首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract

Soil color is a soil property that may be used as an interpreting index in estimating processes and properties. Quantifying color allows one to obtain information for rapidly estimating the related processes in soils. CIELAB color parameters L*, a*, and b* of ground (air‐dried and sieved) soil samples and aggregate surfaces of four soil profiles formed in calcareous colluviums in northern Turkey were analyzed. Values of color parameters measured in ground and intact soils were compared and related to soil properties by the regression technique. Results revealed that the L* value obtained with a ground soil sample was a significant predictor of organic matter in A horizons (p < 0.001). Although calcic horizons yielded the highest L* values, no significant relationship was obtained between calcium carbonate contents and lightness of soils in any of horizons studied. The parameters of b* could adequately be used to quantify dithionite‐extractable iron oxide contents in soils studied. The results further showed that the CIELAB color parameters obtained with ground samples were more informative than that of aggrevated samples in relating color parameters to soil properties.  相似文献   

2.
Feeding the world’s population in 40 years will require improved efficiency in the use of plant nutrients and enhancement of soil resources. Over the past 60 years, agricultural production has rapidly increased; however, continued degradation of soil may limit further increases. Improving the soil through enhanced soil biological activity has been proposed as a method of increasing the capacity of the soil to produce crops. Ongoing evaluations of one soil biological fertilizer with a patented process to convert and complex manure into stable finished products (AgroBiotic fertilizers) have been conducted in research plots and producer fields and have shown positive effects on grain yield and potato production. These effects are larger in soils with limited biological activity, suggesting that adding this unique AgroBiotic fertilizer helps restore the biological nutrient cycling in the soil. New developments and innovations that improve nutrient availability and the efficacy of soil biological fertilizers have the potential to help restore degraded soils and improve their production efficiency and capacity to feed the world’s population.  相似文献   

3.
CHEN ZHI-XIONG 《土壤圈》1992,2(2):115-124
A 5-year experiment on water balance has been conducted in a flat rainfed wheat field with an area of 66×100m2 in Fengqiu, Henan Province in China. Based on the analysis of semi-variance functions conducted with soil moisture samples taken from 77 nodes of a 10×10m2 grid, the soil moisture distribution in the field was structural with a temporal stability. According to the autocorrelation range of the semi-variance function, S sites were selected for the determination of soil water conditions. The characteristic of probability density function of the differences of water storage in two sets of measurements showed that the distribution of these variables in the field was a normal one. The error in the estimation of the average of S random samples was 14% (α=0.10), and the errors of water consumption by wheat during the experiments were estimated to be 6-13%.Since the experimental field was large enough to avoid any edge effect, the results obtained should tally with the actual situation.  相似文献   

4.
Abstract

The nitrate distribution in the soil profile varies with fertilization and tillage practices in potato (Solanum tuberosum L.) production. Band‐applied fertilizers localized near the seed at planting must diffuse through the bulk soil during the growing season. The hilling operation transforms soil surface into an undulating field landscape and redistributes the split‐applied nitrogen fertilizers between the hill and the interrow. The soil sampling procedure during the growing season thus becomes extremely tedious when searching to quantify nitrate accumulation in the entire soil volume. The objective of this study was to assess seasonal nitrate accumulation in a soil volume from a single boring in the potato hill. An intensive sampling was conducted at four places in the 0‐ to 50‐cm profile in potato fields receiving three rates of split-applied nitrogen (N) before hilling. Treatment and time effects provided a large range of nitrate concentrations throughout the soil profile. Nitrate content increased with N fertilization and organic‐matter mineralization and decreased as a result of plant uptake and nitrate leaching. Averaged across the season, nitrate accumulation in the 0‐ to 50‐cm profile represented 78% of that accumulated in the center of the hill on a per ha basis (r2=0.90). A single boring in the center of the hill considerably reduced sampling time and cost and provided a fair estimate of seasonal nitrate accumulation in the 0‐ to 50‐cm soil profile.  相似文献   

5.
A reliable soil test is needed for estimating mercury (Hg) availability to crop plants. In this study, four extraction procedures including 0.1 M hydrochloric acid (HCl), 1 M ammonium acetate (NH4OAc) (pH 7.0), 0.005 M diethylenetriaminepentaacetic acid (DTPA), and 0.1 M calcium chloride (CaCl2) (pH5.0) were compared for their adequacy in predicting soil Hg availability to crop plants of a rice–cabbage–radish rotation system. The amounts of Hg extracted by each of the four procedures increased with increasing equilibrium time. The optimal time required for extraction of soil Hg was approximately 30 min, though it varied slightly among the four extractants. The amounts of Hg extracted decreased with increasing soil/solution ratio, and a soil/solution ratio of 1:5 appeared to be adequate for soil Hg availability tests. The amounts of Hg extracted increased in the order of NH4OAc < CaCl2 < DTPA < HCl in silty loam soil (SLS) soil, and the order was NH4OAc < CaCl2 ≈ DTPA < HCl in yellowish red soil (YRS) soil. Significant positive correlations among the four extractants were obtained in SLS soil. In contrast, the correlations were poor in YRS soil, especially for HCl. There were significant correlations between concentrations of Hg in edible tissue of three plants and the amounts of soil Hg extractable to the four extractants for soil–rice system and soil–radish system, but not for soil–Chinese cabbage system. The 0.1M HCl extraction overall provided the best estimation of soil‐available Hg and could be used to predict phytoavailability of Hg in soil–crop systems.  相似文献   

6.
Abstract

The actual content of the soil organic carbon (SOC) has to be periodically measured for soil classification and nutrient management purposes. Traditional SOC tests are relatively time consuming and costly. A rapid field test would be valuable to delineate soil map units with similar SOC to simplify the process of land evaluation while increasing precision. The objectives of this study were to develop and evaluate a new field measurement technique for the quick assessment of SOC. The new method measures the emitted CO2 concentration 3 min after treatment of the soil sample with acidic potassium (K) permanganate solution. The inorganic carbonate content of the soil is measured separately with the addition of sulphuric acid only. Carbon dioxide concentration from both procedures is measured with a portable infrared gas analyzer. The difference between the concentrations measured after the two separate reactions provide an estimate of SOC. Samples from brown forest soils (ca Hapludalf) (0.19–5.53% SOC) were used for the method development. The correlation coefficient between the SOC determined by the new method and laboratory wet combustion method content was 0.76 for the full range of SOC and 0.81 for the soil samples with less than 20% carbonate.  相似文献   

7.
Recurrent monitoring of water wells is necessary to ensure that nitrate‐nitrogen (NO3‐N) concentrations in groundwater do not exceed 10 mg/L, the maximum contaminant level set by the U.S. Environmental Protection Agency. Continuous chemical analysis is often a time consuming and expensive process. A recently developed ‘Reflectoquant Analysis System’, which employs reflectometry techniques, may offer a simple and accurate method for NO3‐N analysis. The objective of this study was to evaluate the ‘Reflectoquant Analysis System’ as an alternative method for determination of NO3‐N in well water. Water samples were collected from 42 wells in Oklahoma. The samples were analyzed using the ‘Reflectoquant Analysis System’, automated cadmium reduction (Griess‐Ilosvay), ion chromatography, and phenoldisulfonic acid procedures. The linear range of the ‘Reflectoquant Analysis System’ is 1.1 to 50.6 mg/L NO3‐N. Samples exceeding this range must be diluted before analysis is performed. Excluding two wells where NO3‐N was >50.6 mg/L, simple correlation was high (r > 0.91) among the four procedures evaluated. In addition, slopes and intercepts from linear regression of NO3‐N among procedures were not significantly different. Population means obtained using the four methods were very similar. For this sample of wells, the ‘Reflectoquant Analysis System’ was precise and provided NO3‐N analysis of water samples equivalent to standard methods. Other advantages of the ‘Reflectoquant Analysis System’ are short analytical times, reduced operator training period, and competitive costs compared to standard methods.  相似文献   

8.
Abstract

Spatial variability of soil nutrients is known to exist at distances of less than 1 m. Recently, an on‐the‐go system for application of nitrogen (N) fertilizer based on spectral measurements known as in‐season estimated yield (INSEY) improved N use efficiency (NUE) by as much as 17% in winter wheat. Six trials were conducted in 2001, 2002, and 2003 at Ardmore and Burneyville, OK, with an objective to develop an index similar to INSEY for use in predicting yield potential in bermudagrass (Cynodon dactylon L.) that can be used for adjusting fertilizer N rates. Initial results indicate that 55% of variation in predicted bermudagrass forage yield was explained by a Bermudagrass–INSEY (B‐INSEY) index and 54% of the variation in forage N uptake was explained using the normalized difference vegetative index (NDVI). The remaining challenge is to develop appropriate N fertilizer rates based on this information and apply these rates using on‐the‐go technology.  相似文献   

9.
Abstract

Calcareous soils vary considerably in their characteristics which need to be considered in soil test interpretation. Yield data from 22 corn and 13 wheat field experiments were used to relate yield response, expressed in relative terms (Y%), to phosphorus (P), potassium (K), and zinc (Zn) soil test results based on NaHCO3, NH4OAc, and DTPA extraction procedures, respectively. The experiments were conducted for three years on newly reclaimed desert soils in Egypt. Relative infuence of different soil components was evaluated as modifiers of the critical levels (CL) based on 95% of maximum yield. The CL values obtained for corn were close to those for wheat. Therefore, results presented here were based on the combined data of the 35 corn plus wheat experiments. With Olsen P, a backward elimination regression procedure indicated that the variance in Y% that was accounted for increased in significance from 21 to 52% by including the CaCO3 content of the soil. The CL increased from 9 to 17 mg P/kg as CaCO3 increased from 1 to 30%. Coarser textured soils had lower CLs for K than finer textured ones. The critical exchangeable K levels were 200 and 500 mg K/kg for soils having more than 85% and 85 to 45% sand, respectively. With an increase in organic matter content, the response to applied Zn was observed at higher levels of extracted Zn. The DTPA‐critical levels for Zn were found to be 0.5 and 0.8 mg Zn/kg for soils containing less than 1% and 1.7% organic matter, respectively.  相似文献   

10.
Seventeen Mollisols having pH(1:2) in the range of 6.00 to 8.42 were analyzed with five extractants, and the extractable zinc (Zn) ranges were 0.84 to 2.75 mg Zn kg?1 soil for diethylenetriaminepentaacetic acid (DTPA) (pH 7.3), 0.91 to 2.72 mg Zn kg?1 soil for DTPA + ammonium bicarbonate (pH 7.6), 1.82 to 7.18 mg Zn kg?1 soil for Mehlich 3, 1.22 to 3.83 mg Zn kg?1 soil for ethylenediaminetetraacetic acid (EDTA) + ammonium carbonate, and 0.88 to 1.18 mg Zn kg?1 soil for 1 mol L?1 magnesium chloride (MgCl2) (pH 6.0). Zinc extracted by DTPA (pH 7.3) and Mehlich 3 showed significant positive correlation with sand content, whereas only Mehlich 3 showed negative correlation with soil pH. All extractants showed significant positive correlation with each other except for 1 mol L?1 MgCl2‐extractable Zn, which had significant positive correlation with only Mehlich 3– and EDTA + ammonium carbonate–extractable Zn. A greenhouse experiment showed that Bray's percentage yield of rice was poorly correlated to extractable soil Zn but had a significant and negative linear correlation with soil pH (r = ?0.662, significant at p = 0.01). Total Zn uptake by rice had a significant positive correlation with 1 mol L?1 MgCl2– and Mehlich 3–extractable Zn. A proposed parameter (p extractable Zn + p OH?) involving both soil extractable Zn and pH terms together showed significant and positive correlation with Bray's percentage yield and total Zn uptake of rice. The calculated values of critical limits of soil Zn in terms of the proposed parameter were 14.1699 for DTPA (pH 7.3), 13.9587 for DTPA + ammonium bicarbonate, 13.7016 for Mehlich 3, 13.9402 for EDTA + ammonium carbonate, and 14.1810 for 1 mol L?1 MgCl2 (pH 6.0). The critical limits of Zn in rice grain and straw were 17.32 and 22.95 mg Zn kg?1 plant tissue, respectively.  相似文献   

11.
12.
Abstract

Few soil test and plant tissue calibration data exist for cucumbers (Cucumis sativus L.). Two years of a singly‐replicated cucumber fertility study were conducted to develop soil and plant data for calibration purposes employing the Boundary Line Approach. Fertility treatments consisting of 4 K levels (as KC1), 3 Mg levels (as MgCl2), 3 pH levels (as Calcitic limestone), and 4 N rates (as urea ammonium nitrate) were factorilly arranged and completely randomized to give 108 treatments in both 1987 and 1988. Analyses were performed upon leaf samples for N, P, K, Ca and Mg at early bloom and soil samples for Mehlich (M) 1‐ and 3‐ P, K, Ca and Mg, and pH. Cucumber yields were determined on early (two fruit pickings) and total (four fruit pickings) sampling periods. High‐yielding cucumbers were attained at soil K (Ml = 64 mg/kg) and Mg (Ml = 29 mg/kg) levels lower than currently recommended. No significant differences in correlation coefficients between either Mehlich (Ml, M3) extractant and cucumber leaf P, K, Ca and Mg concentrations were found. Co‐efficients of determination (R2) values for the relationships (in 1987, 1988) between Ml‐ and M3‐extractable P (0.53, 0.40), K (0.77, 0.64), Ca (0.81, 0.71) and Mg (0.89, 0.74) were all highly significant (P ≤ 0.01). No significant differences were noted between early and total high‐yielding cucumber leaf concentrations and ratios developed for use as preliminary sufficiency ranges and DRIS norms, respectively. A reevaluation of cucumber coastal plain soil test calibrations, especially with regard to K, appears necessary. This study provides further support for the conversion of Ml to M3 soil extraction methodology.  相似文献   

13.
Abstract

Development of nitrogen (N)‐use‐efficient genotypes could reduce N fertilization and nitrate leaching; however, screening in field trials can be costly and time consuming. This study evaluated a rapid and economical methodology for screening of potato (Solanum tuberosum L.) cultivars for N‐use efficiency. A hydroponic experiment was conducted with two solution NO3 ? concentrations (0.05 and 1.0 mM) and five potato cultivars (Atlantic, Chieftain, Red Pontiac, Russet Norkotah, and Shepody). Plants were harvested 30 days after transplanting. Root dry weight in combination with plant N accumulation was considered as a good indicator of N uptake efficiency in low solution NO3 ? concentration. Plant total dry weight (TDW) and plant N accumulation (PN) were highly correlated; therefore, TDW can be considered as an alternative criterion for PN when screening for N‐uptake efficiency. Chieftain had high N‐uptake efficiency and high N‐utilization efficiency whereas Russet Norkotah had low N‐uptake efficiency.  相似文献   

14.
Abstract

Nutrient‐release rates of controlled‐release fertilizer (CRF) with four different labeled release periods were evaluated. Samples (30 g) sealed with nylon mesh were buried at a clearcut forest site (Price soil series) in western Oregon, USA, in February 2000 and excavated every 7 weeks for 14 months to determine residual weight and composition. Cool, dry soil conditions apparently prolonged nutrient release beyond labeled rates; the fertilizer with the shortest release period (3–4 months) released approximately 72% of the fertilizer (by weight), whereas that with the longest release period (8–9 months) released 48%. Release varied among individual nutrients [nitrate (NO3)>ammonia (NH3)>potassium (K)>sulfur (S)>magnesium (Mg)>phosphorus (P)]. Minimal changes in micronutrient [iron (Fe), manganese (Mn), zinc (Zn), and molybdenum (Mo)] contents were attributed to the formation of insoluble compounds with P. Variable release among individual nutrients demonstrates a limitation toward delivering a full range of nutrients and suggests that further refinement of CRF technology is needed to optimize nutrient availability under realistic field conditions.  相似文献   

15.
Abstract

A single biosolids application was made to 1.5×2.3 m confined plots of a Davidson clay loam (Rhodic Kandiudult) in 1984 at 0, 42, 84, 126, 168, and 210 Mg ha?1. The highest biosolids application supplied 750 and 600 kg ha?1 of Cu and Zn, respectively. Corn (Zea mays L.), from 1984 to 2000, and radish (Raphanus sativus L.) and romaine lettuce (Lactuca sativa var. longifolia), from 2001 to 2004, were grown at the site to assess heavy‐metal bioavailability. Extractable (0.005 diethylenetriamine (DTPA) and Mehlich 1) Cu and Zn were determined on 0 to 15‐cm depth samples from each plot. Corn yield increased with biosolids rate each year until 1993 to 1997, when yield decreased with biosolids rate because of phytotoxicity induced by low (<5.0) soil pH. The corn yield reduction was reversed between 1998 and 2000 upon raising the soil pH to approximately 6.0 by limestone addition following the 1997 season. Between 2001 and 2004, radish and lettuce yields were either not affected or slightly increased with biosolids rate, even as soil pH declined to below 5.5. Plant‐tissue metal concentrations increased with biosolids rate and as pH declined but were always within the normal range of these crops. Mehlich 1 and DTPA extractable metals increased linearly with biosolids rate. Extractability of Cu and Zn decreased approximately 50% over the past 20 years despite a decrease in soil organic matter concentration and greater than 95% conservation of the metals.  相似文献   

16.
Abstract

An inexpensive modification of the commonly used manual nitrate (NO3)‐nitrogen (N) analysis for soil extracts is described. This procedure uses multiple reductors of copperized cadmium (Cd) wire threaded through Teflon tubing and a peristaltic pump to rapidly pass a low volume of soil extract through the reductors at a constant flow rate. In excess of 150 prepared samples can be processed daily with minimum waste generation. Efficiency of reduction is >98% and precision of analysis (coefficient of variation) for replicate standards of known NO3‐N concentration is excellent, at <0.5% over the concentration range 0.025 to 0.2 μg NO3‐N mL‐1. Column life and storage characteristics are high, at >250 samples per column and one month, respectively. Column activation and regeneration in these wire type reductors are simpler and less tedious than for reductors constructed of copperized Cd granules.  相似文献   

17.
Abstract

Particulate organic matter (POM) is recognized as a valuable measure of labile soil organic matter. The method usually requires hand‐sieving through a 2‐mm sieve. Hand‐sieving has not been widely adopted by soil testing laboratories, where samples are generally mechanically ground. Composites of 20–25 cores (2×15 cm) were collected from a long‐term crop rotation×fertility treatment study in central Pennsylvania and from 11 central and eastern Pennsylvania farms. Subsamples of each sample were hand‐sieved through a 2‐mm sieve or mechanically ground and analyzed for POM carbon (C). The POM‐C of hand‐sieved and ground samples were similar except for one site with large POM concentrations; at this site, grinding generated lower POM‐C yields than hand‐sieving. Grinding soil samples may be an effective means to increase the availability of POM analysis, but additional work is necessary to determine if this method decreases POM yield, particularly in high POM samples.  相似文献   

18.
A dichromate digestion and spectrophotometric procedure is proposed for estimating soil microbial biomass carbon (C) in association with fumigation–extraction. The recommended procedure uses a volume (1.6 ml) of 0.5 M potassium sulfate (K2SO4) soil extracts and oxidant solution (dichromate–sulfuric acid, 2.4 mL), mixed with a volume (4 mL) for digestion at 140 °C for 30 min. The digested solution is then directly read for absorbance at 350 nm using a spectrophotometer, and the C in the digested soil extracts is measured against glucose standards. The KEC (indicating the extractable part of microbial biomass C after fumigation) value is estimated as 0.33 for the proposed method. There are good correlations between soil microbial biomass C measured by the proposed method, the dichromate digestion titration, and oven oxidation by total organic C (TOC) analytical method. This method is a simple, rapid, and economical procedure associated with fumigation–extraction for biomass C analysis.  相似文献   

19.
Abstract

Studies were conducted to evaluate the use of a solid‐state chloride electrode for chloride determinations in soil extracts. The solid‐state chloride ‐electrode was used as an end point detector in the titration of chloride with AgN03 and direct reading of chloride in solution. The solid‐state electrode gave results very similar to those obtained with a silver electrode (r = 0.999) when used as an end point detector. Values obtained using the solid‐state electrode as a direct reading electrode were also well correlated (r = 0.998) but were slightly higher than results obtained by titration with a silver electrode.  相似文献   

20.
The To Lich and Kim Nguu Rivers, laden with untreated waste from industrial sources, serve as sources of water for irrigating vegetable farms. The purposes of this study were to identify the impact of wastewater irrigation on the level of heavy metals in the soils and vegetables and to predict their potential mobility and bioavailability. Soil samples were collected from different distances from the canal. The average concentrations of the heavy metals in the soil were in the order zinc (Zn; 204 mg kg?1) > copper (Cu; 196 mg kg?1) > chromium (Cr; 175 mg kg?1) > lead (Pb; 131 mg kg?1) > nickel (Ni; 60 mg kg?1) > cadmium (Cd; 4 mg kg?1). The concentrations of all heavy metals in the study site were much greater than the background level in that area and exceeded the permissible levels of the Vietnamese standards for Cd, Cu, and Pb. The concentrations of Zn, Ni, and Pb in the surface soil decreased with distance from the canal. The results of selective sequential extraction indicated that dominant fractions were oxide, organic, and residual for Ni, Pb, and Zn; organic and oxide for Cr; oxide for Cd; and organic for Cu. Leaching tests for water and acid indicated that the ratio of leached metal concentration to total metal concentration in the soil decreased in the order of Cd > Ni > Cr > Pb > Cu > Zn and in the order of Cd > Ni > Cr > Zn > Cu > Pb for the ethylenediaminetetraaceitc acid (EDTA) treatment. The EDTA treatment gave greater leachability than other treatments for most metal types. By leaching with water and acid, all heavy metals were fully released from the exchangeable fraction, and some heavy metals were fully released from carbonate and oxide fractions. The concentrations of Cd, Cr, Cu, Ni, Pb, and Zn in the vegetables exceeded the Vietnamese standards. The transfer coefficients for the metals were in the order of Zn > Ni > Cu > Cd = Cr > Pb.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号