首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
Abstract

A previous study indicated that agricultural biosolid applications increased the concentration of EPA3050‐digestible trace elements in soils on Pennsylvania production farms but could not indicate potential trace‐element environmental availability. This study was conducted to determine if biosolid application had altered the distribution of trace‐elements among operationally defined soil fractions and the relationship of trace element concentrations in soil and crop tissues. Biosolid‐amended and unamended soils from production farms in Pennsylvania were extracted using a modified Bureau Communautaire de Référence (BCR) sequential fractionation technique and analyzed for chromium (Cr), copper (Cu), nickel (Ni), lead (Pb), and zinc (Zn). Trace‐element concentrations in crop tissues (soybean silage, sudangrass, corn grain, alfalfa hay, and orchardgrass hay) from the same farms were also determined. Fractionation results indicated that the proportion of Cr, Cu, Ni, Pb, and Zn that is potentially bioavailable is quite small in unamended soils. Biosolid applications significantly (P≤0.1) increased concentrations of Cu in all soil fractions (average increase over unamended soil=1.14, 8.27, 6.04, and 5.84 mg kg?1 for the exchangeable, reducible, oxidizable, and residual fractions, respectively), Ni (0.41, 1.65 mg kg?1 for the reducible and residual fractions, respectively), Pb (5.12 and 1.49 mg kg?1 for the reducible and residual fractions, respectively), and Zn (8.28, 7.12, 4.44, and 8.98 mg kg?1 for the exchangeable, reducible, oxidizable, and residual fractions, respectively) but did not significantly increase Cr in any soil fraction. Concentrations of Cu in all soil fractions were significantly (P≤0.01) correlated with concentrations of Cu in orchardgrass tissue (r=0.70, 0.66, 0.76, and 0.69 for the exchangeable, reducible, oxidizable, and residual soil fractions, respectively). Concentrations of exchangeable and reducible Zn were significantly correlated with Zn in sudangrass tissue (r=0.81 and 0.67), and reducible Zn was significantly correlated with Zn concentrations in orchardgrass tissue (r=0.65). Application of biosolids had little effect on bioavailability of Cr, Ni, or Pb, whereas higher loadings of Cu and Zn led to a shift toward the more labile soil fractions. Loadings of Cu and Zn were much smaller than cumulative loadings permitted under U.S. Environmental Protection Agency (USEPA) Part 503 regulations. Chemical soil fractionation was able to detect increases in labile soil Cu and Zn that relate to increased phytoavailability.  相似文献   

2.
3.
Abstract

A single biosolids application was made to 1.5×2.3 m confined plots of a Davidson clay loam (Rhodic Kandiudult) in 1984 at 0, 42, 84, 126, 168, and 210 Mg ha?1. The highest biosolids application supplied 750 and 600 kg ha?1 of Cu and Zn, respectively. Corn (Zea mays L.), from 1984 to 2000, and radish (Raphanus sativus L.) and romaine lettuce (Lactuca sativa var. longifolia), from 2001 to 2004, were grown at the site to assess heavy‐metal bioavailability. Extractable (0.005 diethylenetriamine (DTPA) and Mehlich 1) Cu and Zn were determined on 0 to 15‐cm depth samples from each plot. Corn yield increased with biosolids rate each year until 1993 to 1997, when yield decreased with biosolids rate because of phytotoxicity induced by low (<5.0) soil pH. The corn yield reduction was reversed between 1998 and 2000 upon raising the soil pH to approximately 6.0 by limestone addition following the 1997 season. Between 2001 and 2004, radish and lettuce yields were either not affected or slightly increased with biosolids rate, even as soil pH declined to below 5.5. Plant‐tissue metal concentrations increased with biosolids rate and as pH declined but were always within the normal range of these crops. Mehlich 1 and DTPA extractable metals increased linearly with biosolids rate. Extractability of Cu and Zn decreased approximately 50% over the past 20 years despite a decrease in soil organic matter concentration and greater than 95% conservation of the metals.  相似文献   

4.
Abstract

Sewage‐sludge‐amended soils generally contain elevated levels of organic matter and heavy metals compared to control soils. Because organic matter is known to complex with heavy metals, the solubility behavior of the organic matter in such soils may exert a significant influence on the solubility of the metals. Little is known about such a process. Using batch experiments in which the solubility of organic matter in a heavily sludge‐amended soil was artificially manipulated, we show that the solubilities of the heavy metals copper (Cu), nickel (Ni), and lead (Pb) show a strong positive relationship to the solubility of organic matter, particularly at high pH. The results suggest that under field conditions, spatiotemporal variations in the solid–solution partitioning of organic matter may have a bearing on the environmental significance (mobility and bioavailability) of these heavy metals.  相似文献   

5.
The To Lich and Kim Nguu Rivers, laden with untreated waste from industrial sources, serve as sources of water for irrigating vegetable farms. The purposes of this study were to identify the impact of wastewater irrigation on the level of heavy metals in the soils and vegetables and to predict their potential mobility and bioavailability. Soil samples were collected from different distances from the canal. The average concentrations of the heavy metals in the soil were in the order zinc (Zn; 204 mg kg?1) > copper (Cu; 196 mg kg?1) > chromium (Cr; 175 mg kg?1) > lead (Pb; 131 mg kg?1) > nickel (Ni; 60 mg kg?1) > cadmium (Cd; 4 mg kg?1). The concentrations of all heavy metals in the study site were much greater than the background level in that area and exceeded the permissible levels of the Vietnamese standards for Cd, Cu, and Pb. The concentrations of Zn, Ni, and Pb in the surface soil decreased with distance from the canal. The results of selective sequential extraction indicated that dominant fractions were oxide, organic, and residual for Ni, Pb, and Zn; organic and oxide for Cr; oxide for Cd; and organic for Cu. Leaching tests for water and acid indicated that the ratio of leached metal concentration to total metal concentration in the soil decreased in the order of Cd > Ni > Cr > Pb > Cu > Zn and in the order of Cd > Ni > Cr > Zn > Cu > Pb for the ethylenediaminetetraaceitc acid (EDTA) treatment. The EDTA treatment gave greater leachability than other treatments for most metal types. By leaching with water and acid, all heavy metals were fully released from the exchangeable fraction, and some heavy metals were fully released from carbonate and oxide fractions. The concentrations of Cd, Cr, Cu, Ni, Pb, and Zn in the vegetables exceeded the Vietnamese standards. The transfer coefficients for the metals were in the order of Zn > Ni > Cu > Cd = Cr > Pb.  相似文献   

6.
Abstract

Two Ferralsols (350 and 600 g kg?1 clay) from the Brazilian Cerrado Region were evaluated for long‐term effects (5 and 8 years) of no tillage on carbon (C) stocks in particulate (>53 µm) and mineral‐associated (<53 µm) soil organic matter (SOM) fractions. Carbon stocks in particulate SOM increased under no tillage compared with conventional tillage, and the rate was higher in the clayey soil (0.62 Mg C ha?1 yr?1) than in the sandy clay loam soil (0.31 Mg C ha?1 yr?1). In contrast, the mineral‐associated SOM in the top soil layer (0–20 cm) was not affected by tillage system. Sequestration of atmospheric C in tropical no‐tillage soils seems to be due to accumulation of C in labile SOM fractions, with highest rates in clayey soils probably due to physical protection.  相似文献   

7.
A research study was carried out to determine the electrical conductivity (EC), residual sodium carbonate (RSC), sodium adsorption ratio (SAR), pH and metals in metal-polluted irrigation water from a nullah and those in soils over a period of time, and the effect of metals on rice yield and metal concentrations in rice grain and straw. Two sites (I and If) were selected on the bank of Nullah Dek at Thatta Wasiran in Sheikhupura District (Pakistan), with two rice varieties, Super Basmati and Basmati 385, at both sites. Water samples were collected during rice crop growth at 15-day intervals from August 3 to November 1, 2002. The results showed that Nullah Dek water had an EC 〉1.0 dS m^-1 and RSC of 2.78-4.11 mmolc L^-1, which was hazardous for crops, but the SAR was within the safe limit. Cu, Mn Cd and Sr were also within safe limits. The soil analysis showed that Site Ⅱ was free from salinity/sodicity, whereas Site Ⅰ was saline sodic. Among metals, Zn was sometimes deficient, Cu, Mn and Fe were adequate, and St, Ni and Cd were within safe limits in the soil at both the sites. After the rice crop harvest, concentrations of all metals tested were usually slightly increased, being higher in the upper soil layer than the lower. In addition, Basmati 385 produced higher rice grain and straw yield than Super Basmati. Chemical analysis of rice grain indicated the presence of Zn, Cu, Fe, Mn, Pb and Sr, whereas rice straw contained Zn, Cu, Fe, Mn and Sr, with Cd and Ni both being found in minute quantities.  相似文献   

8.
Corn field experiments with two treatments, NP and NPK, where N in the form of urea, P in the form of calcium phosphate, and K in the form of KCl were applied at rates of 187.5, 33.3, and 125 kg ha^-1, respectively, on soils derived from Quaternary red clay were conducted in the hilly red soil region of Zhejiang Province, China. Plant grains and stalks were collected for determination of K content. Seven equations were used to describe the kinetics of K release from surface soil samples taken before the corn experiments under electric field strengths of 44.4 and 88.8 V cm^-1 by means of electro-ultrafiltration (EUF) and to determine if their parameters had a practical application. The second-order and Elovich equations excellently described K release; the first-order, power function, and parabolic diffusion equations also described K release well; but the zero-order and exponential equations were not so good at reflecting K release. Five reference standards from the field experiments, including relative grain yield (yield of the NP treatment/yield of the NPK treatment), relative dry matter yield (dry matter of the NP treatment/dry matter of the NPK treatment), quantity of K uptake in the NP treatment (no K application), soil exchangeable K, and soil HNO3-soluble K, were used to test the effectiveness of equation parameters obtained from the slope or intercept of these equations. Correlations of the ymax (the maximum desorbable quantity of K) in the second-order equation and the constant b in the first-order and Elovich equations to all five reference standards were highly significant (P ≤ 0.01). The constant a in the power function equation was highly significant (P 〈 0.01) for four of the five reference standards with the fifth being significant (P ≤ 0.05). The constant b in the parabolic equation was also significantly correlated (P ≤ 0.05) to the relative grain yield and soil HNO3-soluble K. These suggested that all of these parameters could be used to estimate the soil K supplying capacity and the crop response to K fertilizer.  相似文献   

9.
Abstract

A small‐plot field experiment on microelement pollution (Aluminum (Al), Arsenic (As), Cadmium (Cd), Chromium (Cr), Copper (Cu), Mercury (Hg), Lead (Pb), Zinc (Zn)) was initiated in 1994 at Tass‐puszta Model Farm of Gyöngyös College, Hungary. The experimental plants were winter wheat (Triticum aestivum L. emend. Fiori et Pool.) in 1995, maize (Zea mays L.) in 1996, and sunflower (Helianthus annuus L.) in 1997. Plant samples were taken each year during the vegetation period at phenophases characterized by intensive nutrient uptake. The Al content of crops was not influenced by Al load of the soil. Arsenic accumulation was not considerable in the grain with the highest As load. Cadmium accumulation was significant both in vegetative and reproductive parts of crops with increasing Cd loads of the soil. The Cd content was about 10–40 times higher in treated sunflower seeds than in the control; as a result the seeds were not suitable for consumption. Cadmium can accumulate in the reproductive tissue, so it is a real risk in the food chain. In the first year, Cr(VI) had a toxic effect on wheat, but it was not mobile in the soil–plant system. Vegetative parts of winter wheat accumulated significant amounts of Hg, but maize and sunflower seeds did not accumulate Hg. Lead, Cu, and Zn showed only moderate enrichment in crops following increasing loads in the soil.  相似文献   

10.
Abstract

Heavy‐metal inhibition of nitrification in soils treated with reformulated nitrapyrin was investigated. Clarion and Okoboji soils were treated with ammonium sulfate [(NH4)2SO4] and a nitrification inhibitor. Copper(II) (Cu), Zinc(II) (Zn), Cadmium(II) (Cd), or Lead(II) (Pb) were added to each soil. A first‐order equation was used to calculate the maximum nitrification rate (K max), duration of lag period (t′), period of maximum nitrification (Δt), and the termination period of nitrification (t s). In the Clarion soil, the K max decreased from 12 mg kg?1 d?1 without the nitrification inhibitor to 4, 0.25, 0.86, and 0.27 mg kg?1 d?1, respectively, when the inhibitor and Cu, Zn, Pb, or Cd were applied. In the Okoboji soil, K max decreased from 22 mg kg?1 d?1 with no inhibitor to 6, 3, 4, and 2 mg kg?1 d?1, respectively, when an inhibitor and Cu, Zn, Pb, or Cd were added. The t′ varied from 8 to 25 d in the Clarion soil and from 5 to 25 d in the Okoboji soil, due to addition of Cu, Zn, Pb, or Cd and the inhibitor.  相似文献   

11.
Abstract

Large amounts of flue gas desulfurization (FGD) and fluidized bed combustion (FBC) by‐products from burning coal, consisting primarily of gypsum, are available for potential use as a soil amendment. However, information is limited on longer‐term changes in chemical and physical properties induced over time and over small depth increments of the upper soil profile after applying these amendments. This study examined longer‐term effects in an abandoned Appalachian pasture soil amended with various liming materials and coal combustion by‐products (CCBPs). Soil chemical and physical properties were investigated over time and depths. The results indicated limited dissolution and movement of the calcium (Ca) and magnesium (Mg) applied with the chemical amendments, except for Ca and Mg associated with sulfate. However, sufficient dissolution occurred to cause significant increases in exchangeable Ca and Mg and decreases in exchangeable Al that were reflected in corresponding increases in soil pH. These beneficial effects persisted over time and were confined to the upper 0‐ to 15‐cm depth of the profile. The greatest benefits appeared to be in the upper 0‐ to 5‐cm surface layer. Both Ca and Mg applied as calcitic dolomitic limestone tended to be immobilized in the upper 0‐ to 5‐cm layer of the soil profile; Ca more so than Mg. The presence of S applied in the FGD and FBC amendments appeared to enhance the mobility of Ca and Mg. The ratio of Ca/Mg in HCI extracts from the calcitic dolomitic treatment was close to that of applied calcitic dolomite, implying that the inactive component in soil might be the original calcitic dolomite particles. Soil physical properties measured over small depth increments showed that application of the amendments improved the saturated hydraulic conductivity only in the upper 0‐ to 5‐cm depth and had little or no significant effect on the dry bulk density and plant‐available water.  相似文献   

12.
In vitro plantlets or microtubers (in vitro produced tubers) of ‘Spunta’ potato (Solanum tuberosum L.) were planted in a 3 soil: 2 peat moss: 1 sand substrate (by volume) amended with municipal solid waste (MS W) compost at 0, 10, 20, or 30 g 4‐1 L pot. Three months later, plant growth and tuber yield were evaluated and concentrations of shoot and tuber tin (Sn), arsenic (As), copper (Cu), zinc (Zn), nickel (Ni), lead (Pb), manganese (Mn), cadmium (Cd), and iron (Fe) were determined. Amending with MSW resulted in significant increases in concentrations of all tested metals in the substrate. Number of proliferated shoots of plants started from rooted plantlets was greatest at 10 g pot‐1 MSW, whereas shoot weight of plants started from microtubers was greatest at 10 and 20 g pot‐1 MSW. Tuber yield of plants started from rooted plantlets or microtubers was greatest at 10 or 30 g pot‐1 MSW, respectively. In all instances, amending with MSW at 30 g pot‐1 resulted in significant increases in concentrations of all tested metals in shoots and tubers. Concentrations of shoot Ni and tuber Zn and Fe for plants started from rooted plantlets and concentrations of shoot Fe and tuber As, Cu and Pb for plants started from microtubers increased consistently with increasing MSW percentage of the substrate. Plants started from rooted plantlets produced shoots with sufficient Zn, Mn, and Ni concentrations regardless of the substrate but with toxic Cu content at 30 g pot‐1 MSW. Plants started from microtubers produced shoots with sufficient Mn and Ni concentrations regardless of the substrate but with low Zn and deficient Cu in unamended substrates. All plants had shoot Fe content higher than the sufficiency range. Although there were significant differences in concentrations of some nutrients among MSW treatments, no symptoms of nutrient toxicity or deficiency were observed. In all instances, tested elements did not accumulate in tubers to levels hazardous to human health. Concentrations of Cd, the most hazardous element, in potato tubers was not high enough to pose a threat to human. Our results indicate that there is a potential use of MSW in satisfying the needs of potato growth with negligible increases in heavy metal concentrations in tubers.  相似文献   

13.
The transformation and availability of various forms of Zn applied into a cinnamon soil and a carbonate meadow soil as well as the effects of fertillizer-P on them were studied by using the field experiment method and chemically sequential extraction procedure.Zn added into the soils was found to be rapidly transformed into the various forms. In the cinnamon soil,the amount of Zn transformed into the carbonate bound form was the highest,and the carbonate bound form was proven by the analyses of intensity factor and capacity factor to be the primary available Zn pool.But in the carbonate meadow soil,the Zn transformed was relatively homogeneously distributed in the various forms though the amount of Zn transformed into the Mn-oxide bound form was relatively high,and the organically bound,Mn-oxide bound and amorphous Fe-oxide,bound forms were found to be the main available Zn pool.Fertilizer-P took part in the regulation and control of available Zn in the soils to a certain degree.In the carbonate meadow soil,application of P fertilizer probably aggravated Zn deficiency at low Zn rate,while it was favorable to the storage of available Zn in the case of high Zn rate.  相似文献   

14.
Abstract

Profiles of semi‐arid–zone soils in Punjab, northwest India, were investigated for different forms of zinc (Zn), including total, diethylenetriamine penta‐acetic acid (DTPA)-extractable, soil solution plus exchangeable (Zn), Zn adsorbed onto inorganic sites, Zn bound by organic sites, and Zn adsorbed onto oxide surfaces. Irrespective of the different fractions of Zn present, its content was higher in fine‐textured Alfisols and Inceptisols than in coarse‐textured Entisols. In general, the higher content of Zn was observed in the surface horizon and then decreased in the subsurface horizons. However, none of the forms of Zn exhibited any consistent pattern of distribution. Organic matter and size fractions (clay and silt) had a strong influence on the distribution of different forms of Zn. Based upon the linear coefficient of correlation, the soil solution plus exchangeable Zn, adsorbed onto inorganic sites, and DTPA‐Zn increased with increase in organic carbon but decreased with increase in pH and calcium carbonate content. Total Zn increased with increase in clay and silt content. Among the different forms, Zn bound by organic sites, water soluble plus exchangeable Zn and Zn adsorb onto oxide (amorphous surfaces) were all correlated with DTPA extractable Zn. The uptake of Zn was more in recent floodplain Entisols than very fine textured Alfisols and Inceptisols. Among the different forms soil solution +exchangeable and DTPA‐extractable Zn was positively correlated with total uptake of Zn.  相似文献   

15.
India imports large amounts of rock phosphate (RP) and potassium (K) fertilizers from other countries; hence, research priorities have been directed toward finding alternative sources of phosphorus (P) and K fertilizers. This study focuses on the transformations of P and K in soil amended with RP and waste mica–enriched compost. The enriched compost had greater total P, K, calcium (Ca), magnesium (Mg), micronutrients, and biological properties than ordinary compost. In a wheat–soybean rotation, application of 5 t ha?1 enriched compost along with 50% of the recommended rate of inorganic fertilizer resulted in increased concentrations of saloid P, iron (Fe) P, aluminum (Al) P, Ca-P, occluded P, water-soluble K, exchangeable K, and nonexchangeable K over unfertilized plots. In addition, plots that received enriched compost had greater microbial biomass and phosphatase activities than unfertilized plots. Thus, enriched compost could be an alternative source of water-soluble P and K fertilizers for crop production.  相似文献   

16.
Abstract

Heavy‐metal concentration in underground and surface water, soil, and crop plants growing in farmers' fields near the industrial city of Ludhiana, Punjab, India, that receive irrigation with water contaminated with sewer and untreated industrial effluents was studied. The concentrations of lead (Pb), chromium (Cr), cadmium (Cd), and nickel (Ni) in sewage‐contaminated water were 18, 80, 88, and 210 times higher than in shallow handpump water, and 21, 133, 700, and 2200 times higher than in deep tube‐well water, respectively. The concentrations of Cd and Ni in shallow handpump underground water were significantly higher than in deep tube‐well underground water. The concentrations of Pb, Cr, Cd, and Ni in deep tube‐well water were 0.017, 0.003, 0.0002, and 0.0002 mg L?1, respectively. Soils irrigated with sewage‐contaminated water had higher electrical conductivity, cation exchange capacity, organic carbon (C), and clay content but had lower pH and calcium carbonate content compared to soils irrigated with deep underground water. The concentrations of diethylenetriamine pentaacetic acid (DTPA)–extractable Pb, Cr, Cd, and Ni in soils irrigated with sewage‐contaminated water were 1.8, 35.5, 3.6, and 14.3 times higher, and total concentrations of these heavy metals were 1.5, 3.0, 3.7, and 2.2 times higher than that in soils irrigated with deep underground water. The mean concentrations of Pb, Cr, Cd, and Ni in crop plants growing on soils irrigated with sewage‐contaminated water were 4.88, 4.20, 0.29, and 3.99 mg kg?1, which were 1.2, 2.1, 8.7, and 1.9 times higher than in plants irrigated with deep tube‐well water, respectively. The amounts of potentially toxic metals were significantly and positively correlated with cation exchange capacity and organic C content and negatively correlated with soil pH. In conclusion, long‐term accumulation of toxic metals in soils and their uptake by crop plants has a high potential for phytotoxicity as well as for entering into the food chain. The findings also suggest contamination of underground shallow drinking water through leaching of some highly mobile metals.  相似文献   

17.
Spectroscopic (XRD, XPS, ICP-MS and AAS) and microscopic (ESEM) techniques have been used in order to study the chemical effects with emphasis on mercury speciation, during thermal treatment of a mercury contaminated soil. In the untreated soil, mercury was found concentrated in spherical particles, which were successively broken down upon thermal treatment. Hg0 and inorganic mercury compounds (presumably HgO(s) and HgSO4(s)) could be detected. No (CH3)2Hg and only traces of CH3Hg+ could be found. The dependence on temperature and heating time indicated that the evaporation of mercury from the soil was partly controlled by diffusion mechanisms. Mercury volatilized in two separate stages during heating; initial elemental vaporization, and subsequent volatilization of the oxide or sulfate phase at higher temperatures (>230°C). By thermal treatment at 470°C and 20 min, a removal of >99% of the mercury could be achieved.  相似文献   

18.
Growth and N‐P‐K uptake in pumpkin (Curcubita moschata Poir.) cv ‘Libby‐Select’ were studied in dryland and irrigated culture. In both moisture regimes, maximum rates of dry matter accumulation occurred between the early and mid‐fruiting developmental stages. Higher total dry matter production with irrigated than dryland culture was primarily associated with increased shoot growth. Concentrations of N, P, and K in foliage generally decreased as pumpkin age increased. Irrigated pumpkins in conjunction with higher total vegetative dry matter accumulated more N, P, and K than dryland pumpkins. Up through early fruit development, N, P, and K accumulation was primarily in leaves and vines and by the late growth stages was almost entirely in the fruit. Total N, P, and K uptake at late fruiting was estimated at 219, 32, and 228 kg/ha in irrigated pumpkins and 180, 21, and 177 kg/ha in dryland pumpkins. Approximately 58% of the N, 52% of the K, and 68% of the P accumulated by late‐fruiting was absorbed by the plant after the early‐fruiting stage in both moisture regimes. Potassium redistribution from vegetative tissues during late fruit development decreased foliar K contents 32% in dryland pumpkins and 21% in irrigated pumpkins.  相似文献   

19.
Abstract

Wastes applied to agricultural land can contain significant concentrations of bioavailable molybdenum (Mo). Because Mo uptake by forage crops could lead to hypocuprosis in ruminants, more knowledge is needed about which crops are most efficient in accumulating Mo. At an old sewage sludge‐amended site, the concentrations of Mo, copper (Cu), and several other trace metals were measured in various grass species. Generally, the grasses grown on the sludge site contained higher Mo concentrations than the same species grown on a nearby control site. However, because Cu concentrations were also higher in the sludge‐grown grasses, Cu:Mo ratios in the grasses were frequently higher on the sludge site. In contrast, all legumes tested (alfalfa, birdsfoot trefoil, red clover, pea), as well as canola and beets, had lower Cu:Mo ratios when grown on the sludge site. Sulfur concentrations in the two crops analyzed for this element (canola and pea) were higher on the sludge site than the control. It is concluded that Mo, Cu, and sulfur (S) bioavailability remains elevated in the soil several decades after sewage sludge application.  相似文献   

20.
Abstract

The extractant Mehlich‐1 is routinely used in Brazil for determination of soil nutrients, whereas Mehlich‐3 has been suggested as a promising extractor for soil fertility evaluation. Both were used for extraction of molybdenum (Mo) in Brazilian soils with Mo dosage by the KI+H2O2 method. The Langmuir and Freundlich isotherms were used to study soil Mo adsorption. Mehlich‐1 extracted more Mo than Mehlich‐3 in soils with high contents of organic matter, clay, and iron (Fe) oxides. Mehlich‐3 and Mehlich‐1 extractions correlated positively and significantly with amorphous Fe oxides, crystalline Fe oxides, and organic matter. Molybdenum recovering rates correlated to crystalline Fe oxides and clay contents but not to organic matter, pH, and Mo adsorption capacity. Amorphous and crystalline Fe oxides, clay, and organic matter were responsible for most of the Mo adsorption. The Langmuir isotherm described better the Mo adsorption to soil amorphous Fe oxides and organic matter than the Freundlich isotherm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号