首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
Abstract

The objective of this study was to compare mid‐infrared (MIR) an near‐infrared (NIR) spectroscopy (MIRS and NIRS, respectively) not only to measure soil carbon content, but also to measure key soil organic C (SOC) fractions and the δ13C in a highly diverse set of soils while also assessing the feasibility of establishing regional diffuse reflectance calibrations for these fractions. Two hundred and thirty‐seven soil samples were collected from 14 sites in 10 western states (CO, IA, MN, MO, MT, ND, NE, NM, OK, TX). Two subsets of these were examined for a variety of C measures by conventional assays and NIRS and MIRS. Biomass C and N, soil inorganic C (SIC), SOC, total C, identifiable plant material (IPM) (20× magnifying glass), the ratio of SOC to the silt+clay content, and total N were available for 185 samples. Mineral‐associated C fraction, δ13C of the mineral associated C, δ13C of SOC, percentage C in the mineral‐associated C fraction, particulate organic matter, and percentage C in the particulate organic matter were available for 114 samples. NIR spectra (64 co‐added scans) from 400 to 2498 nm (10‐nm resolution with data collected every 2 nm) were obtained using a rotating sample cup and an NIRSystems model 6500 scanning monochromator. MIR diffuse reflectance spectra from 4000 to 400 cm?1 (2500 to 25,000 nm) were obtained on non‐KBr diluted samples using a custom‐made sample transport and a Digilab FTS‐60 Fourier transform spectrometer (4‐cm?1 resolution with 64 co‐added scans). Partial least squares regression was used with a one‐out cross validation to develop calibrations for the various analytes using NIR and MIR spectra. Results demonstrated that accurate calibrations for a wide variety of soil C measures, including measures of δ13C, are feasible using MIR spectra. Similar efforts using NIR spectra indicated that although NIR spectrometers may be capable of scanning larger amounts of samples, the results are generally not as good as achieved using MIR spectra.  相似文献   

2.
Abstract

Soil organic carbon (SOC) plays a key role in crop productivity and soil quality. Conservation agriculture has a positive effect on SOC accumulation in the surface soil horizons, but little information is available regarding the effect of the removal of crop residues by burning. This study aimed to assess the impact of different types of crop residue management practices on the total C distribution and natural abundance of 13C (‰, δ13C). Two volcanic soils, located in the Mediterranean temperate zone of Southern Chile, were studied: an Ultisol (Collipulli Series, CPL) and an Andisol (Santa Bárbara Series, SBA). Both soils had been cultivated under direct-drilling and a typical annual crop rotation system for a long period of time. Two different types of crop residue management practices were imposed in both soils: (i) crop residue burning (CPL-B; SBA-B) and (ii) crop residue retention over the soil (CPL-R; SBA-R), corresponding to treatments B and R, respectively. Soil profile distribution of the C content and natural abundance of 13C were analysed for bulk soils (down to 100 cm depth) and three particle-size fractions of the soils (down to 20 cm of soil depth): (a) ≤ 53 µm, (b) 53-212 µm and (c) ≥ 212 µm. It was found that the effect of crop residue management can be observed in the variations of C content and δ13C in the soil profile in both volcanic soils. Crop residue burning (B treatment) increased the C content in bulk soil and the particle-size fractions. On the other hand, soil organic matter of crop residue retention (R treatment) showed higher natural abundance of 13C (δ13C) compared with residue burning (B treatment) in the two volcanic soils. R treatment enriched the particle-size fractions (except ≥ 212 µm fraction of CPL soil) with 13C. Factors that could account for these findings are also discussed here.  相似文献   

3.
ABSTRACT

A field evaluation of the stable isotopes (δ13C and δ15N) and their relationship among physicochemical and enzyme activities was conducted in Indian semi-arid agricultural soils. Composite soil samples were collected based on organic management (ORG), inorganic management (IM), integrated crop management (ICM) and precision farming (PF) experimental plots from the fall of September 2017 to October 2018. δ15N was significantly higher (13.85 %) in ORG soils compared with ICM (13.28 %), IM (12.84 %) and PF (12.75 %). In contrast δ13C was higher (?13.25%) in PF soils than IM (?13.6 %), ICM (?15.07 %) and ORG (?15.23 %). Soils from ORG had significantly higher levels of total N, total C, total S, organic carbon, available N, extractable P, Soil organic carbon stock, exchangeable K and enzyme activities compared to IM, ICM and PF. Urease, β – glucosidase, acid phosphatase, alkaline phosphatase, invertase, cellulase and dehydrogenase activities significantly increased the δ15N and reduced δ13C in agricultural soils. Our results suggested that organic management had improved the δ15N, plant available nutrients and soil enzyme activities. Stable δ13C and δ15N isotopes are good indicators of monitor the soil health, carbon, and nitrogen biogeochemical cycles in Indian semi-arid agricultural soils.  相似文献   

4.
Land application of animal wastes from intensive grassland farming has caused growing environmental problems during the last decade. This study aimed to elucidate the short‐term sequestration of slurry‐derived C and N in a temperate grassland soil (Southwest England) using natural abundance 13C and 15N stable isotope techniques. Slurry was collected from cows fed either on perennial ryegrass (C3) or maize (C4) silages. 50 m3 ha—1 of each of the obtained C3 or C4 slurries (δ13C = —30.7 and —21.3‰, δ15N = +12.2 and + 13.8 ‰, respectively) were applied to a C3 soil with δ13C and δ15N values of —30.0 ± 0.2‰ and + 4.9 ± 0.3‰, respectively. Triplicate soil samples were taken from 0—2, 2—7.5, and 7.5—15 cm soil depth 90 and 10 days before, at 2 and 12 h, as well as at 1, 2, 4, 7, and 14 days after slurry application and analyzed for total C, N, δ13C, and δ15N. No significant differences in soil C and N content were observed following slurry application using conventional C and N analysis techniques. However, natural abundance 13C and 15N isotope analysis allowed for a sensitive temporal quantification of the slurry‐derived C and N sequestration in the grassland soil. Our results showed that within 12 hours more than one‐third of the applied slurry C was found in the uppermost soil layer (0—2 cm), decreasing to 18% after 2 days, but subsequently increasing to 36% after 2 weeks. The tentative estimate of slurry‐derived N in the soil suggested a decrease from 50% 2 hours after slurry application to only 26% after 2 weeks, assuming that the increase in δ15N of the slurry plots compared to the control is proportional to the amount of slurry‐incorporated N. We conclude that the natural abundance tracer technique can provide a rapid new clue to the fate of slurry in agricultural C and N budgets, which is important for environmental impacts, farm waste management, and climate change studies.  相似文献   

5.
The minor isotopes of carbon (13C and 14C) are widely used as tracers in studies of the global carbon cycle. We present carbon‐isotope data for the 0–5 cm layer of soil on a transect from 49.6°N to 68°N, from mature forest and tundra ecosystems in the boreal‐arctic zone of interior western Canada. Soil organic carbon in the < 2000 μm fraction of the soil decreases from 3.14 kg m?2 in the south to 1.31 kg m?2 in the north. The 14C activity of the organic carbon decreases as latitude increases from 118.9 to 100.7 per cent modern carbon (pMC). In addition, the 14C activities of organic carbon in the particle‐size fractions of each sample decrease as particle size decreases. These results suggest that organic carbon in the 0–5 cm layer of these soils transfers from standing biomass into the coarsest size fractions of the soil and is then degraded over time, with the residue progressively transferred into the more resistant finer particle sizes. We calculate residence times for the coarsest size fractions of 21 years in the south to 71 years in the north. Residence times for the fine size fractions (< 63 μm) are considerably longer, ranging from 90 years in the south to 960 years in the north. The δ13C of the organic carbon decreases from ?26.8 ± 0.3‰ in soil under forest in the south to ?26.2 ± 0.1‰ for tundra sites in the north. At all sites there is an increase in δ13C with decreasing particle size of 0.7–1.6‰. These changes in δ13C are due to the presence of ‘old’ carbon in equilibrium with an atmosphere richer in 13C, and to the effects of microbial degradation.  相似文献   

6.
The δ13C and δ15N values of sugarcane plant tissues, decomposing harvest residues, soil and the casts and body tissues of the earthwormPontoscolex corethrurus were determined. Little variation in δ13C values was found between plant parts. The δ13C values of the decomposing harvest residues declined and became more variable after 148 days of exposure in the field. In the decomposing residues, δ13C values of the neutral detergent fibre fraction were similar to those of the whole tissues while those of the proximate lignin were more negative. The δ15N values of the residues also declined over time after a short initial delay.P. corethrurus populations are more intimately associated with the roots of sugarcane than with the bulk soil. Tissue δ13C values suggest that the earthworm diet is similar to or more enriched in13C than sugarcane tissues and is substantially more enriched than the soil C. Earthworm tissues have similar levels of15N enrichment to both the soil and plant tissues. These data are consistent with the hypothesis that this earthworm derives much of its assimilated C relatively directly from organic matter associated with the roots and decomposing harvest residues.  相似文献   

7.
Soil amendment with hydrochar produced by hydrothermal carbonization of biomass is suggested as a simple, cheap, and effective method for increasing soil C. We traced C derived from corn silage hydrochar (δ13C of ?13?‰) added to “coarse” and “fine” textured soils (δ13C of ?27?‰ for native soil C (SOC)) over two cropping seasons. Respiration rates increased in both soils (p?<?0.001) following hydrochar addition, and most of this extra respiration was derived from hydrochar C. Dissolved losses accounted for ~5 % of added hydrochar C (p?<?0.001). After 1 year, 33?±?8 % of the added hydrochar C was lost from both soils. Decomposition rates for the roughly two thirds of hydrochar that remained were very low, with half-life for less estimated at 19 years. In addition, hydrochar-amended soils preserved 15?±?4 % more native SOC compared to controls (negative priming). Hydrochar negatively affected plant height (p?<?0.01) and biomass (p?<?0.05) in the first but not the second crop grown on both soils. Our results confirm previous laboratory studies showing that initially, hydrochar decomposes rapidly and limits plant growth. However, the negative priming effect and persistence of added hydrochar C after 1 year highlight its soil C sequestration potential, at least on decadal timescales.  相似文献   

8.
Labile soil dissolved organic carbon (DOC) and heat-extracted carbon (HEC) are sensitive indicators of changing soil organic carbon (SOC) stocks. Isotope ratio mass spectrometry (IRMS) is an important tool for studying SOC turnover and soil biological function. Several complications are involved in measuring DOC/HEC, for example salt ionic strength; solution pH; and anionic damage to elemental analyzer-IRMS. We evaluated a method for DOC/HEC analysis with 0.1 M potassium phosphate buffer (PPB). This method was strongly correlated with commonly used carbon (C) extractants for C quantification. Carbon-13 comparisons between DOC/HEC extracted with Milli-Q water and PPB were similar. The δ13C (‰) values of particulate OC and DOC were similar, whereas the relationship between humic OC and HEC was soil specific. An incubation experiment demonstrated that DOC/HEC δ13C (‰) successfully explained respired microbial carbon dioxide over 90 days. We conclude that this method represents an alternative for DOC/HEC quantification and δ13C (‰) analyses.  相似文献   

9.
ABSTRACT

Mangrove ecosystems play an important role in carbon (C) accumulation in tropical and subtropical regions. Below-ground deep anoxic soil is especially important for C accumulation. However, quantitative data on below-ground soil C stocks in mangrove ecosystems are lacking compared with data on above-ground biomass. In addition, soil C accumulation processes in mangrove ecosystems have not been sufficiently clarified. In this study, we quantified soil C stocks and focused on the mass of fallen litter and below-ground roots, which are produced by tree and that may directly influence soil C stocks in a mature subtropical mangrove in the estuary of Fukido River, Ishigaki Island, southwestern Japan. The principal species in this study site were Bruguiera gymnorhiza and Rhizophora stylosa, and total above-ground biomass at the site was 80.7 ± 1.3 (mean ± SD) Mg C ha?1 over the period from 2014 to 2016. Litter was collected in six litter traps from May 2013 to November 2016, it ranged from 7.8 to 11.5 Mg C ha?1, with the major proportion of litter being from foliage (leaves and stipules). The root C density at 90-cm depth was 27.1 ± 11.3 Mg C ha?1. The soil C stock in the mangrove forest at a depth of 90 cm at the study site was 251.0 ± 34.8 Mg C ha?1, and it seems to be lower value in the tropical region but it to be higher in subtropical East Asian mangrove sites. Dead roots, especially dead fine roots, but not fallen litter, were significantly positively correlated with soil C stocks. The δ13C values obtained from soils ranged from ?29.3‰ to ?27.0‰; these values are consistent with those for below-ground fine roots. These results strongly suggest that dead fine roots could be a main factor controlling soil C stocks at this study site.  相似文献   

10.
We undertook what we believe to be a unique survey of the natural abundances of 13C and 15N in urban soils and plants in Karlsruhe (Germany), a European city of average size. We found broad patterns of these abundances in both soils and plants, which reflected geology and land use. In contrast with studies on smaller areas (showing the direct effect of human activities), our study first determined the extent to which the abundances correlated with land use or underlying geology and then assessed how we could further test such relationships. The spatial pattern of δ13C in surface soil correlated with that of the underlying parent material; construction activities superimposed a secondary signal. Maize cultivation was a source of less negative soil δ13C, whereas the C3 vegetation is a source of more negative soil δ13C. There was a footprint of less negative plant δ13C in the industrial and port areas; plant δ13C downwind of the city was less negative than upwind, which might relate to atmospheric pollution from the port area or to differences in soil properties. There was no significant effect of wind direction or geology on soil or plant δ15N, which was correlated mainly with land use. The largest soil δ15N was under agriculture and the smallest under woodland. The abundance of 15N in inner-urban soil and plants was intermediate between those of agriculture and forests. This study represents a major advance in the use of stable isotope geochemistry in understanding urban environments.  相似文献   

11.
Various crop residues were applied to a strongly acidic tea garden soil to investigate their performance in ameliorating soil acidity. A laboratory study found the performance of crop residues on soil acid amelioration was mainly determined by the combined effect of nitrogen (N) transformation, cation exchange, and ash alkalinity. Nitrogen transformation was varied for different crop residues added, but followed N regulation, resulting in an adverse liming effect. It was assumed that during the release of ash alkalinity, cations replaced soil exchangeable acidity in soil solution, which largely diminished the liming effect of ash alkalinity. That was why soil pH was highly correlated with N transformation process. Furthermore, soil pH was positively correlated with carbon (C)/N ratios of crop residues both in low-level treatment (R 2 = 0.955) and in high-level treatment (R 2 = 0.981). Therefore, crop residues with relative high C/N ratios were considered to be more suitable for long-term pH adjustment of tea garden soils.  相似文献   

12.
The objective of this work was to investigate the usefulness of near infrared reflectance spectroscopy (NIRS) in determining some C and N fractions of soils: labile compounds, microbial biomass, compounds derived from added 13C- and 15N-labelled straw. Soil samples were obtained from a previous experiment where soils were labelled by addition of 13C- and 15N-labelled wheat straw and incubated in coniferous forests in northern Sweden (64-60°N) and south France (43°N). The incubation lasted three years with 7-9 samplings at regular time steps and four replicates at each sampling (204 samples). Samples were scanned using a near infrared reflectance spectrophotometer (NIRSystem 6500). Calibrations were obtained by using a modified partial least squares regression technique with reference data on total C and N, 13C, 15N, control extract-C, -N, -13C and -15N, fumigated extract-C, -N, -13C and -15N, biomass-C, -N, -13C and -15N contents. Mathematical treatments of the absorbance data were first or second derivative with a gap from 4 to 10 nm. The standard error of calibration (SEC)-to-standard deviation of the reference measurements ratio was ≤0.2 for 10 models, namely total C and N, 13C, 15N, control extract-C, fumigated extract-C and -N, biomass-C and -N and biomass-15N models and therefore considered as very good. With an R2=0.955, the fumigated extract-15N model is also good. The standard error of performance calculated on the independent set of data and SEC were within 20% of each other for all the best equations except for the biomass-15N model. The ability of NIRS to detect 13C and 15N in total C and N and in the extracts is noteworthy, not because of its predictive function that is not really of interest in this case, but because it indicates that the spectra kept the signature of the properties of the organic matter derived from the straw even after two- or three-year decomposition. The incorporation of the 13C in the biomass was less well predicted than that of the 15N. This could indicate that the biomass derived from the straw was characterised by a particular protein or amino acid composition compared to the total biomass that includes a large proportion of dormant micro-organisms. The predictive ability of NIRS for microbial biomass-C and -N is particularly interesting because the conventional analyses are time consuming. In addition, NIRS allows detecting analytical errors.  相似文献   

13.
Long‐term dynamics of amino acids (AAs), from a bare fallow soil experiment (established in 1928 at INRA‐Versailles, France), were examined in unamended control (Con) plots and plots treated with ammonium sulphate (Amsul), ammonium nitrate (Amnit), sodium nitrate (Nanit) or with animal manure (Man). Topsoil (0–25 cm) from 1929, 1963 and 1997 was analysed for C, N and 15N content and distribution of 18 amino acids recovered after acid hydrolysis with 6 m HCl. With time, soil N, C and AA content were reduced in Con, Amsul, Amnit and Nanit, but increased in Man. However, the absolute N loss was 3–11 times larger in Man than Nanit, Amsul, Amnit and Con, due to the much higher N annual inputs applied to Man. From 1929 to 1997 in Con, Amsul, Amnit and Nanit the whole soil and non‐hydrolysable‐N pool δ15N increased associated with the loss of N (indicative of Rayleigh 15N/14N fractionation). No δ15N change from 1929 to 1997 was found in the hydrolysable AA‐N (HAN) pool. Fertilizer N inputs aided stabilization of soil AA‐N, as AA half‐life in the mineral N fertilizer treatments increased from 34 years in 1963 to 50 years in 1997. The δ15N values of alanine and leucine reflected both source input and 15N/14N fractionation effects in soils. The δ15N increase of ornithine (~6‰) was similar to the whole soil. The δ15N change of phenylalanine in Con (decrease of 7‰) was related to its proportional loss since 1929, whereas for Amsul, Amnit, Nanit and Man it was associated with isotope effects caused by the fertilizer inputs. However, the soil δ15N value of most individual amino acids (IAAs) did not significantly change over nearly 70 years, even with mineral or organic N inputs. We conclude for these bare fallow systems that: (i) δ15N changes in the whole soil and non‐hydrolysable AA pool were solely driven by microbial processes and not by the nature of fertilizer inputs, and (ii) without plant inputs, the δ15N of the HAN pool and (most) IAAs may reflect the influence of plant–soil interactions from the previous (arable cropping) rather than present (fallow) land use on these soil δ15N values.  相似文献   

14.
Dual natural abundance analysis of 15Nitrogen (N) and 13Carbon (C) isotopes in lentil plants subjected to different soil moisture levels and rates of potassium (K) fertilizer were determined to assess crop performance variability in terms of growth and N2-fixation (Ndfa). The δ15N values in lentils ranged from +0.67 to +1.36‰; whereas, those of the N2-fixed and reference plant were ?0.45 and +2.94‰, respectively. Consequently, the Ndfa% ranged from 45 and 65% of total plant N uptake. Water stress reduced Δ13C values. However, K fertilization enhanced whole plant Δ13C along with dry matter yield and N2-fixation. The water stressed plants amended with K fertilizer seemed to be the best treatment because of its highest pod yield, high N balance, and N2-fixation with low consumption of irrigation water. This illustrates the ecological and economical importance of K fertilizer in alleviating water stress occurring during the post-flowering period of lentil.  相似文献   

15.
Soil conservation measures such as establishing grass barriers or cover crops effectively control erosion but also provoke competition, which reduces yields of companion crops. We used 13C and 15N natural abundance profiles to identify the causes of competition of soil conservation measures on a field with 59% slope in Northwest Vietnam three years after establishment. Treatments were maize under farmer’s practice (T1, control), maize with Guinea grass barriers (T2), maize under minimum tillage (MT) with Pinto peanuts as cover crop (T3), and maize under MT and relay cropped with Adzuki beans (T4). A pretest using data from zero-N plots revealed that abundance of water and limited nitrogen availability induced low grain N concentrations, enriched leaf δ13C, and reduced maize grain yield. Similar low N leaf concentrations and elevated δ13C values were observed in maize growing close to frequently pruned grass barriers under positive water balance conditions, indicating that yield decline in these rows can be attributed mainly to N competition. Enriched δ15N values of maize from rows next to barriers indicated reliance on soil N rather than on 15N-depleted fertiliser N. Vigorous cover crop growth under MT resulted in maize yield decline due to N competition while relay-cropped legumes did not trigger inter-species competition having a similar maize yield, leaf N concentration, δ13C, and δ15N as the control.  相似文献   

16.
One way to increase the amount of carbon sequestered in agricultural land is to convert conventional tillage into no‐tillage systems. This greatly affects the location of crop residues in soil. To investigate the impact of the location of residues on soil physical and biological properties and how the interactions between those properties influence the fate of carbon and nitrogen in soil, we did a laboratory experiment with repacked soil in columns. Doubly labelled 13C15N oilseed rape residues were incorporated in the 0–10 cm layer or left on the soil surface. The columns were incubated for 9 weeks at 20°C and were submitted to three cycles of drying and wetting, each of them induced by a rain simulator. The location of the residues affected the water dynamics and the distribution of C and N in the soil, which in turn influenced microbial activity and the decomposition rate of the added residues. After 9 weeks of’incubation, 18.4 ± 1.5% of the surface applied residue‐C and 54.7 ± 1.3% of the incorporated residue‐C was mineralized. We observed a nitrate accumulation of 10.7 mg N kg?1 with residues at the soil surface, 3.6 mg N kg?1 with incorporated residues and 6.3 mg N kg?1 without addition of fresh organic matter, which entailed net N mineralization in soil under mulch and immobilization of N with residue incorporation compared with the control soil. We concluded that application of oilseed rape residues at the soil surface increased the storage of fresh organic C in soil in the short term, compared with the incorporation treatment, but increased the risk of nitrate leaching.  相似文献   

17.
Amino sugars are useful indicators for the accumulation of microbial residues. A 14-day incubation experiment with C4 and C3 sucrose additions was carried out to investigate the relationships between amino sugar-specific shifts in δ13C values and those of CO2 production, microbial biomass C, K2SO4 extractable C and soil organic C (SOC). High performance anion exchange chromatography (HPAEC-IRMS) was able to measure amino-sugar specific δ13C values for muramic acid (MurN), galactosamine (GalN), and glucosamine (GlcN) in the range of natural abundance. At day 7, the initial application of C4 sucrose significantly increased the δ13C value of MurN by 1.0‰ in comparison with the non-amended control treatment, whereas that of GalN and GlcN remained unchanged. This significant increase had disappeared by day 14. This means that the HPAEC-IRMS method is not useful for short-term incubation experiments in the natural abundance range, as the pool size, especially of GalN and GlcN, was too large for a significant response in δ13C values. The δ13C values significantly decreased in the order MurN (−23.2‰) > GalN (−25.7‰) > GlcN (−26.5‰) in the control treatment. Similar δ13C values were measured in GlcN, microbial biomass C, and SOC. MurN exhibited δ13C values similar to the K2SO4 extractable fraction. These results may be caused by differences in the access of bacteria and fungi to different SOC fractions or differences in metabolic fractionation in bacteria and fungi. C3 sucrose application without further nutrient supply seven days after C4 sucrose application together with N and P led to strong mineralization of freshly formed microbial residues.  相似文献   

18.
The results of investigation into the composition of stable carbon and nitrogen isotopes of organic matter in the soils developed within soil–sedimentary sequences in the central part of the Selenga Middle Mountains in the Late Glacial and Holocene are presented. In the past 15000 years, the organic matter of the investigated soils has only been formed from the biomass of C3 plants (without the participation of C4 plants). This is confirmed by the of δ13С values from–27.00 to–23.35‰. A combined analysis of the parameters of the organic matter (Сorg, Ntotal, C/N, δ13С, and δ15N) of soils formed in different periods makes it possible to assume that the isotopic composition of carbon and nitrogen reflects changes in the climate humidity during the Late Glacial and Holocene periods. The specified intervals of soil formation correspond to the climate humidification and stabilization of the surface owing to the development of dense vegetation. Aridization periods were characterized by the accumulation of sediments that buried soil horizons. The most pronounced stages of climate aridization occurred at the transition from the Late Glacial to the Holocene, from the Boreal to the Atlantic, and from the Atlantic to the Subboreal periods. The optimum soil-forming conditions existed in the periods of 11700–11000, 8800–6900, and 4700–1000 years ago, which is confirmed by the published data on the landscape-climatic changes in the adjacent areas in the past 15000 years.  相似文献   

19.
In carbonate‐containing soils a reliable determination of organic C requires a method that effectively separates organic and inorganic C without altering the organic matter. This study was conducted to determine whether HCl vapor completely removes carbonates even in dolomite‐rich soils and to what extent a widely used acid‐fumigation method has to be modified for humus‐rich soils. Furthermore, it was tested whether HCl fumigation alters organic‐C content. Since C and N parameters are often analyzed simultaneously we also tested the influence of acid‐vapor treatment on N content and on δ13C of soil organic matter. We applied fumigation with 37% HCl for 8 and 32 h using 9 carbonate‐containing soil samples. Inorganic C ranged from 7 to 124 and organic C from 9 to 267 g kg–1. The maximum contents of dolomite and calcite were 940 and 640 g kg–1, respectively. A time of 8 h was enough to completely remove all carbonates. Neither the content nor the δ13C of organic C were significantly affected by fumigation. In contrast, N contents were altered by acid treatment. Based on these results and on our experience in analyzing more than 1000 soil samples, a recommended procedure for acid fumigation of carbonate‐containing soils with a wide range of organic‐ and inorganic‐C contents was derived. Samples pretreated in this way can be analyzed reliably for their organic‐C content and δ13C. Furthermore, N and inorganic‐C contents can be determined with a quality sufficient for many purposes.  相似文献   

20.
Buzek  F.  Černý  J.  Pačes  T. 《Water, air, and soil pollution》1998,105(1-2):155-164
The effects of atmospheric deposition on N cycling in acidified soils were studied at three spruce and one beech forested sites in the Czech Republic. Nitrogen content and δ15N were monitored in bulk and throughfall precipitation, needles, leaves, soils and soil solutions. Changes in soil NO3 - production, effect of admixing of atmospheric N in spruce forest and N consumption in deciduous forest are described using changes in 15N fractionation of mineralized N in soil. Admixing of atmospheric NH4+ can be identified at low concentrations of exchangeable NH4 +. The δ15N ratio of atmospheric NO3 - input is on average by 2‰ less negative than the δ5N ratio in soil water; admixing changes the δ15N of soil NO3 - detected in lysimeters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号