首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract

Twenty surface soil samples were collected from Nainital Tarai (foothills of Himalya) where “Khaira”; disease (Zn deficiency of rice) is prevalent. Rice (Oryza sativa L. variety IR‐8) was grown in pots for 8 weeks after transplanting. Experiments were conducted to determine the suitability of five soil Zn extractants: dilute acid (HCl + H2SO4) mixture; DTPA‐(NH4) 2CO3, pH 7.3; dithizone; NH4OAc, pH 4.6; and 2N MgCl2 to predict Zn deficiency. Critical values for soil available Zn were established for rice by the old and new Cate and Nelson procedures1.

Zinc extracted from the soils with dithizone; NH4OAc, pH 4.6; 0.2N MgCl2. and DTPA‐(NH4) 2CO3 pH 7.3 was significantly correlated with the uptake of Zn by the rice plants. The correlation between Zn extracted with the dilute acid (HCl + H2SO4) mixture and plant Zn was not statistically significant. The ex‐tractants which extracted greater quantities of Zn gave higher critical values and vice versa. It is concluded that all extracting solutions except the dilute acid (HCl + H2SO4) mixture were found to he suitable for predicting available Zn in rice soils of Tarai.  相似文献   

2.
Seventeen Mollisols having pH(1:2) in the range of 6.00 to 8.42 were analyzed with five extractants, and the extractable zinc (Zn) ranges were 0.84 to 2.75 mg Zn kg?1 soil for diethylenetriaminepentaacetic acid (DTPA) (pH 7.3), 0.91 to 2.72 mg Zn kg?1 soil for DTPA + ammonium bicarbonate (pH 7.6), 1.82 to 7.18 mg Zn kg?1 soil for Mehlich 3, 1.22 to 3.83 mg Zn kg?1 soil for ethylenediaminetetraacetic acid (EDTA) + ammonium carbonate, and 0.88 to 1.18 mg Zn kg?1 soil for 1 mol L?1 magnesium chloride (MgCl2) (pH 6.0). Zinc extracted by DTPA (pH 7.3) and Mehlich 3 showed significant positive correlation with sand content, whereas only Mehlich 3 showed negative correlation with soil pH. All extractants showed significant positive correlation with each other except for 1 mol L?1 MgCl2‐extractable Zn, which had significant positive correlation with only Mehlich 3– and EDTA + ammonium carbonate–extractable Zn. A greenhouse experiment showed that Bray's percentage yield of rice was poorly correlated to extractable soil Zn but had a significant and negative linear correlation with soil pH (r = ?0.662, significant at p = 0.01). Total Zn uptake by rice had a significant positive correlation with 1 mol L?1 MgCl2– and Mehlich 3–extractable Zn. A proposed parameter (p extractable Zn + p OH?) involving both soil extractable Zn and pH terms together showed significant and positive correlation with Bray's percentage yield and total Zn uptake of rice. The calculated values of critical limits of soil Zn in terms of the proposed parameter were 14.1699 for DTPA (pH 7.3), 13.9587 for DTPA + ammonium bicarbonate, 13.7016 for Mehlich 3, 13.9402 for EDTA + ammonium carbonate, and 14.1810 for 1 mol L?1 MgCl2 (pH 6.0). The critical limits of Zn in rice grain and straw were 17.32 and 22.95 mg Zn kg?1 plant tissue, respectively.  相似文献   

3.
Abstract

Soil pot culture experiment was conducted on 22 soils of Balewal‐Phaguwala‐Narike (BPN) and 24 soils of Isri‐Langrian‐Narike (ILN) associations using rice (PR 106) as test crop at 0 and 7.5 ppm Zn levels. Chelating extractants 0.005M DTPA, 0.01M EDTA‐(NH4)2CO3 and 0.05M EDTA, extracted more soil Zn than double‐acid and were significantly correlated with each other as well as with soil pH and clay in BPN and only with clay in ILN soil association. Soil CaCO3 governed the double‐acid extractable Zn in these soils. Dry matter yield and Zn uptake by rice significantly increased with 7.5 ppm Zn application. The response was higher in ILN than BPN soil association, The DTPA method gave the highest correlation with Bray's yield and Zn uptake (r =0.72 and 0.55) followed by 0.05M EDTA (r ‐ 0.75 and 0.61) or EDTA‐(NH4)2CO3 (r =0.70 and 0.61). The predictability of rice yield improved from 18–27 to 27–35, 32–43, 34–44 and 51–55 percent as a result of stepwise inclusion of pH, CaCO3, organic carbon (OC) and clay respectively in the regression equation alongwith Zn extracted by chelating agents.

The critical levels of DTPA, EDTA‐(NH4)2CO3 and EDTA extractable Zn significantly differed in the two associations and were 0.69, 0.82 and 1.24 ppm in BPN and O.BC, 1.09 and 1.42 ppm in ILN soil association. Soil properties further affected the critical levels. This for DTPA available Zn was 0.80 and 1.03 ppm in soil containing less and greater than 2% CaCO3, 1.03 and 0.80 ppm in soils containing less and greater than 0.25% OC. These values for EDTA‐(NH4)2CO3 available Zn were 1.09 and 0.91 ppm Zn in soils containing less and greater than 15% clay suggesting that critical levels of Zn for each category of soil properties should be considered while making recommendations of Zn fertilization of crops.,  相似文献   

4.
石灰性土壤中锰素营养的研究——Ⅱ.土壤有效锰的测定   总被引:2,自引:0,他引:2  
张维理  张乃凤 《土壤学报》1984,21(3):268-276
自从Leeper[5]首先提出用对苯二酚提取土壤易还原态锰评价土壤供锰状况以来,四十多年间各国的土壤农化工作者陆续设计并使用了种类繁多的土壤有效锰的提取剂。将其归纳大致可分为五类。  相似文献   

5.
Abstract

Many soil extractants have been developed for determination of zinc (Zn) availability to plants. The optimum soil Zn extractant should be useful not only for prediction of plant Zn concentration but also for detection of applied Zn levels. The objectives of this study were: i) to compare soil Zn extradants for detecting applied Zn and for predicting peanut leaf Zn over a range of soil pH levels, and ii) to correlate other soil‐extractable Zn levels with Mehlich‐1. Soil and peanut leaf samples were taken from a field study testing pH levels as the main plots and Zn application rates in the sub‐plots. Extractable Zn was determined on soil samples using Mehlich‐1, Mehlich‐3, DTPA, MgNO3, and many dilute salt extradants of varied strength and pH. Correlation of extractable soil Zn to cumulative applied Zn levels revealed Mehlich‐1, Mehlich‐3, DTPA, and AlCl3 extradants to be among the best indicators of applied Zn. Leaf Zn concentration was best correlated with soil Zn extracted by dilute salts, such as KCl, CaCl2, NH4Cl, CaSO4, and MgCl2. Including soil pH as an independent variable in the regression to predict leaf Zn considerably improved R‐square values. The DTPA‐extractable soil Zn levels were very well correlated with Mehlich‐1‐extractable Zn. Mehlich‐3 extracted about 20% more soil Zn than Mehlich‐1, but Mehlich‐3 soil Zn was not as well correlated to Mehlich‐1 soil Zn as DTPA soil Zn. Lower pH solutions extracted more of the applied Zn, but more neutral solutions extracted Zn amounts which were better correlated with Zn uptake. On the other hand, Mehlich‐1, which had a lower pH, had better correlations with both applied Zn and leaf Zn than did Mehlich‐3. Shortening the DTPA extraction time to 30 minutes resulted in better correlations than the standard two hour extraction time. Chloride (Cl) was the best anion tested in relation to soil applied Zn recovery in combination with potassium (K), calcium (Ca), and aluminum (Al), and Cl optimized leaf Zn correlations for ammonium (NH4), K, Ca, and magnesium (Mg). The larger the valence of the cation, the better the correlation with applied Zn and the poorer the correlation with leaf Zn.  相似文献   

6.
Abstract

Zinc of index corn leaves samples from 91 Minnesota sites on numerous soil types was correlated with soil Zn extracted by four routine procedures. The EDTA?(NH4)2CO3 ‐ extractable soil Zn was more closely correlated with leaf Zn than soil zinc extracted by 0.1N HCl, EDTA‐NH4OAc, or by NH4OAc ‐ dithizone. Soil pH, CaCO3 equivalent, extractable P, and organic matter of both acid and calcareous soils were negatively correlated with leaf Zn. When EDTA ? (NH4)2CO3 ‐ extractable Zn was included with routine soil tests, a prediction equation for corn leaf Zn was formulated and compared with analytical values. However, the use of 1.4 ppm EDTA ? (NH3)2CO3, ‐ extractable soil Zn alone as a critical value was equally effective in predicting leaf Zn.  相似文献   

7.
Abstract

Rice (Oryza sativaL. CV. Lemont) was grown on 19 soils, and eight extractants were evaluated for determining the availability of Cu to rice plants. Correlation analyses were employed as criteria for evaluating methods that would provide the best index of Cu availability. The order of removal of Cu from soils was: 0.5NHC1 + 0.05NA1C13> 0.5NHNO3> 0.5 N HC1 > EDTA + NH4OAc > 0.1NHC1 > EDTA + (NH4)2CO3? DTPA‐TEA, pH 7.3 >>> 1 N NH40Ac, pH 4.8.

Uptake of Cu by rice plants was significantly correlated with soil Cu. Among the eight extractants evaluated, Cu extracted with DTPA‐TEA, pH 7.3 was better related to the concentration (r = 0.563 ) and uptake (r = 0.673 ) of Cu by rice plants grown on the soils with different chemical and physical properties.

A significant negative correlation was found between the concentration of Cu in rice plants and the organic matter content of the soils. Each one percent increase in the organic matter of the soils resulted in a corresponding decrease of approximately one mg/kg in the concentration of Cu in the rice‐plant tissue. Multiple regressions of extractable Cu by eight methods with soil organic matter content accounted for from 53.4 to 70.0% of the variations in the prediction of the concentration of Cu in the rice plants. Combinations of other soil chemical properties measured with extractable Cu did not significantly improve the predictability  相似文献   

8.
Abstract

Five soil extractants, namely, 0.005 M diethylene triamine pentaacetic acid (DTPA) (pH 7.3), 0.005 M DTPA+1 M ammonium bicarbonate (pH 7.6), Mehlich 3, 0.01 M ethylene diamine tetraacetic acid (EDTA)+0.05 M ammonium carbonate (pH 8.6), and 1 M magnesium chloride (MgCl2) (pH 6.0), were evaluated to predict the response of wheat to zinc (Zn) application in Mollisols. These extractants could be arranged in the following decreasing order of their Zn extracting power: Mehlich 3>0.005 M DTPA+1 M ammonium bicarbonate>0.01 M EDTA+0.05 M ammonium carbonate>0.005 M DTPA>1 M MgCl2. The critical limits of Zn in soil, below which the yield response to late sown wheat (var. UP‐2338) to Zn application could be expected, were 0.57 mg 0.005 M DTPA (pH 7.3) extractable and 1.72 mg Mehlich 3–extractable Zn kg?1 soil. The critical limit of Zn in whole shoot at 60 days after emergence was found to be 26.1 mg Zn kg?1 plant tissue. The DTPA and Mehlich 3–extractable soil Zn also correlated significantly and positively with Zn concentration in whole shoot at 60 days after emergence and total Zn uptake by wheat at harvest.  相似文献   

9.
Twenty-four surface soils (0–15 cm) were collected from Tal land soils (vertisols) in the southern part of Bihar state in India. Six extractants were used to predict the extractability and their suitability for measuring available zinc (Zn) in these soils. Pot experiment with chickpea (Cicer arietinum cv. C-235) as test crop was conducted with five levels of Zn (0, 2.5, 5.0, 7.5, and 10.0 mg kg?1) to determine critical levels of Zn in soils and chickpea. The efficiency rating of different extractants in extracting available Zn from soils followed the order ethylenediaminetetraacetic acid (EDTA)–ammonium carbonate [(NH4)2CO3] > diethylenetriaminepentaacetic acid (DTPA)–ammonium bicarbonate (NH4HCO3) > DTPA– calcium chloride (CaCl2) > DTPA–sodium bicarbonate (NaHCO3) > magnesium nitrate [Mg (NO3)2] > magnesium chloride (MgCl2). The DTPA-CaCl2-extractable Zn was significantly and positively correlated with clay, organic carbon, cation exchange capacity, dry-matter yield, and plant Zn concentration and uptake but significantly and negatively correlated with soil pH. These properties attributed 87% variability in DTPA-CaCl2-extractable Zn.  相似文献   

10.
 ZnSO4, Zn-enriched farmyard manure (Zn-FYM), Zn-tetraammonia complex sorbed on FYM [Zn(NH3)4-FYM] and Zn-ethylenediaminetetraacetate (Zn-EDTA) were compared as Zn sources for rice production under lowland conditions. The amount of Zn supplied by Zn-EDTA was one-tenth of that supplied by the other Zn sources. Zn application to a Zn-deficient soil corrected the visual symptoms of Zn deficiency and significantly increased the total biomass, grain yields and the harvest index of rice, as well as the Zn concentration in the grain and the uptake of Zn by the straw and the grains. Even with lower rates of application (0.25 and 0.5 mg Zn kg–1 soil), Zn-EDTA treatments gave comparable values for these parameters, and the highest "Zn-mobilization efficiency" compared to the other Zn sources. The content of diethylenetriaminepentaacetate (DTPA)-extractable Zn in the soil of the different treatments after the harvest of rice was in the order; ZnSO4=Zn-FYM>Zn(NH3)4-FYM=Zn-EDTA. The application of Zn also significantly increased the number of panicles that emerged between 80 to 93 days after transplanting, though the total number of panicles at harvest remained unaffected. The calculated panicle-emergence index had a positive correlation with the grain yield of rice. The Zn-EDTA treatment, inspite of supplying the lowest amount of Zn, as well as leading to the lowest rate of Zn uptake, produced the highest yields. Therefore, we concluded Zn-EDTA to be the most efficient source of Zn for lowland rice production. Received: 20 October 1998  相似文献   

11.
Abstract

Zinc (Zn) adsorption in mollisols conformed to the linear form of Freundlich equation. The log K values were positively correlated with silt, clay, and carbonate contents and soil pH, but negatively correlated with sand content. Sequential desorption of adsorbed Zn in 0.05M Ca(NO3)2, 0.1M Mg(NO3)2, 0.005M DTPA, and 0.1M HCl revealed that weakly and specifically bound fractions of added Zn, which could easily equilibrate with soil solution, were low and decreased with silt and carbonate contents and soil pH. Weakly bound fraction increased with sand content. Strongly bound and complexed fraction of applied Zn was the maximum and increased with clay, soil organic carbon and carbonate contents and specific surface area, but decreased with sand content. The mineral bound fraction of applied Zn was intermediate and increased with silt, clay and carbonate contents, and soil pH and specific surface area. Zinc uptake due to added Zn fertilizer by rice crop (Y) negatively correlated with log K, but positively related to Zn content in the equilibrium soil extract and Zn desorbed in 0.05M Ca(NO3)2. Both log K and l/n values together explained 59.5% of the total variation in Y, while Zn content in the equilibrium soil extract, Zn desorbed in 0.05M Ca(NO3)2, 0.005M DTPA and 0.1M HCl collectively accounted 79.6% of the total variation in Y.  相似文献   

12.
Abstract

Relative suitability of different extraction procedures for estimating available zinc (Zn) and copper (Cu) in soils was assessed using DTPA, 0.1 N HCl, ammonium acetate+EDTA, and double acid (HCl+ H2SO4) as extractants and rice as a test crop in Neubauer experiment. The relationships between Zn concentration and uptake of Zn by rice plants and Zn extracted by the different methods showed that DTPA‐TEA, pH 7.3, could very suitably be used to assess Zn availability in soils. However, 0.1 N HCl was better for assessing the Cu availability in soils to the rice plants. Water‐soluble and exchangeable fractions of Zn and Cu had significant positive correlations with Zn and Cu concentrations, respectively obtained by all the four extractants tested. The results also showed that DTPA and ammonium acetate+EDTA extracted organically bound Zn, whereas DTPA, 0.1 N HCl and ammonium acetate+EDTA extracted organically bound Cu. Water‐soluble, exchangeable and organic matter bound fractions exhibited significant relationships with Zn and Cu concentrations, their uptake and rice dry matter yield.  相似文献   

13.
Abstract

A greenhouse experiment was conducted for three years to study the effect of different pH levels on metal concentrations in plants and the cadmium (Cd) extractability by DTPA and NH4NO3. The soils used were an alum shale (clay loam) and a moraine (loam), which were adjusted to pH levels of 5.5, 6.5, 7.0, and 7.5. Wheat (Triticum aestivum), carrot (Daucus carota L.), and lettuce (Lactuca sativa) were grown as test crops. Crop yields were not consistently affected at increasing soil pH levels. The concentration of Cd in plant species decreased with increasing soil pH in both soils and in all three years. Significant concentration differences between soil pH levels were only seen in wheat and carrot crops. Increasing soil pH also decreased the nickel (Ni) and zinc (Zn) concentrations in plants in the first year crop but the copper (Cu) concentration was not consistently affected by soil pH. The effect of pH was more pronounced in the moraine then the alum shale soil. The DTPA‐and NH4NO3‐extractable Cd was decreased with the increasing soil pH and the pH effect was more pronounced with NH4NO3 extractable Cd. Both extractants were found equally effective in relation to the Cd concentration in plants in this study.  相似文献   

14.
Abstract

The recovery of applied zinc (Zn) by plants is relatively small. Coupled with lack of leaching, this leads to accumulation of Zn in topsoil which may result in unfavorable growth conditions for the subsequent plants. Different extractants may be used for assessing the Zn status of soils previously treated with Zn sources. The extractability of retained Zn is influenced by soil properties. This experiment was conducted to study the influence of selected properties of calcareous soils on extractability of Zn by three popular Zn soil tests. Twenty samples from surface horizons (0–20 cm) of highly calcareous soils of southern Iran (pH 7.9 to 8.5; calcium carbonate equivalent 16 to 58%) previously treated with three levels of Zn (0, 10, and 20 mg Zn kg‐1 soil as ZnSO4#lb7H2O) in triplicate and under one crop of corn (Zea mays L.) were extracted with DTPA, EDTA‐(NH4)2CO3 and Na2‐EDTA. Extractability (EXT) in a particular extractant was defined as the slope of the regression line, relating extractable Zn of each soil to the rate of applied Zn, multiplied by 100. The EXT values of soils ranged from 24.9 to 73.0% for DTPA, 47.2 to 84.4% for EDTA‐(NH4)2CO3, and 28.2 to 56.7% for Na2‐EDTA. Stepwise regression equations showed that cation exchange capacity (CEC) and calcium carbonate equivalent (CCE) followed by clay content were the most influential soil properties in EXT of retained Zn of highly calcareous soils. The EXT values decreased with increase in CEC, and CCE but increased with increase in clay.  相似文献   

15.
Abstract

Three extracting reagents were evaluated by correlation analyses to provide the best index of Zn, Cu, Mn and Fe availability to wheat (Triticum aestivum L.) plants growing under open field conditions. Twenty one soils were selected to obtain the widest range in properties of soils of the land wheat cultivated. The magnitude of the extractive power varied in the following order: 6NHCl ? EDTA + NH4OAC, pH4.65 > DTPA‐TEA, pH 7.3. The mild extractants, EDTA and DTPA, gave the same order of removal of micronutrients being Zn < Cu < Fe < Mn. The acid extractant was on the contrast more effective on Cu and Fe with respect to Zn and Mn, respectively. Wheat concentrations of Zn, Mn and Fe were significantly correlated to soil micronutrients. Highly significant relationships were found for Zn extracted by DTPA solution (r = 0.737***) and for Mn and Fe extracted by EDTA solution (r = 0.710*** and r = 0.564**). Plant Zn and Mn were also well predicted by the acid extraction. The absence of correlation for plant Cu vs. soil Cu occurred probably because of wheat concentrations almost constant, ranging from 5.0 to 8.0 mg/kg.  相似文献   

16.
Abstract

Extractants employed for routine soil analysis vary from one laboratory to another. Lack of a universal soil extractant is a serious limitation for interpretation of analytical results from various laboratories on nutritional status of a given soil. This limitation can be overcome by developing functional relationships for concentrations of a given nutrient extractable by various extradants. In this study, extractability of Ca, Mg, P, and K in a wide range of soils (0–15 cm) from citrus groves in Florida representing 21 soil series, with varying cultural operations, were compared using Mehlich 3 (M3), Mehlich 1 (M1), ammonium acetate (NH4AOc), pH = 7.0 (AA), 0.2M ammonium chloride (NH4Cl), and ammonium bicarbonate‐DTPA (AB‐DTPA) extractants. Soil pH (0.01M CaCl2) varied from 3.57 to 7.28. The concentrations of Ca or Mg extractable by M3, M1, AA, and NH4Cl were strongly correlated with soil pH (r2 = 0.381–0.482). Weak but significant correlations were also found between AB‐DTPA extractable Ca or Mg and soil pH (r2 = 0.235–0.278). Soil pH relationships with extractable K were rather weak (r2 = < 0.131) for M1 and NH4Cl but non‐significant for M3, AB‐DTPA, and AA. Concentrations of Ca, Mg, and K extractable by M3 were significantly correlated with those by either M1, AA, or NH4Cl extractants. Mehlich 3‐P was significantly correlated with P extractable by M1 extractant only. Mehlich 3 versus AB‐DTPA relationship was strong for K (r2 = 0.964), weaker for Mg and P (r2 = 0.180–0.319), and non‐significant for Ca. With the increasing emphasis on possible use of M3 as an universal soil extractant, data from this study support the hypothesis that M3 can be adapted as a suitable extractant for routine soil analysis.  相似文献   

17.
Abstract

Soil cation exchange capacity (CEC) measurements are important criteria for soil fertility management, vaste disposal on soils, and soil taxonomy. The objective of this research was to compare CEC values for arable Ultisols from the humid region of the United States as determined by procedures varying widely in their chemical conditions during measurement. Exchangeable cation quantities determined in the course of two of the CEC procedures were also evaluated. The six procedures evaluated were: (1) summation of N NH4OAc (pH 7.0) exchangeable Ca, Mg, K, and Na plus BaCl2 ‐ TEA (pH 8.0) exchangeable acidity; (2) N Ca(OAc)2 (pH 7.0) saturation with Mg(OAc)2 (pH 7.0) displacement of Ca2+; (3) N NH4OAc (pH 7.0) saturation with NaCl displacement of NH4 +; (4) N MgCl2 saturation with N KCl displacement of Mg2+; (5) compulsive exchange of Mg2+ for Ba2+; and (6) summation of N NH4OAc (pH 7.0) exchangeable Ca, Mg, K, and Na plus N KCl exchangeable AJ. The unbuffered procedures reflect the pH dependent CEC component to a greater degree than the buffered methods. The compulsive exchange and the summation of N NH4OAc exchangeable cations plus N KCl exchangeable Al procedures gave CEC estimates of the same magnitude that reflect differences in soil pH and texture. The buffered procedures, particularly the summation of N NH4OAc exchangeable cations plus BaCl2 ‐ TEA (pH 8.0) exchangeable acidity, indicated inflated CEC values for these acid Ultisols that are seldom limed above pH 6.5. Exchangeable soil Ca and Mg levels determined from extraction with 0.1 M BaCl2 were consistently greater than values for the N NH4Oac (pH 7.0) extractions. The Ba2+ ion is apparently a more efficient displacing agent than the NH4 + ion. Also, the potential for dissolving unreacted limestone is greater for the Ba2 + procedures than in the NH4 + extraction.  相似文献   

18.
Abstract

In this study, a new parallel and sequential extraction procedure was proposed to investigate the solubility of metals [cadmium (Cd), zinc (Zn), copper (Cu), and nickel (Ni)] and their association with soil components in naturally metal‐rich soils of Norway. Two different soils, alum shale (clay loam) and moraine (loam), developed on alum shale minerals were used. Each soil had two pH levels. For parallel and successive extractions, H2O, 0.1M NH4OAc (soil pH), 0.3M NH4OAc (soil pH), 1M NH4OAc (soil pH), and 1M NH4OAc (pH 5.0) were used. A significant amount of Cd was extracted by NH4O Ac related to concentration of NH4OAc in the extracting solution. The amounts of Zn, Cu, and Ni extracted by these reagents were almost negligible except with 1M NH4OAc (pH 5.0). Thus these metals were strongly bound to soil components. A seven step sequential extraction procedure was applied to evaluate the association of metals with soil constituents. The extractions were performed sequentially by extracting the soil with reagents having an increasing dissolution strength: 1M NH4OAc (soil pH), 1M NH4OAc (pH 5.0), 1M NH2OH.HCl (in 25% HOAc), 1M NH2OH.HCl (in 0.1M HNO3), 30% H2O2 (in 0.1M HNO3), 30% H2O2 (1M HNO3), and aqua regia. In both soils at both pH levels investigated, appreciable percentages of total Cd (20–50%) were found associated with the NH4OAc extractable fraction (mobile fraction). For Zn, Cu, and Ni, the percentage of total metal extracted with NH4OAc was low (<4%), but it increased significantly by introducing a reducing agent (NH2OH.HCl). The NH2OH.HCl‐extractable fraction was the greatest fraction (>60%) for all four metals examined. These results suggest that among the metals studied, only Cd was easily desorbed from soil and should be considered mobile and potentially bioavailable. Other metals (Zn, Cu, and Ni) were strongly associated with the soil components and should be considered less available to plants. Using the sequential fractionation technique as a measure of availability, mobility and potential bioavailability of these four metals in the alum shale soils were: Cd>Zn>Ni>Cu.  相似文献   

19.
Total Zn in alluvial and calcareous soils (average 138 and 70 ppm respectively) was significantly related to their contents of CaCO3 (negatively), O.M. and clay (positively). Extracting Zn by Na2EDTA gave the highest values for both soil types. Total Cu contents varied widely from 26 to 111 ppm in alluvial and from 15 to 30 ppm in calcareous soils. They were negatively correlated with the CaCO3 contents. The pot experiments showed that EDTA(NH4)2CO3, Na2EDTA and DTPA are reasonable extractants for available Zn from both soil types. DTPA was efficient for all soils investigated, while Na2 EDTA and EDTA-citrate were specific for extracting Cu from calcareous soils.  相似文献   

20.
A reliable soil test is needed for estimating mercury (Hg) availability to crop plants. In this study, four extraction procedures including 0.1 M hydrochloric acid (HCl), 1 M ammonium acetate (NH4OAc) (pH 7.0), 0.005 M diethylenetriaminepentaacetic acid (DTPA), and 0.1 M calcium chloride (CaCl2) (pH5.0) were compared for their adequacy in predicting soil Hg availability to crop plants of a rice–cabbage–radish rotation system. The amounts of Hg extracted by each of the four procedures increased with increasing equilibrium time. The optimal time required for extraction of soil Hg was approximately 30 min, though it varied slightly among the four extractants. The amounts of Hg extracted decreased with increasing soil/solution ratio, and a soil/solution ratio of 1:5 appeared to be adequate for soil Hg availability tests. The amounts of Hg extracted increased in the order of NH4OAc < CaCl2 < DTPA < HCl in silty loam soil (SLS) soil, and the order was NH4OAc < CaCl2 ≈ DTPA < HCl in yellowish red soil (YRS) soil. Significant positive correlations among the four extractants were obtained in SLS soil. In contrast, the correlations were poor in YRS soil, especially for HCl. There were significant correlations between concentrations of Hg in edible tissue of three plants and the amounts of soil Hg extractable to the four extractants for soil–rice system and soil–radish system, but not for soil–Chinese cabbage system. The 0.1M HCl extraction overall provided the best estimation of soil‐available Hg and could be used to predict phytoavailability of Hg in soil–crop systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号