. The total N and K content of chile plant grown in the greenhouse increased, and then decreased, P decreased, as S rates increased. Yield of dry red chile with constant N peaked at 16.5 g S m‐2 and then decreased with increasing S in the field. Rroccoli responded more to S application than to directly applied foliar micronutrient solutions (Fe and 7n), and responded much better to (NH4)2SO4 + S than to Ca(NO3)2 at equivalent N rates. Increased soluble Ca + Mg content of the soil in the presence of S was thought to influence plant absorption of NH4 and/or K.  相似文献   

20.
The influence of three potassium:rubidium (K:Rb) ratios (6:0, 5:1, and 4:2) on the xylematic transport of solutes in cucumber plants cv. Medusa supplied with both nitrate (NO3 ) (60%) and ammonium (NH4 +) (40%) was studied in greenhouse conditions. In the xylem sap of plants grown with a K:Rb ratio of 4:2, there was an increase in the transport of NO3 , phosphate (H2PO4 ), calcium (Ca2+), magnesium (Mg2+), sodium (Na+), manganese (Mn) and boron (B) while that of organic‐N, organic‐P, K+, zinc (Zn), organic acids, and carbohydrates decreased, if compared with the sap of the plants supplied with K alone. The translocation of NO3 , H2PO4 , Ca2+, Mg2+, and Mn was enhanced and that of K+ and organic acids decreased when the plants were supplied with a K:Rb ratio of 5:1. The K:Rb ratio detected in the xylem sap was the same K:Rb ratio as in the solutions. However, in the cucumber plant substituting 33% of total K by Rb resulted in an alteration in the transport of solutes, probably due to a competition between Rb and K rather than between the latter two and NH4 +.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号