首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Soil liming may increase phosphorus (P) availability, but this increase may also be achieved with generous P applications. However, it is not well known which practice has longer-term effects. Thus, in a pot experiment, an acidic soil (pH 4.57), limed to pH 6.5, was added with P and sown with Lolium perenne L. We conducted three cuttings (on Days 40, 80, and 120) in order to evaluate P dynamics in each of the treatments. As expected, biomass increased significantly with liming. We also found that plant P concentration increased in the liming treatment, but not in the P-added treatment, although the difference was reduced on Day 120. This shows that in severely acidic soils, liming should be preferred over P addition, although the beneficial effects may not last for a very long time, since in this experiment, they only lasted for 4 months. Similar conclusions were drawn from soil P extraction results.  相似文献   

2.
Summary We studied the effects of limining on growth and nutrient concentrations of Brachiaria decumbens inoculated with five vesicular-arbuscular mycorrhizal (VAM) fungal assemblages which orginated from soils with different acidity. Liming increased plant growth when applied at rates up to 3 g kg-1 soil and depressed growth at higher rates. Mycorrhizal plants grew better than non-mycorrhizal ones in unlimed soil and also liming rates of 4.5 and 6.0 g kg-1 soil. The growth amelioration effects of VAM in highly acid or over-limed soils were related to nutrient uptake. VAM fungi isolated from an acidic soil exhibited a high symbiotic effectiveness and were better adapted to unlimed soil than those that originated from non-acidic soils. VAM root colonization, 90 days after planting, was little affected by liming. Fungal spore production and species compositions were highly affected by liming. A mixture of Glomus diaphanum and Glomus occultum predominated in unlimed soils inoculated with VAM assemblages isolated from non-acidic soils. In these fungal assemblages, an increased liming rate favored Glomus etunicatum over the other VAM fungi. Gigaspora margarita sporulated abundantly when introduced into unlimed soils, but rarely in limed soils. VAM appear to be crucial for the establishment of brachiaria pastures in the nutrient-deficient acidic soils of Central Brazil. It is suggested that liming may cause striking shifts in VAM populations which may, in turn, have a long-term impact on agricultural productivity in the tropics.  相似文献   

3.
A major constraint to the renovation of forage legume‐based pastures on acidic soils of the Appalachian hill‐lands is thought to be the absence of effective rhizobia. A growth chamber experiment was done with aluminum (Al) toxic, low pH (≥ 4.2) soils from four series (Berks, Lily, Tate, and Westmoreland) that were planted with alfalfa (Medicago sativa L.), red clover (Trifolium pratense L.), white clover (Trifolium repens L.), or birdsfoot trefoil (Lotus corniculatus L.). These soils, without lime addition, were previously shown not to contain effective, naturalized populations of rhizobia for these plant species. However, a non‐toxic, pH 6.8, Watauga soil was shown to have such rhizobia but only for alfalfa. In the present study, these five soils were reexamined after liming to pH 5.5 for effective, naturalized populations of rhizobia and the efficacy of soil inoculation with commercially available rhizobia. In addition to effective, naturalized R. meliloti for alfalfa in the Watauga soil, similar populations of R. trifolii for red clover, and R. lotus for birdsfoot trefoil, were now found. Such rhizobia were also found for alfalfa in the Lily soil and for red clover in the Lily and Tate soil. Thus, liming allowed the expression of effectiveness of natural rhizobia that otherwise would not have been detected in soil pot experiments without lime. Inoculation of the toxic soils after lime addition with commercial rhizobia was effective in about half of the soil‐plant combinations that did not contain populations of effective, naturalized rhizobia. Asymbiotic shoot growth of all the plant species was significantly (P ≤ 0.05) correlated with soil pH over a range of 5.5–6.6. These results indicate that, in the absence of effective, naturalized populations of rhizobia, improvement of rhizobial inocula could increase forage production by ~34% for some species on some of the toxic soils, even after the pH of the soils is increased to ≥ 5.5.  相似文献   

4.
添加生物炭对酸性红壤中玉米生长和氮素利用率的影响   总被引:3,自引:0,他引:3  
Biochar added to soil can improve crop growth through both direct and indirect effects, particularly in acidic, highly weathered soils in subtropical and tropical regions. However, the mechanisms of biochar improving crop growth are not well understood. The objectives of this study were i) to determine the crop responses to biochar addition and ii) to understand the effect of biochar addition on N use efficiency. Seven acidic red soils varying in texture, p H, and soil nutrient were taken from southern China and subjected to four treatments: zero biochar and fertilizer as a control(CK), 10 g kg-1biochar(BC), NPK fertilizers(NPK), and 10 g kg-1biochar plus NPK fertilizers(BC+NPK).15N-labeled fertilizer was used as a tracer to assess N use efficiency. After a 46-d pot experiment,biochar addition increased soil p H and available P, and decreased soil exchangable Al3+, but did not impact soil availabe N and cation exchange capacity(P 〉 0.05). The N use efficiency and N retained in the soil were not significantly affected by biochar application except for the soil with the lowest available P(3.81 mg kg-1) and highest exchanageable Al3+(4.54 cmol kg-1). Greater maize biomass was observed in all soils amended with biochar compared to soils without biochar(BC vs. CK, BC+NPK vs. NPK). This agronomic effect was negatively related to the concentration of soil exchangeable Al3+(P 〈 0.1). The results of this study implied that the liming effect of biochar improved plant growth through alleviating Al toxicity and P deficiency, especially in poor acidic red soils.  相似文献   

5.
Abstract

A pot experiment using Urochloa mozambicensis as the test plant showed that the P requirements of three acid soils from the wet coast of North Queensland are in accord with their P sorption characteristics; P requirements of two soils with dark, humic A horizons were very high. Responses to liming (dolomite) were also found on two soils.

Effects of liming on P sorption, P concentration in solution, and plant response to P were small and thus liming does not offer a means of reducing P needs on these soils.

Analyses of the plant dry matter, the soil and soil solution recovered from the cropped soils indicate that aluminium and manganese toxicities were not important for the growth of the test plant on these soils, but magnesium deficiency was a contributing factor to the response to dolomite on one soil.  相似文献   

6.

Purpose  

Acidic soils exhibit high trace element availability compared to neutral pH soils, and thus, when trace metals are added (e.g. due to sewage sludge application), measures should be taken to reduce their mobility. In this experiment, we tested two such methods, liming and zeolite addition. The aim was to measure the availability, in ryegrass (Lolium perenne L.), of heavy metals (Cu and Zn) added to soil with sewage sludge in both acidic and limed soil.  相似文献   

7.
Little information is available on phosphorus (P) uptake and rhizosphere processes in maize (Zea mays L.), faba bean (Vicia faba L.), and white lupin (Lupinus albus L.) when intercropped or grown alone in acidic soil. We studied P uptake and soil pH, carboxylate concentration, and microbial community structure in the rhizosphere of maize, faba bean, and white lupin in an acidic soil with 0–250 mg P (kg−1 soil) as KH2PO4 (KP) or FePO4 (FeP) with species grown alone or intercropped. All plant species increased the pH compared to unplanted control, particularly faba bean. High KP supply (>100 mg P kg−1) significantly increased carboxylate concentration in the rhizosphere of maize. The carboxylate composition of the rhizosphere soil of maize and white lupin was significantly affected by P form (KP or FeP), whereas, this was not the case for faba bean. In maize, the carboxylate composition of the rhizosphere soil differed significantly between intercropping and monocropping. Yield and P uptake were similar in monocropping and intercropping. Monocropped faba bean had a greater concentration of phospholipid fatty acids in the rhizosphere than that in intercropping. Intercropping changed the microbial community structure in faba bean but not in the other corps. The results show that P supply and P form, as well as intercropping can affect carboxylate concentration and microbial community composition in the rhizosphere, but that the effect is plant species-specific. In contrast to previous studies in alkaline soils, intercropping of maize with legumes did not result in increased maize growth suggesting that the legumes did not increase P availability to maize in this acidic soil.  相似文献   

8.
Abstract

Loss of soil‐water saturation may impair growth of rainfed lowland rice by restricting nutrient uptake, including the uptake of added phosphorus (P). For acidic soils, reappearance of soluble aluminum (Al) following loss of soil‐water saturation may also restrict P uptake. The aim of this study was to determine whether liming, flooding, and P additions could ameliorate the effects of loss of soil‐water saturation on P uptake and growth of rice. In the first pot experiment, two acid lowland soils from Cambodia [Kandic Plinthaqult (black clay soil) and Plinthustalf (sandy soil)] were treated with P (45 mg P kg?1 soil) either before or after flooding for 4 weeks to investigate the effect of flooding on effectiveness of P fertilizer for rice growth. After 4 weeks, soils were air dried and crushed and then wet to field capacity and upland rice was grown in them for an additional 6 weeks. Addition of P fertilizer before rather than after flooding depressed the growth of the subsequently planted upland rice. During flooding, there was an increase in both acetate‐extractable Fe and the phosphate sorption capacity of soils, and a close relationship between them (r2=0.96–0.98). When P was added before flooding, Olsen and Bray 1‐extractable P, shoot dry matter, and shoot P concentrations were depressed, indicating that flooding decreased availability of fertilizer P. A second pot experiment was conducted with three levels of lime as CaCO3 [to establish pH (CaCl2) in the oxidized soils at 4, 5, and 6] and four levels of P (0, 13, 26, and 52 mg P kg?1 soil) added to the same two acid lowland rice soils under flooded and nonflooded conditions. Under continuously flooded conditions, pH increased to over 5.6 regardless of lime treatment, and there was no response of rice dry matter to liming after 6 weeks' growth, but the addition of P increased rice dry matter substantially in both soils. In nonflooded soils, when P was not applied, shoot dry matter was depressed by up to one‐half of that in plants grown under continuously flooded conditions. Under the nonflooded conditions, rice dry matter and leaf P increased with the addition of P, but less so than in flooded soils. Leaf P concentrations and shoot dry matter responded strongly to the addition of lime. The increase in shoot dry matter of rice with lime and P application in nonflooded soil was associated with a significant decline in soluble Al in the soil and an increase in plant P uptake. The current experiments show that the loss of soil‐water saturation may be associated with the inhibition of P absorption by excess soluble Al. By contrast, flooding decreased exchangeable Al to levels below the threshold for toxicity in rice. In addition, the decreased P availability with loss of soil‐water saturation may have been associated with a greater phosphate sorption capacity of the soils during flooding and after reoxidation due to occlusion of P within ferric oxyhydroxides formed.  相似文献   

9.
The benefits of liming acidic or calcium (Ca)-deficient soils for soil structure and fertility are well documented. However, little is known about the effect of liming nearly neutral loess soils – lacking Ca – on interactions between soil nutrients. Over a 2-year period, 62 field trials were conducted in Germany and Austria with three treatments (0, 3 and 12 t CaO ha?1) on slightly acidic loess soils. Soil samples from the top soil layer were taken 4, 8, 16 and 24 weeks after liming. In addition to the pHCaCl2, the phosphorus (P), potassium (K) and Ca contents were analysed using electro-ultrafiltration (EUF). The application of lime increased the pH in average from 6.6 up to 7.0 and 7.2, but did not decrease EUF extractable P and K below the level of untreated control. Contrary to our expectations, EUF extractable P increased 4 weeks after liming in the treatment with 3 t CaO ha?1. At the end of incubation period, 24 weeks after liming, the EUF extractable K in treatment 12 t CaO ha?1 remained still 1.3 mg K 100 g?1 soil above the untreated control.  相似文献   

10.
A glasshouse pot experiment was conducted to study the effects of liming on plant growth and zinc (Zn) and cadmium (Cd) accumulation by Sedum plumbizincicola in a heavy-metal-contaminated acidified paddy soil. Lime application significantly increased the soil pH, which reached a maximum of 5.53 after addition of 4.0 g kg?1 lime to soil, about 1.4 units more than that of the control. Sedum plumbizincicola grew larger after lime application but aboveground biomass did not increase significantly with increasing soil pH. Liming significantly reduced shoot Zn and Cd concentrations and uptake except at the lowest lime application rate (0.5 g kg?1 lime to soil). This indicates that S. plumbizincicola can grow well in acidic soil at a soil pH of 4.15, and application of lime did not increase plant heavy-metal extraction. Consequently, it is promising to use this plant for Cd and Zn phytoextraction from agricultural soils polluted with acid and metals.  相似文献   

11.
In acidic soils, copper (Cu) availability may be high because of Cu impurities of various agricultural additives. This research was aimed at assessing liming and zeolite application as availability reduction methods. In a soil with pH 3.8, lime was added at 6.6 Mg ha?1, and zeolite was added at 3.3% and 10% in a 100-day pot trial with ryegrass. On day 50 zeolite was more effective in reducing Cu availability [as expressed by diethylenetriaminepentaacetic acid (DTPA) soil extractions and plant concentration measurements] than liming. On day 100, Cu levels were further reduced in both treatments, indicating the effectiveness of both zeolite and liming over the study period to retain Cu. Zeolite alone reduced Cu concentration in plants to 26%, liming alone reduced it by 21%, and the combination of the two reduced it by 43%. The orders in the DTPA extractions and the soil-to-plant Cu transfer coefficients were similar.  相似文献   

12.
In a pot experiment, the P‐efficient wheat (Triticum aestivum L.) cultivar Goldmark was grown in ten soils from South Australia covering a wide range of pH (four acidic, two neutral, and four alkaline soils) with low to moderate P availability. Phosphorus (100 mg P kg–1) was supplied as FePO4 to acidic soils, CaHPO4 to alkaline, and 1:1 mixture of FePO4 and CaHPO4 to neutral soils. Phosphorus uptake was correlated with P availability measured by anion‐exchange resin and microbial biomass P in the rhizosphere. Growth and P uptake were best in the neutral soils, lower in the acidic, and poorest in the alkaline soils. The good growth in the neutral soils could be explained by a combination of extensive soil exploitation by the roots and high phosphatase activity in the rhizosphere, indicating microbial facilitation of organic‐P mineralization. The plant effect (soil exploitation by roots) appeared to dominate in the acidic soils. Alkaline phosphatase and diesterase activities in acidic soils were lower than in neutral soils, but strongly increased in the rhizosphere compared with the bulk soil, suggesting that microorganisms contribute to P uptake in these acidic soils. Shoot and root growth and P uptake per unit root length were lowest in the alkaline soils. Despite high alkaline phosphatase and diesterase activities in the alkaline soils, microbial biomass P was low, suggesting that the enzymes could not mineralize sufficient organic P to meet the demands of plants and microorganisms. Microbial‐community composition, assessed by fatty acid methylester (FAME) analysis, was strongly dependent on soil pH, whereas other soil properties (organic‐C or CaCO3 content) were less important or not important at all (soil texture).  相似文献   

13.
This study was conducted to evaluate whether biochar, produced by pyrolysis at 300°C from rice husk and grape pomace (GP), affects plant growth, P uptake and nutrient status. A 3-month period of ryegrass (Lolium perenne L.) cultivation was studied on two Mediterranean agricultural soils. Treatments comprised control soils amended only with compost or biochar, and combinations of biochar plus compost, with the addition of all nutrients but P (FNoP) or without any fertilization at all (NoF). Application of both types of biochar or/with compost, in the presence of inorganic fertilization except P, significantly increased (< 0.05) dry matter yield of ryegrass (58.9–77.6%), compared with control, in sandy loam soil, although no statistically significant increase was observed in loam soil. GP biochar and GP biochar plus compost amended loam soil harvests gave higher P uptake than control, in the presence of inorganic fertilization except P, whereas in sandy loam soil, a statistical increase was recorded only in the last harvest. In addition, Mn and Fe uptake increased with the addition of the amendments in both soils, while Ca increased only in the alkaline loam soil. Biochar addition could enhance ryegrass yield and P uptake, although inorganic fertilization along with soil condition should receive special attention.  相似文献   

14.
The application of nitrogen (N) fertilizers and liming (CaCO3) to improve soil quality and crop productivity are regarded as effective and important agricultural practices. However, they may increase greenhouse gas (GHG) emissions. There is limited information on the GHG emissions of tropical soils, specifically when liming is combined with N fertilization. We therefore conducted a full factorial laboratory incubation experiment to investigate how N fertilizer (0 kg N ha−1, 12.5 kg N ha−1 and 50 kg N ha−1) and liming (target pH = 6.5) affect GHG emissions and soil N availability. We focussed on three common acidic soils (two ferralsols and one vertisol) from Lake Victoria (Kenya). After 8 weeks, the most significant increase in cumulative carbon dioxide (CO2) and nitrous oxide (N2O) fluxes compared with the unfertilized control was found for the two ferralsols in the N + lime treatment, with five to six times higher CO2 fluxes than the control. The δ13C signature of soil-emitted CO2 revealed that for the ferralsols, liming (i.e. the addition of CaCO3) was the dominant source of CO2, followed by urea (N fertilization), whereas no significant effect of liming or of N fertilization on CO2 flux was found for the vertisol. In addition, the N2O fluxes were most significantly increased by the high N + lime treatment in the two ferralsols, with four times and 13 times greater N2O flux than that of the control. No treatment effects on N2O fluxes were observed for the vertisol. Liming in combination with N fertilization significantly increased the final nitrate content by 14.5%–39% compared with N fertilization alone in all treatment combinations and soils. We conclude that consideration should be given to the GHG budgets of agricultural ferralsols since liming is associated with high liming-induced CO2 and N2O emissions. Therefore, nature-based and sustainable sources should be explored as an alternative to liming in order to manage the pH and the associated fertility of acidic tropical soils.  相似文献   

15.
In dry Mediterranean‐type climates boron (B) levels may naturally be high and even toxic to plants. Although liming of an acidic soil is expected to decrease B levels, it is not known what the effects would be in such areas of high‐B soils, especially in B‐sensitive crops such as apple trees. Thus, our aim was to study the behavior of added B in newly planted apple rootstocks in an acidic soil which was limed to pH 6.5 in an outdoor pot experiment. Added B increased significantly B extractability from soil, and B levels were lower in the limed compared to the acidic soils. Plant B concentrations also increased with added B but differences between limed and unlimed soils were not evident, because plant B did not seem to reflect changes in B behavior in soil. However, B uptake was significantly increased with added B, and was further increased with liming, contrary to what the soil extractions indicated, due to improved growth conditions. Our results show that although liming decreased soil B levels, at the same time it did not affect plant B concentration and accelerated the uptake of added B, indicating a possibility for increased soil‐to‐plant mobility of B.  相似文献   

16.
The effectiveness of plantation wastes along with locally available organic materials in ameliorating acidic soil was studied by conducting an experiment with coconut husk, poultry manure, vermicompost, and compared with limestone. Application of organic amendments significantly increased the soil pH, and it was greatest in poultry manure–amended soils followed by vermicompost and coconut husk + poultry manure treatments. The relative liming efficiency was greatest for poultry manure through out the observation period of 180 days. The coconut husk alone showed the least liming effect and its liming efficiency had increased when applied in combination with poultry manure and or vermicompost. This increase in soil pH was mirrored by significant reductions in exchange acidity, exchangeable aluminum (Al3+), diethylenetriaminepentaacetic acid (DTPA)–extractable iron (Fe2+), and manganese (Mn2+) and increases in cation exchange capacity, exchangeable bases, especially calcium (Ca), and Olsen-extractable phosphorus (P) by addition of organic amendments and lime. This study indicated the potential of using coconut husk along with poultry manure for managing acidic soils in low-input agricultural systems, especially in tropical islands.  相似文献   

17.
Abstract

A pot experiment was carried out in the greenhouse with two loamy sand Dystric Cambisols derived from schist to investigate the effect of liming and phosphorus (P) application on plant growth and P availability and its assessment by four soil test methods: 0.01M calcium chloride (CaCl2), cation anion exchange membrane (CAEM), Egnér‐Riehm, and Olsen procedures. Soils were first incubated for two weeks with lime at four levels, depending on their content of exchangeable aluminum (Al). Phosphorus was added at two rates (75 and 150 mg P kg‐1) and the incubation proceeded for an additional two‐week period. Sudangrass (Sorghum sudanenses cv. Tama) was then planted and harvested four weeks later. During incubation and plant growth, soils were maintained at 70% of field moisture capacity. Although pH value and soil extractable P in original soils were similar, the results showed a significant difference on the effect of liming and P application. Acidity was the major limitation for DM yield in the soil with the highest amount of exchangeable Al, while P availability was the main constraint in the other soil. Liming above pH (0.01M CaCl2) 5.3–5.5 did not increase DM yield in either soil and showed a negative effect on one soil (9.7 to 6.9 and 10.2 to 7.8 g pot‐1). Phosphorus content and uptake by sudangrass increased with liming, revealing a positive effect of lime on the availability of P to plants. Added P showed a lower efficiency in the soil with highest amounts of Al compounds. Soil tests performed after the execution of the pot experiment showed variable tendencies to predict P availability, according to the nature of the procedures and soils. Soluble‐P in 0.01M CaCl2 increased with the rise of soil pH. Extractable CAEM‐P and Egnér‐Riehm‐P also increased with liming, but reflected the soil depletion caused by plant uptake. Extractable Olsen‐P presented the most inconclusive results, suggesting the limitation of this method for acid soils which have been limed.  相似文献   

18.
Lime and phosphorus (P) applications are common agricultural management practices. Our aim was to quantify the effects of long-term application practices on root growth and abundance of arbuscular mycorrhizal fungi (AMF) under field conditions. We assessed the effects of lime and P fertilizer applications on barley yield, root growth and AMF abundance in 2016. Treatments were no, low, medium and high liming rate corresponding to application of 0, 4, 8 and 12 Mg lime ha−1 every 5–9 years since 1942 combined with no or yearly application of 15.6 kg P ha−1 since 1944. At harvest, grain yield, root intensity (core-break) and AMF abundance at different soil depths were estimated. Root development was monitored during early growth with minirhizotrons in treatments receiving low, medium and high liming rates and P fertilization. A quadratic model relating grain yield to liming rate estimated yields to peak at 6.4 Mg lime ha−1 with yields of 4.2 and 3.2 Mg grain ha−1 with and without P fertilization, respectively. Low and medium liming rates resulted in greater AMF abundance, especially in the no P treatments. During early growth in P-fertilized treatments, 77% and 65% more roots developed in the soil profile when treated with medium and high liming rate, respectively, compared to low liming rate. We conclude that long-term application of lime in soils receiving yearly P fertilization improved conditions for root growth in soil layers below 30 cm, but at the high liming rate, this did not translate into higher yield.  相似文献   

19.
Abstract

Soil tests are used to predict fertilizer and liming needs of legumes being introduced into permanent pastures. However, the routine drying of soil samples may change the soil characteristics so much that recommendations based on test results may be poorly related to actual plant needs in the field.

Test results from four soils, based on dried and moist samples, were related through stepwise multiple regression to percent nodulation and dry weight of white clover (Trifolium repens L. ) seedlings grown on soil cores in the greenhouse. Highly variable test results were obtained for Al, Mn, and P, depending on if a sample was dried or maintained moist. These discrepancies have implications for making P fertilizer and liming recommendations. Test results for other elements also varied widely.

Extractable Mn and P accounted for most of the variation observed in percent nodulation, whether soil samples were dried or not. There was a significant interaction of P, Al, and Mn extracted from dried soils with plant weight. This contrasted with the significant interaction of extractable P, Ca, K, and Mg with plant weight observed when soil samples were not dried before analysis.

Drying soil samples before analysis improved, rather than harmed, the ability of soil tests to predict white clover growtl responses on these soils. However, the soil tests explained only 40 percent of the variation in plant growth.  相似文献   

20.
Liming and phosphorus (P) applications are common practices for improving crop production in acid soils of the tropical as well as temperate regions. Four greenhouse experiments were conducted on an Oxisol (clayey, kaolinitic, isothermic, Typic Haplustox) to evaluate response of liming (0,2, and 4 g/kg) and P application (0, 50, and 175 mg P/kg) in a factorial combination on growth and nutrient uptake by upland rice (Oryza sativa L.), wheat (Triticum aestivum L.), common bean (Phaseolus vulgaris L.), and corn (Zea mays L.). Phosphorus application significantly (P<0.01) increased dry weight of tops of all the four crop species as well as dry weight of roots of wheat and corn. Liming significantly (P<0.01) improved growth of common bean and corn but had significant negative effects on rice growth. Maximum dry weight of tops of rice and wheat was obtained at 175 mg P/kg without lime. Maximum dry weight of tops in common bean was obtained at 4 g lime/kg with 175 mg P/kg of soil. In all the crops, increasing levels of applied P significantly increased nutrient uptake. With some exceptions, increasing levels of lime tend to reduce uptake of P, zinc (Zn), copper (Cu), manganese (Mn), and iron (Fe) and increase the uptake of calcium (Ca) and magnesium (Mg) in all the crop species. Decrease in potassium (K) uptake, due to high lime, is probably due to antagonistic effects of Ca and Mg and reduced micronutrients uptake is probably due to increased soil pH resulting in decreased availability of these elements to plants. Therefore, in these types of acid soils, one should avoid over liming.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号