首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
 Nitrogen and carbon mineralization of cattle manure (N=6 g kg–1; C:N=35), pressmud (N=17.4 g kg–1; C:N=22), green manure (N=26.8 g kg–1; C:N=14) and poultry manure (N=19.5 g kg–1; C:N=12) and their influence on gaseous N losses via denitrification (using the acetylene inhibition technique) in a semiarid subtropical soil (Typic Ustochrepts) were investigated in a growth chamber simulating upland, nearly saturated, and flooded conditions. Mineralization of N started quickly in all manures, except pressmud where immobilization of soil mineral N was observed for an initial 4 days. Accumulation of mineral N in upland soil plus denitrified N revealed that mineralization of cattle manure-, pressmud-, poultry manure- and green manure-N over 16 days was 12, 20, 29 and 44%, respectively, and was inversely related to C:N ratio (R 2=0.703, P=0.05) and directly to N content of organic manure (R 2=0.964, P=0.01). Manure-C mineralized over 16 days ranged from 6% to 50% in different manures added to soil under different moisture regimes and was, in general, inversely related to initial C:N ratio of manure (R 2=0.690, P=0.05). Cumulative denitrification losses over 16 days in control soils (without manure) under upland, nearly saturated, and flooded conditions were 5, 23, and 24 mg N kg–1, respectively. Incorporation of manures enhanced denitrification losses by 60-82% in upland, 52–163% in nearly saturated, and 26–107% in flooded soil conditions over a 16-day period, demonstrating that mineralized N and C from added manures could result in 2- to 3-fold higher rate of denitrification. Cumulative denitrification losses were maximal with green manure, followed by poultry manure, pressmud and cattle manure showing an increase in denitrification with increasing N content and decreasing C:N ratio of manure. Manure-amended nearly saturated soils supported 14–35% greater denitrification than flooded soils due to greater mineralization and supply of C.  相似文献   

2.
The decomposition and the associated nitrogen (N) dynamics of organic N sources are affected by their contact with soil. While several authors have examined the effect of surface application or incorporation of crop residues on their decomposition rate, less information is available about the relationship between the placement of animal manure and their N mineralization rate. This study investigated the influence of chicken manure and cattle manure placement on soil N mineralization. The manures were incorporated or surface applied at 175 mg N kg?1, and N release was periodically determined over 56 days by measuring inorganic N [nitrate (NO3 ?) N and ammonium (NH4 +) N] in a 2 M potassium chloride (KCl) extract at a ratio of 1:10 (w/v). Results indicated that the control soil released a maximum of 64 mg N kg?1 soil at day 21, a sixfold increase over the initial concentration, which indicates its substantial mineralization potential. Manure treatments showed an initial increase in net NO3 ?-N content at the start of the experiments (until day 7) before an extended period of immobilization, which ended at day 21 of the incubation. A small but positive net N mineralization of all manures was observed from 28 days of incubation. At each sampling time, the mean mineral N released from the control was significantly less (P < 0.01) than surface-applied chicken manure, incorporated chicken manure, and surface-applied cattle manure. Treatments exceptions were at days 21 and 28 where N immobilization was at its peak. In contrast, incorporation of cattle manure showed a different N-release pattern, whereby the mineral N amount was only significantly greater than the control soil at days 42 and 56 with 84 and 108 mg N kg?1 soil respectively. Incorporation of chicken manure and cattle manure did not favor nitrification as much as surface application and cattle manure caused a much greater immobilization when incorporated than when surface applied.  相似文献   

3.
Abstract

The rate and timing of manure application when used as nitrogen (N) fertilizer depend on N‐releasing capacity (mineralization) of manures. A soil incubation study was undertaken to establish relative potential rates of mineralization of three organic manures to estimate the value of manure as N fertilizer. Surface soil samples of 0–15 cm were collected and amended with cattle manure (CM), sheep manure (SM), and poultry manure (PM) at a rate equivalent to 200 mg N kg?1 soil. Soil without any amendment was used as a check (control). Nitrogen‐release potential of organic manures was determined by measuring changes in total mineral N [ammonium‐N+nitrate‐N (NH4 +–N+NO3 ?–N)], NH4 +–N, and accumulation of NO3 ?–N periodically over 120 days. Results indicated that the control soil (without any amendment) released a maximum of 33 mg N kg?1soil at day 90, a fourfold increase (significant) over initial concentration, indicating that soil had substantial potential for mineralization. Soil with CM, SM, and PM released a maximum of 50, 40, and 52 mg N kg?1 soil, respectively. Addition of organic manures (i.e., CM, SM, and PM) increased net N released by 42, 25, and 43% over the control (average). No significant differences were observed among manures. Net mineralization of organic N was observed for all manures, and the net rates varied between 0.01 and 0.74 mg N kg?1 soil day?1. Net N released, as percent of organic N added, was 9, 10, and 8% for CM, SM, and PM. Four phases of mineralization were observed; initial rapid release phase in 10–20 days followed by slow phase in 30–40 days, a maximum mineralization in 55–90 days, and finally a declined phase in 120 days. Accumulation of NO3 ?–N was 13.2, 10.6, and 14.6 mg kg?1 soil relative to 7.4 mg NO3 ?–N kg?1 in the control soil, indicating that manures accumulated NO3 ?–N almost double than the control. The proportion of total mineral N to NO3 ?–N revealed that a total of 44–61% of mineral N is converted into NO3 ?–N, indicating that nitrifiers were unable to completely oxidize the available NH4 +. The net rates of mineralization were highest during the initial 10–20 days, showing that application of manures 1–2 months before sowing generally practiced in the field may cause a substantial loss of mineralized N. The rates of mineralization and nitrification in the present study indicated that release of inorganic N from the organic pool of manures was very low; therefore, manures have a low N fertilizer effect in our conditions.  相似文献   

4.
ABSTRACT

The interactive effect of biochar, cattle manure and nitrogen (N) fertilizer on the dynamics of carbon (C) mineralization and stabilization was investigated in a sandy soil amended with three sole biochar (0, 20 or 40 t ha?1) or manure (0, 13 or 26 t ha?1) and four combined biochar-manure levels (20 or 40 t ha?1 biochar plus 13 or 26 t ha?1 manure) with or without N fertilizer (0 or 90 kg ha?1) and CO2-C evolution measured over 54-d incubation period. Biochar application, solely or combined with manure resulted in lower applied C mineralized (ACM), indicating C sequestration in the soils. Negative attributable effect (AE) of co-application of biochar and manure on C mineralization was observed relative to the sole treatments. Both ACM and AE were negatively correlated with C/N ratio and mineral N content of the soil-mixtures (r ≥ – 0.573; p ≤ 0.01), indicating microbial N limitation. The double first-order exponential model described CO2-C efflux very well and indicated that ≥94% of C applied was apportioned to stable C pools with slower mineralization rate constant and longer half-life. Cumulative C mineralized and modeled C pools were positively correlated with each other (r ≥ 0.853; p ≤ 0.001) and with readily oxidizable C of soil-amendment mixtures (r ≥ 0.861; p ≤ 0.001). The results suggested that co-application of biochar and manure can promote initial rapid mineralization to release plant nutrients but sequester larger amounts of applied C in refractive C pool, resulting in larger C sequestration in sandy soils.  相似文献   

5.
In this research, a sequential fractionation procedure coupled with enzyme hydrolysis was used to categorize the phosphorus (P) forms of 18 manure samples collected from in-barn composted bedded pack (beef manure), anaerobic digestion with liquid–solid separation (dairy manure), and liquid–solid separation systems (dairy manure). This research also determined the effects of those P forms on the increase in soil test P (STP) of five soil series. The soils used had initial Bray-1 P ranging from 16 to 43 mg P kg?1. Total dry-ash P (Pt) of the manures ranged from 1.4 to 15.0 g P kg?1; total inorganic P (Pit) accounted for 20 to 81 % of Pt; and enzymatically hydrolysable P (Pet) accounted for 5 to 26 % of Pt. Liquid–solid separation tended to concentrate the manure P in the liquid fractions. In contrast, anaerobic digestion did not affect the manure P distribution compared with the undigested raw manure from the same system. No differences in P distribution were found for the compost bedded pack manure. In the soil incubation study, manure and fertilizer were applied at 40 mg total P kg?1. Separated liquid manure from two systems tended to increase STP more than the separated solid manures from the same systems. Although anaerobic digestion modified some of the physical and chemical properties of the treated manures, it did not clearly impact how digested manure increased STP compared with the raw manures. Overall, the increase in STP after treated manure application was found to be a function of soil clay content and manure Pit?+?Pet applied.  相似文献   

6.
A 12-week incubation experiment was conducted to determine the pattern and rate of N mineralized from organic materials. Treatments consisted of sheep manure (SM), cattle manure (CM), poultry manure (PM), sewage sludge (SS) at 1% (W/W) level, and unfertilized treatment with three replications. The concentrations of nitrate (NO3)- nitrogen (N) and ammonium (NH4)-N were determined in day 1 and 1, 2, 4, 8, and 12 weeks after the beginning of incubation. Results indicated that the magnitude of N mineralized during the incubation time periods was in the order of CM (134 mg kg?1) > PM (83 mg kg?1) > SS (56 mg kg?1) > SM (55 mg kg?1), and different management is required for obtaining optimum N-use efficiency. In conclusion, improving N-uptake efficiency in manure- and SS-amended soils depends on the pattern and rate of N mineralization to synchronize N released with crop N demand periods.  相似文献   

7.
Effectively utilizing composts requires that their nitrogen (N) and phosphorus (P) contents be used as fertilizer, but how this is best accomplished is not fully understood. The authors' objective was to quantify N and P availability of a calcareous clay loam soil receiving composts derived from four contrasting beef cattle feedlot feedstocks applied at 50, 150, and 450 mg total P kg?1 and supplemented twice with fertilizer N for a 42-week greenhouse plant bioassay. Three composted manures from beef cattle fed distinct diets and a composted mix of slaughterhouse and construction waste were applied. Inorganically fertilized and non-amended soils were included as controls. Canola (Brassica napus L.) and pea (Pisum sativum L.) were grown in pots containing 1.5 kg air-dried soil for six alternating 7-week cycles. Soils amended with composted manure from beef cattle fed typical finishing diets had the lowest apparent N recovery (31%) and the greatest soil nitrate after 42 weeks (25 mg N kg?1). Phosphorus availability was greater with composted manure from beef cattle fed distillers' dried grains than composted manure from beef cattle fed typical finishing diets and a composted mixture of slaughterhouse and construction waste. Apparent P recovery (66%) was greatest from composted manure of beef cattle fed corn (Zea mays L.) distillers' dried grains applied at 50 mg total P kg?1. Composted manure from beef cattle fed distillers' dried grains had greater P availability than conventional composted beef cattle feedlot manure. Overall, performance of the composted mixture of slaughterhouse and construction waste was similar to the composted beef cattle manures.  相似文献   

8.
Carbon, nitrogen and phosphorus mineralization of tree leaves and manure   总被引:9,自引:0,他引:9  
 Farmers in developing countries cannot afford inorganic fertilizers. Multipurpose tree leaves or livestock manure are major sources of nutrients for soil fertility replenishment. Nutrient release from these organic inputs depends on their chemical composition and on soil properties. This study determined the chemical composition of leaves of four African browse species and manure from goats fed leaves as protein supplements, and their mineralization of C, N and P. Cumulative evolved CO2 was significantly correlated with the initial N content of the organic inputs (r 0.83, P<0.05) and the C : N ratio (r 0.80, P<0.05), and was negatively correlated with the lignin : N ratio (r–0.71, P<0.05). Cumulative P released was negatively correlated with the C : P ratio (r 0.76, P<0.05) and positively correlated with initial P content of the organic amendments (r 0.76, P<0.05). Cumulative N mineralized was not significantly correlated with initial N, lignin or P concentrations of the organic inputs. Leaves from Acacia karro and Acacia nilotica had high concentrations of polyphenols, which may have caused immobilization of N in both leaves and manure. Gliricidia sepium leaves had low amounts of soluble polyphenols, a high N content and a high rate of N mineralization, but the manure from goats fed Gliricidia leaves immobilized N. The leaves of all browse species immobilized P, but the manure released P. The results suggested that some browse leaves cannot meet the N and P requirements of crops due to their low P content and prolonged N and P immobilization. However, the manures had higher P contents and rates of P mineralization, which suggested that manure is a good source of P for crops. The implications of these results for nutrient cycling in mixed farming systems is discussed. Received: 28 October 1998  相似文献   

9.
Precise quantification of nitrogen (N) mineralization in animal manure from different productivity-level management zones (MZs) could result in efficient and safe utilization of manure as N fertilizer. The objective of this study was to compare N mineralization rates of dairy cattle manure within and across three productivity-level MZs. To accomplish this, a 120 day laboratory incubation study was conducted at the Natural Resources Ecology Laboratory at Colorado State University using a completely randomized design set as a 2 factor factorial. Treatments for the study, which included the field equivalent of, 22, 44, 67, and 134 Mg ha?1 of applied animal manure, were replicated four times. Soils used in the study were collected from the top 15 cm of high, medium and low MZs from Fort Collins, Colorado, USA on a continuous corn (Zea mays L.) field. A significant difference (P ≤ 0.05) in mineralized N across MZs was found across manure rates. The high, medium and low MZ N mineralization rates were compared and there was no significant difference in cumulative N mineralized between MZs over time. The lack of statistical difference in mineralized N between MZs is hypothesized to have been influenced by the lack of substantial difference in soil pH and particle sizes (only 6% clay difference between MZs). That being the case, a study involving spatially variable soils with significantly different soil particle size between MZs may result in a different conclusion. The results of the study support the hypothesis that variable rates of manure mineralize differently within MZs; however, the results do not support the hypothesis that variable rates of manure in soil may mineralize differently across MZs.  相似文献   

10.
赵伟  梁斌  周建斌 《土壤学报》2015,52(3):587-596
采用盆栽试验和短期矿化培养相结合的方法,研究了施入15N标记氮肥(+N)及其与秸秆配施(+1/2N+1/2S)在3种长期(19年)不同培肥土壤(即:No-F,长期不施肥土壤;NPK,长期施用NPK化肥土壤;MNPK,长期有机无机肥配施土壤)中的残留及其矿化和作物吸收特性。结果表明,第一季小麦收获后,+1/2N+1/2S处理下三供试土壤和+N处理下的NPK和MNPK土壤残留肥料氮(残留15N)中有82.6%~95.1%以有机态存,而+N处理下No-F土壤残留15N有47.7%以矿质态存在。经过28 d矿化培养后,与NPK土壤相比,MNPK土壤氮素净矿化量显著增加,增幅为39%~49%;NPK和MNPK土壤残留肥料氮(残留15N)矿化量为1.23~1.90 mg kg-1,占总残留15N的2.78%~5.53%,均显著高于No-F土壤。与+N处理相比,+1/2N+1/2S处理显著提高了3供试土壤氮素净矿化量,但两施肥处理对NPK和MNPK土壤残留15N矿化量无显著影响。+N处理下No-F土壤残留15N的利用率为20%,显著高于NPK(9%)和MNPK(12%)土壤。两种施肥处理下,MNPK土壤残留15N的利用率均显著高于NPK土壤。短期培养期间土壤氮素矿化量和第二季小麦生育期作物吸氮量呈显著性正相关,而残留15N矿化量和第二季小麦吸收残留15N量间无显著性相关关系。长期有机无机配施可以提高土壤残留肥料氮的矿化量及有效性。  相似文献   

11.

Purpose

Long-term manure applications can prevent or reverse soil acidification by chemical nitrogen (N) fertilizer. However, the resistance to re-acidification from further chemical fertilization is unknown. The aim of this study was to examine the effect of urea application on nitrification and acidification processes in an acid red soil (Ferralic Cambisol) after long-term different field fertilization treatments.

Materials and methods

Soils were collected from six treatments of a 19-year field trial: (1) non-fertilization control, (2) chemical phosphorus and potassium (PK), (3) chemical N only (N), (4) chemical N, P, and K (NPK), (5) pig manure only (M), and (6) NPK plus M (NPKM; 70 % N from M). In a 35-day laboratory incubation experiment, the soils were incubated and examined for changes in pH, NH4 +, and NO3 ?, and their correlations from urea application at 80 mg N kg?1(?80) compared to 0 rate (?0).

Results and discussion

From urea addition, manure-treated soils exhibited the highest acidification and nitrification rates due to high soil pH (5.75–6.38) and the lowest in the chemical N treated soils due to low soil pH (3.83–3.90) with no N-treated soils (pH 4.98–5.12) fell between. By day 35, soil pH decreased to 5.21 and 5.81 (0.54 and 0.57 unit decrease) in the NPKM-80 and M-80 treatments, respectively, and to 4.69 and 4.53 (0.43 and 0.45 unit decrease) in the control-80 and PK-80 treatments, respectively, with no changes in the N-80 and NPK-80 treatments. The soil pH decrease was highly correlated with nitrification potential, and the estimated net proton released. The maximum nitrification rates (K max) of NPKM and M soils (14.7 and 21.6 mg N kg?1 day?1, respectively) were significantly higher than other treatments (2.86–3.48 mg N kg?1 day?1). The priming effect on mineralization of organic N was high in manure treated soils.

Conclusions

Field data have shown clearly that manure amendment can prevent or reverse the acidification of the red soil. When a chemical fertilizer such as urea is applied to the soil again, however, soil acidification will occur at possibly high rates. Thus, the strategy in soil N management is continuous incorporation of manure to prevent acidification to maintain soil productivity. Further studies under field conditions are needed to provide more accurate assessments on acidification rate from chemical N fertilizer applications.  相似文献   

12.
Abstract

Most measurements of dairy manure nitrogen (N) availability depend on net changes in soil inorganic N concentration over time, which overlooks the cycling of manure N in the soil. Gross transformations of manure N, including mineralization (m), immobilization (i), and nitrification (n), can be quantified using 15N pool dilution methods. This research measures gross m, n, and i resulting from application of four freeze‐dried dairy manures that had distinctly different patterns of N availability. A sandy loam soil (coarse‐loamy, mixed, frigid Typic Haplorthod) was amended with four different freeze‐dried dairy manures and incubated at 25°C with optimal soil water content. The dilution of 15ammonium (NH4+) during a 48‐h interval (7–9 d and 56–58 d after manure application) was used to estimate m, whereas the dilution of 15nitrate (NO3 ?) was used to estimate n. Gross immobilization was calculated as gross minus net mineralization. Gross mineralization in the unamended soil was similar at 7‐ to 9‐d and 56‐ to 58‐d intervals and was significantly increased by the application of manures. For both amended and unamended soil, m was much greater (i.e., three‐ to nine‐fold) than estimated net mineralization, illustrating the degree to which manure N can be cycled in soil. At the early interval, both m and i were directly related to the manure C input, demonstrating the linkage between substrate C availability and N utilization by soil microbes. This research clearly shows that the application of dairy manures stimulates gross N transformation rates in the soil, improving our understanding of the impact of manure application on soil N cycling.  相似文献   

13.
Analysis of manure and soil nitrogen mineralization during incubation   总被引:1,自引:0,他引:1  
Understanding the N-cycling processes that ensue after manuring soil is essential in order to estimate the value of manure as an N fertilizer. A laboratory incubation of manured soil was carried out in order to study N mineralization, gas fluxes, denitrification, and microbial N immobilization after manure application. Four different manures were enclosed in mesh bags to allow for the separate analysis of manure and soil. The soils received 0.15 mg manure N g–1 soil, and the microcosms were incubated aerobically and sampled throughout a 10-week period. Manure addition resulted in initial NH4-N concentrations of 22.1 to 36.6 mg kg–1 in the microcosms. All manured microcosms had net declines in soil mineral N. Denitrification resulted in the loss of 14.7 to 39.2% of the added manure N, and the largest N losses occurred in manures with high NH4-N content. Increased soil microbial biomass N amounted to 6.0 to 8.6% of the added manure N. While the microcosms as a whole had negative N mineralization, all microcosms had positive net nitrification within the manure bags. Gas fluxes of N2O and CO2 increased in all manured soils relative to the controls. Our results show that measurement of microbial biomass N and denitrification is important to understand the fate of manure N upon soil application.  相似文献   

14.
Acidic soils are limiting the production potential of the crops because of low availability of basic ions and excess of hydrogen (H+), aluminium (Al3+), and manganese (Mn2+) in exchangeable forms. Therefore, a field study was conducted to know the ameliorating effect of organic manures on acidic soils and production performance of cowpea (Vigna unguiculata L., Walp.) by using different locally available organic manures. Growth and yield attributes were observed to be significantly greater with vermicompost (VC) followed by poultry manure (PM). Porosity, maximum water-holding capacity (MWHC), and organic carbon were greater with farmyard manure (FYM) and cow dung manure (CDM). However, water retention at field capacity (FC), permanent wilting point (PWP), bulk density (BD), pH, and availability of nitrogen (N), phosphorus (P), and potassium (K) were greater with VC. However, physical and chemical properties were deteriorated in control plots.  相似文献   

15.
无机氮与蔬菜废弃物耦合对土壤氮矿化的影响   总被引:1,自引:0,他引:1  
为探明有机废弃物添加量与不同无机氮水平耦合对土壤氮矿化的影响,设计了3个甘蓝废弃叶添加量[B1:200 g.kg 1(土),B2:400 g.kg 1(土),B3:550 g.kg 1(土)]和4个无机氮水平[N0:0 mg.kg 1(土),N1:25mg.kg 1(土),N2:50 mg.kg 1(土),N3:100 mg.kg 1(土)]交互的控制培养试验(25℃,65%的田间持水量)。试验结果显示:各氮处理下土壤净累积氮矿化量是空白对照的4~5倍,N1水平下土壤净累积氮矿化量显著高于其他氮水平。各甘蓝废弃叶添加量处理下土壤净累积氮矿化量是空白对照的3~5倍,且B2添加量下土壤净累积氮矿化量显著高于B1和B3。统计分析表明,氮处理和甘蓝废弃叶添加量之间的交互效应不显著(P=0.275),甘蓝废弃叶的添加是影响氮矿化的主要因素(Eta2=0.16),而供氮水平为次要因素(Eta2=0.07)。B1添加量下,培养前期(0~20 d)土壤净累积矿化量逐渐升高,后期保持稳定水平;但B2和B3添加量下,培养前期(30 d)土壤呈现矿化、固持、再矿化现象,后期土壤净累积矿化量逐渐升高。氮矿化速率结果说明,甘蓝废弃叶添加后氮素矿化主要发生在培养前30 d。对培养期间土壤净累积氮矿化量随时间变化做一级动力方程模拟,拟合效果良好(R2=0.62~0.89)。  相似文献   

16.
He  Huan  Xia  Guotong  Yang  Wenjin  Zhu  Yunpeng  Wang  Guodong  Shen  Weibo 《Journal of Soils and Sediments》2019,19(12):3954-3968
Purpose

Wetlands in Mu Us Desert have severely been threatened by grasslandification over the past decades. Therefore, we studied the impacts of grasslandification on soil carbon (C):nitrogen (N):phosphorus (P) stoichiometry, soil organic carbon (SOC) stock, and release in wetland-grassland transitional zone in Mu Us Desert.

Materials and methods

From wetland to grassland, the transition zone was divided into five different successional stages according to plant communities and soil water conditions. At every stage, soil physical and chemical properties were determined and C:N:P ratios were calculated. SOC stock and soil respirations were also determined to assess soil carbon storage and release.

Results and discussion

After grasslandification, SOC contents of top soils (0–10 cm) decreased from 100.2 to 31.79 g kg?1 in June and from 103.7 to 32.5 g kg?1 in October; total nitrogen (TN) contents of top soils (0–10 cm) decreased from 3.65 to 1.85 g kg?1 in June and from 6.43 to 3.36 g kg?1 in October; and total phosphorus (TP) contents of top soils (0–10 cm) decreased from 179.4 to 117.4 mg kg?1 in June and from 368.6 to 227.8 mg kg?1 in October. From stages Typha angustifolia wetland (TAW) to Phalaris arundinacea L. (PAL), in the top soil (0–10 cm), C:N ratios decreased from 32.2 to 16.9 in June and from 19.0 to 11.8 in October; C:P ratios decreased from 1519.2 to 580.5 in June and from 19.0 to 11.8 in October; and N:P ratios decreased from 46.9 to 34.8 in June and changed from 34.9 to 34.0 in October. SOC stock decreased and soil respiration increased with grasslandification. The decrease of SOC, TN, and TP contents was attributed to the reduction of aboveground biomass and mineralization of SOM, and the decrease of soil C:N, C:P, and N:P ratios was mainly attributed to the faster decreasing speeds of SOC than TN and TP. The reduction of aboveground biomass and increased SOC release led by enhanced soil respiration were the main reasons of SOC stock decrease.

Conclusions

Grasslandification led to lowers levels of SOC, TN, TP, and soil C:N, C:P, and N:P ratios. Grasslandification also led to higher SOC loss, and increased soil respiration was the main reason. Since it is difficult to restore grassland to original wetland, efficient practices should be conducted to reduce water drainage from wetland to prevent grasslandification.

  相似文献   

17.
Mineralization and nitrification are the key processes of the global N cycle and are primarily driven by microorganisms. However, it remains largely unknown about the consequence of intensified agricultural activity on microbial N transformation in agricultural soils. In this study, the 15N‐dilution technique was carried out to investigate the gross mineralization and nitrification in soils from a long‐term field fertilization experiment starting from 1988. Phospholipid fatty acids (PLFA) analysis was used to determine soil microbial communities, e.g., biomasses of anaerobic bacterial, bacterial, fungi, and actinobacteria. The abundance of ammonia‐oxidizing bacteria (AOB) and archaea (AOA) were measured using real‐time quantitative polymerase chain reaction. The results have demonstrated significant stimulation of gross mineralization in the chemical‐fertilizers treatment (NPK) ([6.53 ± 1.29] mg N kg–1 d–1) and chemical fertilizers–plus–straw treatment (NPK+S1) soils ([8.13 ± 1.68] mg N kg–1 d–1) but not in chemical fertilizers–plus–two times straw treatment (NPK+S2) soil when compared to the control‐treatment (CK) soil ([3.62 ± 0.86] mg N kg–1 d–1). The increase of anaerobic bacterial biomass is up to 6‐fold in the NPK+S2 compared to that in the CK soil ([0.7 ± 0.5] nmol g–1), implying that exceptionally high abundance of anaerobic bacteria may inhibit gross mineralization to some extent. The gross nitrification shows upward trends in the NPK+S1 and NPK+S2 soils. However, it is only significantly higher in the NPK soil ([5.56 ± 0.51] mg N kg–1 d–1) compared to that in the CK soil ([3.70 ± 0.47] mg N kg–1 d–1) (p < 0.05). The AOB abundance increased from (0.28 ± 0.07) × 106 copies (g soil)–1 for the CK treatment to (4.79 ± 1.23) × 106 copies (g soil)–1 for the NPK treatment after the 22‐year fertilization. In contrast, the AOA abundance was not significantly different among all treatment soils. The changes of AOB were well paralleled by gross nitrification activity (gross nitrification rate = 0.263 AOB + 0.047 NH ‐N + 2.434, R2 = 0.73, p < 0.05), suggesting the predominance of bacterial ammonia oxidation in the fertilized fields.  相似文献   

18.
In temperate regions, cultivation of Robinia pseudoacacia L. has recently received considerable attention because it is a fast-growing species for biomass and bioenergy production, while acting as a potential carbon (C) sink to counterbalance carbon dioxide (CO2) emissions and an alternative to agricultural crops on marginal sites. The objective of our work was to compare total organic carbon (TOC), total nitrogen (TN), and organic C fractions in postlignite mining soils under different development stages of R. pseudoacacia. Soil samples from three different depths (0–3, 3–10 and 10–30 cm) were taken in plantations 2, 3, 4, and 14 years old (R2, R3, R4, and R14, respectively). The TOC and TN contents increased with increasing tree age in all layers (P < 0.01). In the top 30 cm, TOC and TN stocks ranged from 11.7 to 59.8 Mg C ha?1 and from 0.30 to 2.61 Mg N ha?1 at R2 and R14, respectively. The rate of C sequestration was calculated to be 4.0 Mg C ha?1 year?1. Microbial biomass C and N were strongly correlated to TOC (r2 = 0.96 – 0.81; P < 0.001) and TN contents (r2 = 0.92 – 0.91; P < 0.001). The light fraction C (CLF) accounted for 15–30% and the heavy fraction C for 70% of TOC in all layers. In the 0- to 3-cm layer, CLF increased by 0.5 g kg?1 year?1. The results indicate that plantations of R. pseudoacacia are an attractive alternative to increase soil C contents in reclaimed lignite mining soils. In the short term, microbial biomass C and light fraction C are sensitive and provide an appropriate measure to assess soil C changes caused by cultivation of R. pseudoacacia.  相似文献   

19.
The combination of inorganic fertilizers and compost is a technique aimed at improving crop growth and maintaining soil health. Understanding the rate of nutrient release from enriched compost is important for effective nutrient management. A laboratory incubation study was conducted for 112 days to study the nutrient mineralization pattern of poultry manure compost enriched with inorganic nitrogen (N) and phosphorus (P) fertilizer nutrients in an Ultisol. Compost applied at the rate of either 5 or 10 g kg?1 was blended with N (50 kg N ha?1) and P (30 kg P ha?1). Carbon dioxide evolution and N and P mineralization were measured fortnightly. The bacterial and fungal populations were determined at the mid and end of the experiment. The combination of compost and inorganic N and P increased carbon (C) and P mineralization by 4?8% and 56?289%, respectively, over the application of either compost or inorganic N and P. However, P addition influenced the amount of C mineralized. Inorganic N and P, on the other hand, were better at increasing N mineralization than compost blended with inorganic N and P over a short time. The addition of compost stimulated bacterial and actinomycete populations, while fungal populations were unaffected. Actinomycetes and bacteria had similar and higher relationship trend with C (R2 = 0.24) and P (R2 = 0.47) mineralization and were key determinants in nutrient mineralization from compost in this Ultisol. Integrating compost with inorganic fertilizers improves nutrient availability through the growth and activities of beneficial microorganisms.  相似文献   

20.
ABSTRACT

How to restore the soil fertility and productivity in a damaged and then reclaimed area with extremely low fertility is a big concern worldwide. To explore the method of soil restoration in the coal mining subsidence area, the effects of biochar application coupled with organic fertilizer (animal manures) on the process of organic nitrogen (N) mineralization were studied in a 149 days leaching experiment. Biochar were applied (wt/wt) at the rates of 0%, 1%, and 3%. Two organic fertilizers with different C/N ratio (chicken and sheep manures) were applied at the rate of 200 mg N·kg?1 soil. A vegetable soil with high-fertility was used as the comparison. The results showed that when treated with chicken manure, the reclaimed soil had 11.13% lower mineralization potential and 20.00% lower inorganic nitrogen production from mineralization than the vegetable soil. Compared with the non-biochar treatment, biochar at both application rates decreased N leaching in chicken manure-treated reclaimed soil, i.e., by 21.49% (1% biochar) and 28.31% (3% biochar), respectively, whereas only high rate of biochar application decreased N leaching in chicken manure-treated vegetable soil by 8.10%. However, N leaching in sheep manure-treated reclaimed soil was unaffected by the biochar application. Thus, the effect of the biochar on the organic nitrogen mineralization was affected by both soil and organic fertilizer type.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号