首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 178 毫秒
1.
The Mehlich 3 method for the determination of available phosphorus (P) is less laborious compared to the Olsen method and provides the advantage of multielement analysis. However, in Greece the Olsen P method is currently used because of its suitability for calcareous soils. The aims of this study were to compare (a) the Mehlich 3 and Olsen methods for 200 soils having different levels of pH and calcium carbonate and (b) Mehlich 3 colorimetric and Mehlich 3 inductively coupled plasma (ICP) analysis for 17 acidic and 23 alkaline soils. The correlation of Mehlich 3 P and Olsen P methods, excluding soils with pH less than 5 and soils with calcium carbonate levels from 10.3 to 48.3%, resulted in a linear slope of 0.24 and r2 of 0.82, and thus for this range of soils the Mehlich 3 test provided a more reliable measurement of P compared to the Olsen method. This study confirms also previous results that show that Mehlich 3 ICP test measures more P compared to Mehlich 3 colorimetry.  相似文献   

2.
Evaluation of five soil phosphorus (P) extractants was done on southwestern Nigerian soils from sedimentary and basement complex parent materials to determine the relationship between the extractants and the most appropriate extractant for the soils. The soils differed in properties. Generally, soils from the basement material had less available P compared with sedimentary material. Olsen extracted the greatest P. Bray 1 measured 67% of Olsen P, Hunter measured 52%, Mehlich measured 42%, and Ambic measured 24%. Positive and significant regression (P < 0.001) existed among Bray 1, Olsen, Mehlich, Hunter, and Ambic extractants. The strongest relationship was found among Olsen, Mehlich, and Ambic P. The relationship between maize P uptake and extracted P was quadratic, whereas the relationship with Mehlich was logarithmic. Bray, Mehlich, and Olsen P were the significant contributors to the maize P uptake and dry-matter yield. Extractants in order of P extraction were Olsen > Bray 1 > Hunter > Mehlich > Ambic.  相似文献   

3.
Abstract

Various soil tests are used to estimate phosphorus (P) availability for both crop uptake and potential loss to water. Conversion equations may provide a basis for comparison between different tests and regions, although the extent to which information can be interchanged is uncertain. The objective was to determine and quantify relationships between specific soil test extractants for samples taken annually in October and February over 4 years from four sites in each of eight soil series under grassland. The extractants comprised Mehlich‐3, Morgan, Olsen, Bray‐1, lactate–acetate, CaCl2 (1∶2 and 1∶10 soil–solution ratios), and resin. The results showed distinct relationships for each soil series, for which individual lines regression models (different intercepts and slopes) were superior to a single conversion equation across all soils. The ensuing difference between soils was large and ranged from 1.9 to 8.0 and 9.2 to 15.6 mg kg?1 P for Morgan and Olsen, respectively, at 20 mg kg?1 Mehlich‐3 P. Generally, the environmentally oriented tests CaCl2 and resin correlated best with Morgan. Some soil‐specific limitations were also observed. CaCl2 was less efficient than Morgan, and Morgan less efficient than Mehlich‐3 on a high Fe–P soil derived from Ordovician‐shale diamicton, compared with the general trend for other soils. This finding suggests that further disparity may arise where evaluation of critical, or other, limits across regions involves even a limited sequence of tests.  相似文献   

4.
Abstract

This work aimed to calibrate Mehlich 1, Mehlich 3, Bray 1, Olsen, and ion‐exchange resin extraction methods with maize phosphorus (P) responses in a pot study with lowland and upland soils with different P‐buffer capacities and to evaluate whether the calibration can be enhanced through the knowledge of remaining P. The experimental design was completely randomized with four replications in a factorial arrangement involving five P concentrations and four lowland or seven upland soils. The remaining P for each soil was determined, P‐buffer capacity was estimated, and the soils were grouped according to the results. Correlation coefficients showed that the remaining P is strongly dependent on clay and soil organic‐matter content, and its determination was useful to the evaluation of the extractants. The classification and grouping of soils according to their P‐buffer capacity improved the correlations between extracted P and plant response for Mehlich 1 and Bray 1 extractants. The Mehlich 3, Olsen, and resin methods presented better performances, independent of soil grouping.  相似文献   

5.
Abstract

A study was conducted with the purpose of comparing the efficiency of Mehlich 1, Mehlich 3, and calcium acetate lactate (CAL) extractants for the deter‐ mination of available phosphorus (P) and exchangeable cations [potassium (K), calcium (Ca), magnesium (Mg), and sodium (Na)] on 22 Ethiopian and 10 German agricultural soils. The Olsen and NH4OAc extractants were used as standards against which P and exchangeable cations values were compared. Results showed that, in general, highly significant correlations were found between all of the methods for available P and exchangeable cations determination on the Ethiopian soils. The highest correlation was, however, found with the Mehlich 3 extractant. On the ten soils from Germany, the Olsen method did not give significant cor‐ relation with the CAL method for P determination. The CAL and Mehlich 3 extrac‐ tants were also not good indicators of Na availability when compared with the NH4OAc method. It can be generalized that the Mehlich 3 is a suitable extractant for P, K, Ca, Mg, and Na in Ethiopian soils, but further study is recommended to confirm these findings under field conditions.  相似文献   

6.
Abstract

Investigating the relation between concentration or release of phosphorus (P) into soil solution (CaCl2‐P, determined by 0.01 M CaCl2 extraction of soils) and soil test phosphorus (Olsen P, or 0.5 N NaHCO3‐extractable soil phosphorus) for 10 widely ranging and variously managed soils from central Italy, a change point was evident where the slopes of two linear relationships meet. In other words, it was possible to distinguish two sections of the plots of CaCl2‐P against Olsen P, for which increases of CaCl2‐P per unit of soil test P increase were significantly (p<0.05) greater above than below these change points. Values of change point ranged from 14.8 to 253.1 mg kg?1 Olsen P and were very closely correlated (p<0.001) to phosphorus sorption capacity of soils. Similar change points were also previously observed when Olsen P (and also Mehlich 3 P) of surface soils was related to the P concentration of surface runoff and subsurface drainage. Because insufficient data are available relating P in surface soils and amount of P loss by overland, subsurface, or drainage flow, using the CaCl2 extraction of soil can be convenient to determine a change point in soil test P, which may be used in support of agricultural and environmental P management.  相似文献   

7.
Evaluation of nutrient status in soil is important for nutritional, environmental, and economical aspects. The objective of this work was to find out the most suitable universal extractant for determination of available phosphorus (P) and nitrate (NO3-) and exchangeable potassium (K), calcium (Ca), and magnesium (Mg) from soils using 0.01 M calcium chloride (CaCl2), 0.01 M barium chloride (BaCl2), 0.1 M BaCl2, 0.02 M strontium chloride (SrCl2), Mehlich 3, and ammonium bicarbonate diethylene triamine penta acetic acid (AB-DTPA) extractants. Composite surface soil samples (0–20 cm) were collected from the Eastern Harage Zone (Babile and Haramaya Districts), Wolaita Zone (Damot Sore, Boloso Bombe, Damot Pulasa, and Humbo Districts), and Dire Dawa Administrative Council by purposive sampling. The experiment was carried out in a completely randomized design (CRD) with three replications. Results indicated that the greatest correlations were found between Mehlich 3 and Olsen method and also between 0.02 M SrCl2 and Olsen method for available P. The amount of NO3 extracted by 0.02 M SrCl2 was significantly correlated to the amount determined by 0.5 M potassium sulfate (K2SO4). The amounts of exchangeable K, Ca, and Mg determined by ammonium acetate (NH4OAc) method were significantly correlated to the amount determined by universal extractants tested. In general, both 0.02 M SrCl2 and Mehlich 3 can serve as universal extractants for the macronutrients considered in this study with the former being more economical when NO3 is included.  相似文献   

8.
Abstract

Soil phosphorus (P) extractants are often selected according to the correlation or regression between test values and crop performance (e.g., P uptake and/ or yield). Although this criterion is an essential determinant of extractant performance, it is often inadequate for evaluating whether extractants accurately discriminate between P‐deficient and P‐sufficient soils, or whether they produce reliable critical level estimates or repeatable soil P measurements. Four supplementary indices were evaluated that may provide a more direct assessment of extractant performance. The potential use and reliability of the indices were investigated in an evaluation of four soil P extractants, Modified Truog, Mehlich 3, Olsen, and ion‐exchange resin, using data from a greenhouse experiment. Coefficients of determination between relative dry matter yield and extractable P failed to identify differences among the extractants, ranging from 0.95 to 0.97. Coefficients of determination between extractable P and P added ranged from 0.96 to 0.97 except for one method at 0.83. The proposed indices, however, produced a ranking of the extractants related to their performance. The Kappa efficiency (K EFF) index indicated that Mehlich 3 provided better detection of P‐sufficient and P‐deficient soils than either Olsen or Truog (K FFF values of 0.92, 0.83, and 0.68, respectively). These index values reflect that the extradants correctly detected P deficiency in 17 of 18, 17 of 18, and 15 of 18 soils. The slight superiority of Mehlich 3 over Olsen was due to its correct detection of 9 of 9 P‐sufficient soils while the Olsen and Truog extradants correctly detected 8 of 9 P‐sufficient soils. Further studies are needed, especially field studies, to determine whether these indices accurately reflect the reliability of the extradants for use in diagnosis and recommendation. Because these indices directly assess success in identifying deficient and sufficient conditions, their use in extractant evaluations should provide more specific, purposeful evaluations than methods based solely on correlation and regression.  相似文献   

9.
Abstract

Iron oxide–coated strips (Pi) can serve as a sink to continuously remove phosphorus (P) from solution. In this way, P extraction is analogous to the P absorption by plant roots. The objective of this study was to compare the iron oxide–coated paper strips with other chemical extraction methods to estimate the plant P availability for corn (Zea mays) growing in the greenhouse in some soils of Hamadan province of Iran. Sixteen soil samples with different physicochemical properties were analyzed for available P using Olsen, Colwell, Mehlich‐1, 0.01 M CaCl2, AB‐DTPA, and 0.1 M HCl methods and pi. Furthermore, the effects of two P levels (0 and 200 mg P kg?1) on the plant indices (P uptake, relative yield, and plant responses) were studied in a greenhouse experiment using 10 soil samples. The results showed that the amount of extractable P decreased in the order of 0.01 M CaCl2<AB‐DTPA<pi<Olsen<Colwell<Mehlich‐1<0.1 M HCl. The amount of P extracted by the pi method was significantly correlated with other extractants. The amounts of P extracted by all chemical methods were significantly correlated. The results of a pot experiment showed that the amount of P extracted by the pi method was significantly correlated with the plant P uptake. However, the other methods were not significantly correlated with P uptake. The results of this experiment showed that pi method was able to predict the plant availability of soil P.  相似文献   

10.
A flow injection analysis (FIA) method capable of automation for molybdate reactive phosphorus (P) determination in soil extracts is described. Results obtained using this method in three soil extracts [calcium chloride (CaCl2), Olsen, and Mehlich I] were the same as those provided by the manual molybdate blue colorimetric method. Linear range extending to 2 mg P L?1, detection limits ranging from 6 to 26 µg L?1 depending on the soil extract, and accurate recoveries from P‐spiked samples were achieved. The sensitivity of the system was around 0.3 absorbance units per mg P L?1, and the sampling frequency was 72 samples h?1, higher than those described for most of the flow injection methods.  相似文献   

11.
Abstract

Phosphorus extractants have not been tested extensively in the Southeast. An experiment was carried out to compare four P extractant methods using samples from a field P‐K factorial experiment with soybeans (Glycine max (L.) Merr.) at three locations in Georgia over four years. There were five P rates ranging from none to 80 kg ha‐1. Soils and plant tissue were sampled at mid‐summer and yields were recorded. The four P extractants compared were Olsen, Mehlich 1, Mehlich 2, and Bray 1. Quadratic regressions for soil P versus plant P and P rates were not significant compared to linear regressions. There were no significant yield responses to P. All extractants except Olsen were similar in their response to added fertilizer P as measured by linear r2 values. Olsen P gave lower linear r2 values both with P rate and with plant P. Mehlich 1 values were highly correlated with Mehlich 2 (0.94**) and Bray 1 (0.96**). Mehlich 2 and Bray 1 gave nearly the same soil P values with linear regressions of slope of 1.0 and low intercepts. Results from these experiments show that Mehlich 1, Mehlich 2, or Bray 1 could be used successfully on these soils, but that Olsen should be avoided.  相似文献   

12.
将4种土壤速效磷测定方法 [Olsen法(常规方法)、Bary1法、ASI法、Mehlich3法]用于无土栽培基质速效磷的测定,结果表明:在显著水平α=0.05,ASI法与Olsen法测定的速效磷没有显著性差异,而Bary1法和Meh-lich3法与Olsen法测定的速效磷存在极显著性差异,故ASI法可用于无土栽培基质速效磷的测定。  相似文献   

13.
Abstract

A study was undertaken to evaluate the agreement among different university laboratories performing the Olsen, Bray P1, and Mehlich I tests for P on a diverse group of noncalcareous agricultural soils and to develop relationships among the Olsen, Bray P1, Mehlich I, and Mehlich III soil tests. For each test, the results from the individual laboratories were highly correlated (r2 0.90) and in almost all instances the slopes of the equations describing the relationships among laboratories approached one, The results indicate that the Olsen, Bray P1 and Mehlich I soil tests may be performed with a high degree of precision when standard soil test procedures are followed.

Of the three most commonly performed tests in the U.S. (Olsen, Bray P1, and Mehlich I), the Olsen and Mehlich I tests were the most highly correlated (r2 = 0.87) although the Mehlich I test removed approximately one and one half times more P than did the Olsen test. Bray P1 and Olsen and Mehlich I P were less highly correlated (r2 ≤ 0.72) and the relationships between these variables were influenced by the texture of the soils. The quantity of P removed by the Bray P1 test was on the order of two and three times greater than that removed by the Olsen and Mehlich I tests, respectively. The Bray P1 and Mehlich III soil tests were highly correlated (r2 = 0.97) and similar quantities of P were extracted from the soil by the two tests.  相似文献   

14.
Soil testing is widely adopted as an essential diagnostic tool for identifying soil nutrient factors that limit sustained crop production. A systematic approach for rapid soil testing and fertilizer recommendation has been introduced and widely used in China by Agro Services International (ASI), USA. To verify the usefulness and reliability of the ASI method in soil testing and fertilizer recommendation in comparison with other commonly used traditional soil testing methods, 294 soil samples from major agricultural regions and soil types in China with a wide range of soil pH, from 5.1 to 8.9, were taken and analyzed for available phosphorus (P) and potassium (K) by the ASI multielement extraction solution and selected traditional methods, Olsen extractant for P, ammonium acetate (NH4OAc) extractant for K, and multielement extractant Mehlich 3 for P and K. Also, 46 soils were selected from northern China regions for a greenhouse trial with sorghum seedlings to determine if the soil testing values correlate well with plant response. Results indicated that the amount of soil P extracted by the ASI method (ASI P) was correlated to both soil extractable P tested by the Olsen extractant (Olsen P) and Mehlich 3 extractant (Mehlich 3 P). The correlation coefficient of ASI P with Mehlich 3 P (R2 = 0.86) was greater than that of ASI P with Olsen P (R2 = 0.74) across all selected soils. A good correlation was also found between the exchangeable K from the ASI method with the traditional ammonium acetate method (R2 = 0.81) and the Mehlich 3 method (R2 = 0.85). The results from the greenhouse trial showed that the extractable P and exchangeable K by the ASI multielement extraction solution could be used to represent the fertility status of soil P and K for the selected soils. Regression analysis indicated that the relative dry-matter yield of the sorghum plants can be predicted with either ASI P and ASI K values with the correlation coefficients (R2) values of 0.78 and 0.72 respectively and could be a good measure for soil testing and fertilizer recommendation in the selected soils and regions in China.  相似文献   

15.
Elevated phosphorus (P) from manure application field (MAF) soils transported to surface waters is a concern throughout the world because of P's role in eutrophication. Our goal was to determine why the common labile extractants alkaline-buffered sodium bicarbonate (Olsen), ammonium bicarbonate–diethylenetriaminepentaacetic acid (DTPA), and dilute acid–fluoride (Mehlich III) produce different values given the same soil sample. Ten sites within a dairy MAF were sampled by genetic horizons from fine, mixed, Thermic, Udic Paleustalf (Windthorst) map units. In addition to determining plant labile P, soluble and total P were determined. All P pools decreased with depth, but concentrations between the labile P were variable. Mehlich III extracted more plant labile P at neutral and slightly alkaline pH values. Mehlich III also dissolved more carbonates. The fraction of labile P that Mehlich III extracts in excess of Olsen and DTPA warrants further characterization of carbonate associated P to assess its role in plant nutrition and environmental quality regulation.  相似文献   

16.
Abstract

Iron (Fe)‐impregnated filter paper strips (Pi) have been proposed as a method for measuring available soil phosphorus (P). A well‐defined Pi method has not yet been developed and Pi strips are often prepared with different filter papers and procedures. A study aimed at arriving at a consistent Pi method is thus needed. Four types of Pi strips, prepared with the two most widely used papers, Whatman No. 50 and 541, following a procedure that incorporates improvements both proposed in the literature and made in our laboratory, were evaluated for P extraction capacity and error. Two of the best strips, which are significantly different in P extraction capacity, along with the Mehlich 1 (0.05M HCl and 0.0125M H2SO4) and the Olsen method (0.5M NaHCO3, pH 8.5) were further evaluated in a greenhouse experiment involving eight soils planted with corn (Zea mays L.). Results indicated that strips prepared with both Whatman No. 50 and 541 were appropriate for P extractions as long as strips were washed with deionized water after treatment with ammonium hydroxide (NH4OH). At room temperatures the strips probably contain both hydrous Fe hydroxides and oxides in both crystalline and amorphous forms. Pi P was well correlated with Olsen P and P uptake in all soils, indicating that Pi is generally applicable in diverse soils. No obvious advantage was found for the Pi with respect to the Olsen method. Both the Pi and the Olsen method were better extractants with respect to the Mehlich 1, which was ineffective for extracting P in calcareous soils. Extractable P by Mehlich 1, Olsen, and Pi all correlated highly with accumulated plant available P estimated by eight sequential crops in the greenhouse. However, none of the methods could account for all the variation in plant P removal.  相似文献   

17.
Phosphorus (P) fertilization is commonly based on soil testing, for which a variety of different soil P extraction methods are in use. In this research, the correlation and calibration of five extraction techniques for available P were studied: Soltanpour and Schwab, Olsen, EDTA-Na2, Paauw and Morgan in 168 different soil samples from 63000 ha of Sirjan pistachio orchards of Kerman province, Iran. The Morgan reagent extracted the most P and then EDTA-Na2> Olsen> Soltanpour and Schwab> Paauw extracted more phosphorus, respectively. Positive and significant correlation (< 0.05) existed among all extractants. The correlation coefficients between different extractants and plant P concentration indicated that, EDTA-Na2 (< 0.01), Olsen and Paauw methods (P < 0.05) had positive and significant correlation with leaf P concentration and thus with due attention to acceptable relationship with plant indices, the Olsen and EDTA-Na2 methods could be used to advise on available P.  相似文献   

18.
Abstract

The Murphy and Riley method for phosphorus (P) determination is used with almost all commonly used soil P extractants, but few tests for the effects of extractants itself on the indicator species have been reported. In practice, it is important to know the period of stability of the indicator species and the range of P and extractant concentrations that produce reliable results. In this study, a series of tests was conducted over a range of extract volumes to determine indicator species stability and to identify factors affecting it. Three soil P extradants (Mehlich‐3, Bray‐I, and Modified Truog) and three soils were tested at different levels of extract volume, solution pH, and P concentration. In our tests, Bray‐I and Modified Truog did not interfere with the stability of the indicator species under conditions commonly used for soil P determinations. Mehlich‐3 caused fading of the blue color at low P concentrations and precipitation of a blue compound at high P concentrations. This instability was most pronounced when Mehlich‐3 extradant volumes exceeded 2 mL in 50 mL final solutions with P concentrations greater than 0.4 mg/L. The EDTA and NH4NO3 contained in Mehlich‐3 both contributed significantly to the observed instability. Our results indicate that use of the Murphy and Riley method with untested extradants can produce unreliable P determinations, especially when soil extract volumes are high relative to the total volume of the colored solution.  相似文献   

19.
Abstract

Surface samples of 78 soils from the continental U.S. and Puerto Rico were obtained from the U.S. Soil Conservation Service National Soil Survey Laboratory. Phosphorus was extracted by the Bray PI (0.03N NH4F in 0.025N HCl), Mehlich No. 1 (0.05N HCl in 0.025N H2SO4), and Olsen bicarbonate (0.5N NaHCO3) tests. Soil chemical, physical, and taxonomic data were obtained from the National Soil Survey Laboratory. On the basis of soil taxonomy and weathering, soils were divided into calcareous, slightly weathered, and highly weathered groups. Linear regression analysis was used to compare obtained soil P test values. Coefficients of determination (r2) ranged from 0.30 to 0.89. The lower coefficients were obtained between Mehlich No.l and Olsen bicarbonate tests, as these extractants were developed for differing soil types. Using independent data sets, the regression equations provided accurate estimates of soil test P by one method from another.  相似文献   

20.
In this study, four soil extraction methods (Olsen, Soltanpour, Mehlich 3, and water saturation) were used to identify optimal concentrations of phosphorus (P) required for plant growth. Olsen soil extraction for P was the most appropriate method for soil types of this study as the greatest correlation coefficient for soil-test P and with plant factors was achieved. The optimal amount of soil features (pH, organic carbon, lime, gypsum, and clay) determined by using response surface methodology (a new optimization method) were 7.49, 0.66, 41.82, 4.21, and 31.34, respectively. More soil P was extracted when the soil had optimal amounts of these features, showing each feature had a significant effect on extracted soil P. Furthermore, the graphical method of Cate–Nelson determined the optimal amounts of P using Olsen, Soltanpour, Mehlich 3, and saturation extract methods for wheat as 15, 6.5, 35, and 1.5 mg kg?1 soil in nongypsic soils and 17, 3.5, 45, and 2.5 mg kg?1 soil in gypsic soils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号