共查询到20条相似文献,搜索用时 0 毫秒
1.
Long-term effects of integrated application of organics and chemical fertilizers on transformation of copper (Cu) into various chemical pools and their availability under rice (Oryza sativa L.)–wheat (Triticum aestivum L.) cropping system were investigated in the ongoing long-term fertilizer experiment initiated in 1991 kharif season (May–October) at the research farm of Chaudhary Sarwan Kumar Himachal Pradesh Agricultural University on an acidic soil in the Western Himalayas of India. The continuous use of chemical fertilizers alone for 20 years brought about marked depletion in all forms of copper except organically bound Cu (Cu-PYR) compared to buffer plots. Integrated use of organics and chemical fertilizers gave higher content of Cu forms over chemically treated plots except Cu occluded by free oxides (Cu-OX). Residual Cu was the most dominant form of copper contributing about 67% of the total Cu. Soil solution and exchangeable Cu (Cu-CA) was the most important fraction of copper contributing toward DTPA (diethylene triamine pentaacetic acid) extractable Cu. Content of DTPA extractable Cu increased over control when chemical fertilizers were applied in conjunction with different organics, whereas DTPA Cu content declined over control with application of chemical fertilizers alone for the last 20 years. 相似文献
2.
《Communications in Soil Science and Plant Analysis》2012,43(13):1538-1550
Soil and plant samples were collected from an ongoing long-term experiment (LTE) at the Indian Agricultural Research Institute farm, New Delhi, to study the distribution of various fractions of iron (Fe) and their contribution to availability and plant uptake in a maize–wheat sequence. The optimum dose-based treatments adopted for the study were nitrogen (N), nitrogen–phosphorus (NP), nitrogen–phosphorus–potassium (NPK), NPK + farmyard manure (FYM), NPK+ zinc (Zn), and control (no fertilizer or manure). Different fractions of Fe in the soil were sequentially extracted using different extractants. Diethylenetriaminepentaacetic acid (DTPA)–extractable Fe did not differ significantly among the treatments as a result of continuous cropping for more than three decades. The overall mean total iron (Fe) content varied from 2.36 to 2.61% under different treatments. Residual Fe constitutes a major portion of total Fe in all four layers of soil. The Fe associated with easily reducible Mn and organic matter contributed directly to DTPA-extractable Fe both in pre-maize and post-wheat soil. Residual Fe contributed directly to uptake Fe by maize and wheat crops. 相似文献
3.
Sanjib Kumar Behera Dhyan Singh B. S. Dwivedi S. Bhadraray 《Journal of plant nutrition》2013,36(7):1092-1107
ABSTRACT Soil and plant samples were collected from on-going long-term experiment at Indian Agricultural Research Institute, New Delhi farm to study the distribution of various forms of copper (Cu) and their contribution to availability and plant uptake in maize (Zea mays L.)—wheat (Triticum aestivum L.) sequence. The optimum dose-based treatments selected for the study were nitrogen-phosphorus-potassium (NPK), NPK + Farmyard manure (FYM), NPK+ zinc (Zn) and control (no fertilizer or manure). Uptake of Cu by maize and wheat varied from 17.0 to 37.5 and 60.8 to 149.3 g ha?1, respectively, under different treatments. Copper uptake by wheat was significantly higher under 100% NPK + FYM than that with 100% NPK. There was no significant difference among the treatments with respect to diethylenetriaminepentaacetic acid (DTPA)-extractable Cu in 0–15, 15–30, 30–45, and 45–60 cm soil layers. However, with increasing depth of soil, it showed declining trend under all the treatments. Mean value of total Cu was 28, 32, 25, and 21 mg kg?1 in 0–15, 15–30, 30–45, and 45–60 cm depths, respectively. Major part of the total Cu was present as residual form. Sorbed copper (SORB–Cu) contributed directly towards its availability both in pre-sowing maize and post-harvest wheat soil samples. SORB–Cu and organic matter bound Cu (OM–Cu) contributed directly towards the uptake by the component crops. Copper associated with easily reducible manganese, carbonate, and iron and aluminum oxides were most recalcitrant forms present in soil and their effects on availability and crop uptake were adverse. 相似文献
4.
《Communications in Soil Science and Plant Analysis》2012,43(15):2253-2270
Long-term effects of chemical fertilizers and amendments on sulfur (S) sorption under a maize–wheat system were investigated in a randomized block design with 11 treatments replicated three times, during winter (2007–2008) and summer (2008) seasons, in an ongoing long-term fertilizer experiment at the farm of College of Agriculture, CSK Himachal Pradesh Agricultural University, Palampur, India. Soils of the experimental site were acidic and classified taxonomically as Typic Hapludalfs. Soil samples taken from the surface (0–0.15m) after harvest of wheat (winter 2007–2008) and were analyzed for sorption behavior of S. Maximum sulfate adsorption was in 100% nitrogen (N)–phosphorus (P)–potassium (K) without S treatment and was attributed to continuous cropping without S application, leading to a deterioration of soil S fertility. Increases in the rate of long-term S fertilization caused a considerable reduction in the sulfate adsorption. Application of farmyard manure (FYM) as an amendment also reduced sulfate adsorption as compared to other inorganically fertilized plots. With the increase in the desorption of S in soil, the S concentration in soil solution increased. 相似文献
5.
《Communications in Soil Science and Plant Analysis》2012,43(13):1961-1975
We assessed the cyanobacterial inoculation, green manure (GM) application, and chemical nitrogen (N) fertilization on grain/straw yield, nutrient balance, and nitrogenase activity under individual and integrated nutrient management mode in a rice–wheat cropping sequence. Individual and integrated application of cyanobacterial biofertilizer (CB) and GM with chemical fertilizer improved the soil health and production of rice crop. Integration of cyanobacterial and green manure resulted in a savings of 50 kg N ha?1. Functional relationships (R2, –83.5 to 95.7%) between the different sources of nutrients revealed that the maximum positive contribution of cyanobacteria was on final available N (45.2%) and available phosphorus (P, 18.5%). Green manure had the greatest contribution to total N, total P, zinc, iron, and manganese (Mn). However, cyanobacteria had a negative relationship with Mn and sodium (Na, –30.19%). A negative relationship with Na indicates the possibility of using cyanobacteria as an ameliorating agent for salt-affected soil. 相似文献
6.
《Communications in Soil Science and Plant Analysis》2012,43(7):912-924
A field experiment was conducted for 3 years during 2006–2009 in India to study the effects of plant nutrient recycling through crop residue management, green manuring, and fertility levels on yield attributes, crop productivity, nutrient uptake, and biofertility indicators of soil health in a rice–wheat cropping system. The study revealed that soil microbial biomass carbon (SMBC) and carbon dioxide (CO2) evolution were significantly greatest under crop residue incorporation (CRI) + Sesbania green manuring (SGM) treatment and were found at levels of 364 μg g?1 soil and 1.75 μg g?1 soil h?1, respectively; these were increased significantly by recycling of organic residues. Activities of dehydrogenase and phosphatase enzymes increased significantly after 3 years, with maximum activity under CRI + SGM treatment. The CRI with or without SGM significantly influenced the plant height, number of tillers m?2, number of grains panicle?1 or ear?1, and 1000-grain weight. Mean yield data of rice and wheat revealed that CRI or crop residue burning (CRB) resulted in slightly greater yield over crop residue removal (CRR) treatment. The CRI + SGM treatment again observed significantly greatest grain yields of 7.54 and 5.84 t ha?1 and straw yields of 8.42 and 6.36 t ha?1 in rice and wheat, respectively, over other crop residue management treatments. Total nitrogen (N), phosphorus (P) and potassium (K) uptake in rice–wheat system was greatest with amounts of 206.7, 37.2, and 205.6 kg ha?1, respectively, in CRI + SGM treatment. Fertility levels significantly influenced the rice and wheat yield with greatest grain yields of 6.66 and 5.68 t ha?1 and straw yields of 7.94 and 5.89 t ha?1 in rice and wheat, respectively, with the application of 150% of recommended NPK. Total NPK uptake in rice–wheat system also increased significantly with increase in fertility levels with greatest magnitude by supplying 150% of recommended NPK. Overall, nutrient recycling through incorporation of crop residues and Sesbania green manuring along with inorganics greatly improved the crop productivity, nutrient uptake, and biofertility indicators of soil health with substantial influence on SMBC, CO2 evolution, and dehydrogenase and phosphatase enzyme activities. This indicates that crop residue management along with Sesbania green manuring practice could be a better option for nutrient recycling to sustain the crop productivity and soil health in intensive rice–wheat cropping system in India as well as in similar global agroecological situations, especially in China, Pakistan, and Bangladesh. 相似文献
7.
《Communications in Soil Science and Plant Analysis》2012,43(7-8):1154-1167
Abstract Rice–wheat cropping system covers about 24 million hectares in China, India, Pakistan, Nepal, and Bangladesh, and zinc deficiency is widespread in rice–wheat belts of all these five countries. The current practice of applying zinc sulfate heptahydrate (ZnSO4 · 7H2O) to soil is problematic because of the poor quality of the nutrients available in the market to the farmers. Zinc (Zn)–coated urea is therefore being manufactured to guarantee a good‐quality Zn source. This article reports the results from a field study conducted to study the relative efficiency of zinc sulfate and zinc oxide (ZnO)–coated ureas in rice–wheat cropping system. The highest grain yield of rice–wheat cropping system was obtained with 2.0% coating of urea. Zinc sulfate was also a better coating material than ZnO. Partial factor productivity, agronomic efficiency, apparent recovery, and physiological efficiency of applied Zn decreased as the level of Zn coating was increased. 相似文献
8.
Ravi Chandra Sharma Pabitra Banik 《Communications in Soil Science and Plant Analysis》2016,47(1):1-10
Organic matter is essential to enhance the soil quality and sustainability of an agroecosystem and ecological services. Thus a 2-year (2007–2009) study was carried out at Agriculture Experiment Farm, Giridih, India. Baby corn (Zea mays L.) yielded maximum cobs (0.84 Mg/ha) and green fodder (17.65 Mg/ha) yield when grown with inorganic fertilizers alone (F1, nitrogen, phosphorus pentoxide, potassium oxide (N:P2O5:K2O):: 150:60:60 kg/ha). Rice (Oryza sativa L.) produced most grain (3.10 Mg/ha) and straw (4.16 Mg/ha) yield when the preceding crop received nutrients in equal proportion of organic and inorganic (50:50) sources (F4 and F5). System productivity in terms of baby corn equivalent yield (1.08 Mg/ha) was greatest when nutrients were applied in 30:70 ratio (F2 and F3). Baby corn grown with F1 took up the maximum nitrogen (N), phosphorus (P), and potassium (K). Remarkable improvement was noticed in microbial activity (microbial population, soil respiration, microbial biomass carbon), soil enzymes (urease and acid phosphatase), and soil fertility parameters [NPK, organic carbon, and cation exchange capacity] with F4 and F5 treatments as compared to others. Integrated nutrient-management practices improved soil health. Almost all the parameters were nonsignificantly greater in vermicompost than that of farmyard manure. 相似文献
9.
《Communications in Soil Science and Plant Analysis》2012,43(13):2032-2041
A field experiment was conducted in a phosphorus (P)–deficient acidic alfisol of the northwestern Himalayas using three vesicular arbuscular mycorrhizal (VAM) cultures: a local culture developed by CSK Himachal Pradesh Agricultural University, Palampur (Glomus mosseae), VAM culture from Indian Agricultural Research Institute (IARI), New Delhi (Glomus mosseae), and a culture from the Centre for Mycorrhizal Research, The Energy Research Institute (TERI), New Delhi (Glomus intraradices). These were applied alone or in combination with 25 to 75% of recommended P2O5 and recommended nitrogen (N) and potassium (K) based on soil-test crop response (STCR) precision model with an absolute control, farmers’ practice, and 100% of recommended P2O5 dose based on the STCR model. The results revealed that sole application of either of the three VAM cultures have produced 2.68 to 9.81% and 25.06 to 28.62% greater grain yield than the control in soybean and wheat crops, respectively. Besides greater straw yield, NPK uptake as well as soil nutrient buildup increased. Increase in P fertilization from 25 to 75% of recommended P2O5 dose coupled with VAM inoculation with either of the three VAM cultures resulted in consistent and significant improvement in crop productivity (grain and straw yields), NPK uptake, and improved soil nutrient status, though significantly greatest magnitude was obtained with sole application of 100% of the recommended P2O5 dose. The targeted grain yields of soybean (25 q ha?1) and wheat (30 q ha?1) were achievable with 75% of recommended P2O5 dose along with mycorrhizal biofertilizers, thereby indicating that application of efficient VAM fungi with 75% of recommended P2O5 dose can economize the STCR precision model fertilizer P dose by about 25% without impairing crop yield targets or soil fertility in a soybean-based cropping system in an acidic alfisol. 相似文献
10.
《Communications in Soil Science and Plant Analysis》2012,43(16):1943-1954
ABSTRACTThere is a need to improve the way in which crop residues and industrial organic wastes are managed and also to study their potential use in agriculture for improving soil fertility and biological activity. This study evaluated the effects of integrated use of organic (sewage sludge (SS) and rice straw compost (RSC)) and inorganic fertilizers on crop yield, soil enzymes activity, macro- and micro-nutrients availability under rice–wheat cropping system after three consecutive years of cropping in a subtropical semi-arid area. Different combinations of inorganic nitrogen and two doses of organic sources (SS and RSC) were applied to the soil. The results revealed that substitution with 50% N through RSC significantly increased the yield and biochemical properties as compared to inorganic fertilizers (NPK) alone. Micronutrients availability was found increased in treatment having substitution of 50% N through SS @10 t ha?1. All the enzymatic activities viz. dehydrogenase, fluorescein diacetate (FDA), phosphatase, phytase, and urease) were found to be maximum by substitution of 50% N through RSC. Also, a significant positive correlation was found between soil enzymes (dehydrogenase and FDA) and organic carbon as well as crop yield. Thus, the study demonstrated that substitution of 50% inorganic nitrogen through organic sources will be a better alternative for improving soil quality and productivity. 相似文献
11.
《Communications in Soil Science and Plant Analysis》2012,43(10):1385-1398
Rice husk ash (RHA) and bagasse ash (BA) are available in large quantities in South Asian countries growing rice and sugarcane. Land application of RHA and BA is likely to influence chemistry of soil phosphorus (P) and thereby P adsorption and desorption. Laboratory studies were carried out to investigate the short-term and long-term effects of RHA and BA application on P adsorption and desorption in an alkaline soil under a wheat–rice system. Addition of RHA or BA (10 Mg ha?1) resulted in a significant decrease in P adsorption compared to the control. The decrease in P adsorption was lower when RHA and BA were applied to either rice or wheat as compared with when applied to both the crops. The BA was more effective in reducing P adsorption than RHA because of its greater P concentration. Fresh addition of RHA and BA at 1% (dry-weight basis) showed a small effect on P adsorption as compared to their long-term application. The Frendulich isotherm equation gave better fit with the experimental data than the Langmuir equation and is reliable to describe the P quantity/intensity relationships of this soil as affected by the additions of RHA and BA. The P-adsorption capacities (revealed from the Langmuir isotherms) of the unamended control, RHA, and BA (applied to both wheat and rice) were 256, 313, and 385 mg kg?1, respectively; the corresponding bonding energies for the three treatments are 0.0085, 0.0041, and 0.0026 L kg?1, respectively. Desorption of P was minimum in the control plots and maximum with BA followed by RHA, especially when applied to both the crops. 相似文献
12.
《Communications in Soil Science and Plant Analysis》2012,43(18):2187-2200
A five-year (2001/02–2006/07) field experiment was carried out on acidic clay loam soil classified as Typic Hapludalf with a maize–mustard crop sequence to study the effect of continuous application of nitrogen, phosphorus, and potassium (NPK) fertilizers alone and in combination with lime, farmyard manure (FYM), and biofertilizers on soil physical properties, soil organic carbon (SOC), soil microbial biomass carbon (SMBC), and crop yields on the hilly ecosystem of Meghalaya. Significant improvement in the soil physical conditions of the soil was observed under integrated application of organic manure and inorganic fertilizers. Addition of NPK fertilizers along with organic manure, lime, and biofertilizers increased soil organic carbon (SOC) content, aggregate stability, moisture-retention capacity, and infiltration rate of the soil while reducing bulk density. The SOC content under the treatment of 100% NPK + lime + biofertilizer + FYM was significantly greater (68.58%) than in control plots. Maize and mustard crop yields also significantly increased (4.73- and 21.09-folds, respectively) with continuous application of balanced inorganic (100% NPK) + lime + biofertilizer + FYM as compared to the control plots. However, crop yields drastically reduced under application of integrated nutrients without FYM as compared to the treatment with FYM application. Thus, the results suggest that integrated use of a balanced inorganic fertilizer in combination with lime and organic manure sustains a soil physical environment that is better for achieving higher crop productivity under intensive cropping systems in the hilly ecosystem of northeastern India. 相似文献
13.
《Communications in Soil Science and Plant Analysis》2012,43(22):2836-2847
ABSTRACTSoil fertility and water use are two important aspects that influence rice productivity. This study was conducted to evaluate the performance of in-situ (sesbania and rice bean) and ex-situ (subabul) green manuring along with zinc fertilization on water productivity and soil fertility in rice under rice–wheat cropping system at Indian Agricultural Research Institute, New Delhi, India. Sesbania incorporation recorded higher total water productivity (2.20 and 3.24 kg ha?1 mm?1), available soil nutrients, organic carbon, alkaline phosphatase activity, microbial biomass carbon and increased soil dehydrogenase activity by 39.6 and 26.8% over subabul and rice bean respectively. Among interaction of green manures and zinc fertilization, subabul × foliar application of chelated zinc-ethylenediaminetetraacetic acid at 20, 40, 60 and 80 days after transplanting recorded highest total water productivity (2.56 and 3.79 kg ha?1 mm?1). Foliar application of chelated Zn-EDTA at 20, 40, 60 and 80 days after transplanting recorded significantly higher water productivity than other Zn treatments, however it was statistically similar with foliar application of zinc at active tillering + flowering + grain filling. Sesbania × 5 kg Zn ha?1 through chelated Zn-EDTA, recorded highest available nitrogen, phosphorus, potassium, zinc, manganese, copper and iron than other green manure and Zn fertilization interactions, although it was statistically similar with rice bean × 5 kg Zn ha?1 through chelated Zn-EDTA as soil application. Sesbania × foliar application of 5 kg Zn ha?1 through chelated Zn-EDTA as soil application recorded highest soil enzymatic activities and microbial biomass carbon. 相似文献
14.
《Communications in Soil Science and Plant Analysis》2012,43(13):1636-1658
The research aimed to study the effect of presown application of primary biomethanated spentwash (PBSW) on soil properties, nutrient availability, uptake and yield of soybean–wheat sequence on Inceptisol. The field experiment with randomised block design was initiated during 2007–8 and present observation was recorded during 2009–10 and 2010–11.The five treatments were, recommended dose (RD) of NPK (T1), 100% RD of N through PBSW without (T2) and with P chemical fertilizer (T3), 50 and 25% RD of N through PBSW + remaining N and P through chemical fertilizers (T4,T5), respectively. The results revealed that the soil physical properties and microbial populations were improved in T2 and T3. The lowest soil pH and pHs were observed in T2. The soil electrical conductivity, organic carbon, exchangeable sodium percentage and sodium adsorption ratio of soil extracts and available K were increased with the increase in PBSW as compared to RD-NPK. The soil available N and P were decreased as PBSW increased at all the soil depths. The greatest yields and total N,P,K uptake of soybean and wheat were observed in T5. 相似文献
15.
Gourav N. K. Sankhyan R. P. Sharma G. D. Sharma 《Communications in Soil Science and Plant Analysis》2018,49(8):923-933
Vertical distribution of sulfur fractions was studied in a long-term fertilizer experiment at the experimental farm of Department of Soil Science, Himachal Pradesh Agricultural University, Palampur (India), comprising various combinations of fertilizer and amendments. Initially, available nitrogen (N) was high, and phosphorus (P), potassium (K), organic carbon were optimum. Different forms, viz., available, water-soluble, heat-soluble, organic, and total sulfur were significantly affected by continuous cropping and decreased with depth. However at surface layer, 100% NPK(-S) resulted in 67%, 70%, 34%, 47%, and 48% reduction in these fractions, respectively, as compared to 100% NPK. Among all, organic sulfur was recorded highest. Hundred percent NPK + farmyard manure (at par with 100% NPK + lime) recorded highest maize and wheat yield. Hundred percent NPK(-S) recorded 39% and 44% reduction in grain yield of maize and wheat as compared to 100% NPK, respectively. Sulfur fractions were positively and significantly correlated with yield of maize?–wheat which shows the importance of sulfur fertilization. 相似文献
16.
《Communications in Soil Science and Plant Analysis》2012,43(15):2288-2298
Net nitrogen (N) balance after rice (Oryza sativa L.) and its relationship with yield and N uptake of succeeding wheat crop was studied in a greenhouse. Three urea-enriched green manures, namely dhaincha (Sesbania aculeata L.), cowpea (Vigna unguiculata L.), and guar (Cyamopsis tetragonoloba L.) were compared with split application of urea in a rice–wheat cropping sequence. After rice, a negative N balance was measured in all treatments; however, the N balance values were greater with urea than with green manures. The N balance was positively correlated with the N content but negatively correlated with lignin content and carbon (C)–N ratio of the green manures. Lignin content was a better index than C/N ratio for predicting the net N balance, which described 82.3% of the total variations. Efficiency of residual N utilization by wheat could be determined by estimating the N balance after rice. Net N balance after rice can be used as a yardstick for the prediction of yield and N uptake by wheat crop. 相似文献
17.
《Communications in Soil Science and Plant Analysis》2012,43(2):189-203
Agricultural practices influence the community structure and functional diversity of soil microorganisms. In the present study, the impact of nutrient-management systems on the changes in the biological properties of Indian semi-arid Alfisol was assessed. The long-term organically managed (OGF) and inorganically fertilized (IGF) soils from century-old experimental plots were compared for eubacterial diversity using amplicon length heterogeneity PCR (LH-PCR) targeting three hypervariable domains (V1, V1_V2, and V3) of 16S rRNA gene. Of these domains, V1_V2 could discriminate the bacterial communities between the soil types. The relative ratios of amplicons differed between OGF and ICF soils, and eubacterial diversity was decreased substantially because of the inorganic chemical fertilizers, as compared to organic amendments. The Bray–Curtis similarity index and diversity indices of amplicons were greater in OGF soil than in ICF soil. This polyphasic approach revealed that the diversity and functionality of the soil eubacterial community were encouraged by long-term organic manures more than inorganic chemical fertilizers. 相似文献
18.
《Communications in Soil Science and Plant Analysis》2012,43(7-8):961-976
Abstract Quantitative assessment of soil nitrogen (N) that will become available is important for determining fertilizer needs of crops. Nitrogen‐supplying capacity of soil to rice and wheat was quantified by establishing zero‐N plots at on‐farm locations to which all nutrients except N were adequately supplied. Nitrogen uptake in zero‐N plots ranged from 41.4 to 110.3 kg N ha?1 for rice and 33.7 to 123.4 kg N ha?1 for wheat. Availability of soil N was also studied using oxidative, hydrolytic, and autoclaving indices, salt‐extraction indices, light‐absorption indices, and aerobic and anaerobic incubation indices. These were correlated with yield and N uptake by rice and wheat in zero‐N plots. Nitrogen extracted by alkaline KMnO4 and phosphate borate buffer and nitrogen mineralized under aerobic incubation were satisfactory indices of soil N supply. For rice, 2 M KCl and alkaline KMnO4 were the best N‐availability indices. Thus, alkaline KMnO4 should prove a quick and reliable indicator of indigenous soil N supply in soils under a rice–wheat cropping system. 相似文献
19.
《Communications in Soil Science and Plant Analysis》2012,43(3-4):450-460
Abstract Availability of lead (Pb) and cadmium (Cd) in farmland soils and its distribution in individual plants of dry‐seeded rice were investigated utilizing graphite furnace atomic absorption spectrometry (GFAAS) with a matrix modification technique. Five extractants were compared, and the operating conditions for GFAAS were optimized. The detection limits were 4.2 ng for Pb with the precision of 1.54% and 0.1 ng for Cd with the precision of 2.38%. The contents of the extractable Pb and Cd in soils were determined with the five extractants, and availability of Pb and Cd in farmland soil was discussed. The contents of Pb and Cd in different parts of dry‐seeded rice were lower than those in dry‐seeded rice soil. The contents of Pb and Cd in rice were lower than in other parts. The end top leaves accumulated the highest amounts of Pb and Cd. 相似文献
20.
《Communications in Soil Science and Plant Analysis》2012,43(7-8):1127-1137
Abstract Soil organic matter (SOM) is an important indicator for soil quality and sustainable agriculture, and agricultural practices may strongly affect SOM content and chemistry. Thus, a long‐term experiment was conducted in northeast China to study the effect of chemical fertilizers and recycled organic manure on the contents of SOM along its fractions of black soil (0–20‐cm depth). Eight treatments were used: 1) control, 2) recycled organic manure (ROM), 3) nitrogen (N) alone, 4) N+ROM, 5) N+phosphorous (P), 6) N+P+ROM, 7) N+P+potassium (K), and 8) N+P+K+ROM. The results showed that from 1985 to 2002; soil total organic carbon (TOC) decreased by 6.5% over the 18 years in control (33.25 g/kg in 1985), 5.6% in ROM treatment, and 5.1% in N‐alone treatment, and 1.5% in the N+P treatment but increased by 0.3% in the N+P+K treatment. In the three treatments of chemical fertilizers together with ROM (i.e., N+ROM, N+P+ROM, and N+P+K+ROM), soil TOC content in 2002 increased by 0.3%, 1.3%, and 2.8%, respectively, when compared with control in 1985. Compared with control in 2002, light fraction organic carbon (LFOC) content increased by 23% in N+ROM treatment, 24% in N+P+ROM, and 28% in N+P+K+ROM, and readily oxidized carbon (ROC) content increased by 24% 31%, and 39%, respectively, in these three treatments. The ROC was well correlated with soil TOC. Compared with the data from 18 years ago, in all eight treatments organic carbon of soil in the humic acid fraction decreased by 5.0–13% and in fulvic acid decreased by 1.4–14%; however, with chemical fertilizers and ROM applied together, the rate of decrease was reduced. Overall, ROM is effective for increasing the content of soil TOC and thus, its different active carbon fractions in black soil would help to maintain or increase soil productivity. 相似文献