首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract: In recent years, sulfur (S) deficiencies in winter wheat (Triticum aestivum L.) have become more common, particularly on coarse‐textured soils. In Study I, field experiments were conducted in 2001/2002 through 2003/2004 on Mississippi River alluvial soils (Experiment I) and an upland, loessial silt loam (Experiment II) to evaluate the influence of spring S rates of 0, 5.6, 11.2, and 22.4 kg ha?1 and a fall rate of 22.4 kg sulfate (SO4)‐S ha?1 on grain yield of three varieties. In Study II, field experiments were conducted in 2001/2002 and 2004/2005 on alluvial soils to evaluate the influence of spring S rates of 0, 5.6, 11.2, and 22.4 kg SO4‐S ha?1 in fields where S‐deficiency symptoms were present. Grain yield response to applied S occurred only on alluvial, coarse‐textured, very fine sandy loam soils (Study II) that had soil SO4‐S levels less than the critical level of 8 mg kg?1 and organic‐matter contents less than 1 g kg?1 in the 0‐ to 15‐, 15‐ to 30‐, and 30‐ to 45‐cm depths. Soil pH increased with soil depth. Optimum S rate was 11.2 kg SO4‐S ha?1 in 2001/2002 and 5.6 kg SO4‐S ha?1 in 2004/2005. On the upland, loessial silt loam soil, soil SO4‐S levels accumulated with depth, whereas organic‐matter content and pH decreased. In the loessial soils, average soil SO4‐S levels in the 15‐ to 30‐ and 30‐ to 45‐cm soil depths were 370% greater than SO4‐S in the surface horizon (0 to 15 cm).  相似文献   

2.
A relationship among Cu, N, and Rhizobium japonicum was hypothesized because previous research had shown that (a) 35% or more legumes in the Atlantic Coastal Plain have Cu concentrations of 6 mg kg‐1 or less, (b) Cu influences N fixation in some legumes, and (c) irrigated soybean (Glycine max L. Merr.) can accumulate most of its N through fixation. Soybean were grown on a Cu‐deficient Norfolk (fine‐loamy, siliceous, thermic Typic Paleudult) loamy sand with 3 fertilizer sources of Cu, 2 strains of R. japonicum, and with or without 336 kg ha‐1 of N fertilizer. Application of Cu significantly increased the number of pods plant‐1 suggesting pod abortion in determinate soybean may be caused by low Cu, but seed yield was not increased. Fertilization with N increased vegetative growth, but not total biomass or seed yield. Inoculation with R. japonicum strain 110 significantly increased seed yield by 0.3 Mg ha‐1 compared to strain 587. The yield increase was similar with or without fertilizer N application indicating strain response was not totally caused by improved N efficiency. There was no relationship between seed yield and nodule occupancy as measured by the ELISA technique.  相似文献   

3.
Runoff from agricultural fields amended with animal manure or fertilizer is a source of phosphorus (P) pollution to surface waters, which can have harmful effects such as eutrophication. The objectives of this study were to evaluate the impact of soil P status and the P composition of manure sources on P in runoff and characterize the effects of manure sources on mass loss of dissolved reactive P, total dissolved P, and total P in runoff. Soil boxes set at 5% slopes received 7.5 cm h?1 of simulated rainfall for 30 min. Study soils included a Kenansville loamy sand (loamy siliceous subactive thermic Arenic Hapludults, a Coastal Plain soil) and a Davidson silt loam (kaolinitic thermic Rhodic Kandiudults, a Piedmont soil). Soil test P concentrations ranged from 16 to 283 mg P kg?1. Sources of P included broiler litter, breeder manure, and breeder manure treated with three rates of aluminum sulfate (Al2(SO4)3) 0, 3.9, and 7.8 kg m?2, di-ammonium phosphate (DAP), and an un-amended control. All manure sources were surface applied at 66 kg P ha?1 without incorporation. Water extractable P represented an average of 10 ± 6% total P in manure. Runoff samples were taken over a 30-min period. Piedmont soil contained greater amounts of clay, aluminum (Al), and iron (Fe) concentrations, and higher P sorption capacities that produced significantly lower dissolved reactive P, total dissolved P, and total P losses than the Coastal Plain soil. Runoff P loss did not differ significantly for low and high STP Coastal Plain soils. Water extractable P in manures accounted for all dissolved reactive P lost in runoff with dissolved reactive P correlating strongly with water extractable P concentration (r2 = 0.9961). Overall, manures containing the highest water extractable P concentrations contributed to the largest amounts of dissolved reactive P in runoff. Manure treated with 3.9 and 7.8 kg m?2 of Al2(SO4)3 (alum) decreased dissolved reactive P in runoff by 29%. While this soil box runoff study represents a worst-case scenario for P loss, highly significant effects of soil properties and manure sources were obtained. Management based on these results should help ameliorate harmful effects of P in runoff.  相似文献   

4.
Abstract

This field study was conducted to evaluate nutrient availability and Coastal bermudagrass [Cynodon dactylon (L.) Pers.] yield response to factorial combinations of applied limestone and P in a strongly acid (pH 4.7), infertile soil. Limestone was applied at rates of 0, 672, and 3808 kg ha‐1 to a Lilbert loamy fine sand (loamy, siliceous, thermic, arenic Plinthic Paleudult). Phosphorus was applied at rates of 0, 30, 60, 90, 120, 240, and 480 kg P ha‐1. Soil pH in the surface 15 cm initially increased to 6.2 in response to the high limestone rate, but subsequently declined due to N fertilization. Lime increased soil test P, Ca, and Mg and decreased K and Al. The efficiency of increasing soil test P with fertilizer P was low, but improved as a consequence of liming. Coastal bermudagrass yield increased by as much as 37 percent from P application. Maximum yield coincided with 10 to 15 mg kg‐1 or greater soil test P and tissue P concentrations that ranged from 1.6 to 2.2 g kg‐1. Lime Increased tissue Ca and Mg, but had no effect on plant P concentrations. Yield was unaffected by lime despite its positive effect on soil P and an apparent K‐Mg antagonism. Plant nutrients obtained from deep rooting of the bermudagrass into an argiilic horizon may have precluded any positive effect of lime on Coastal bermudagrass yield.  相似文献   

5.
Abstract

Degradation of dicyandiamide (DCD) was assayed in laboratory studies at 8, 15, and 22 C in a Decatur silt loam and in a Norfolk loamy sand. Dicyandiamide was very short lived at 22 C, with half‐lives of 7.4 and 14.7 days in the Decatur and Norfolk soils, respectively. In the Norfolk soil at 8 C, half‐life increased to 52.2 days. In a nitrificaton study of both soils at 22 C, 80 mg (NH4)2SO4‐N kg‐1 of soil was applied with 20 mg DCD‐N kg‐1 of soil and 100 mg kg‐1 (NH4)2S04‐N was added with 5% nitrapyrin. Distinct lag phases preceded zero order nitrification with the inhibitor treatments. Lag periods were 2 and 2.6 times the half life of DCD in the degradation study for Decatur and Norfolk soils, respectively. Like most nitrification inhibitors, the effectiveness of DCD decreases with increasing temperature. In the Norfolk loamy sand, nitrification inhibition by DCD was equal to nitrapyrin for up to 42 days, but in Decatur silt loam, DCD was less potent to nitrapyrin as a nitrification inhibitor.  相似文献   

6.
Abstract

The nitrification inhibitor dicyandiamide (DCD) offers potential for improving efficiency of N applications to cotton grown on sandy soils of the southeastern Coastal Plain. Research has indicated that cotton is sensitive to DCD. The purpose of this greenhouse experiment was to investigate the effect of DCD on growth and nutrient uptake of DPL 90 cotton grown for 73 days in pots containing a typical Coastal Plain soil (Norfolk sandy loam, Typic Paleudult). Nitrogen (50 mg kg‐1) as NaNO3 or urea, and DCD (0, 2.5, 5, 10, 15 and 20 mg kg‐1) were applied to the soil at first true leaf and plants were harvested 58 days later. Sodium nitrate increased leaf dry weight and total dry weight of plants 9.1 and 6.0%, respectively, over urea fertilized plants. Leaf area, dryweight, and stem dry weight were reduced linearly with DCD. Fertilization with urea increased concentrations of leaf P, K, and Mn and reduced the concentration of Mg in leaf tissue. Dicyandiamide increased leaf N, P, and K concentrations but reduced concentrations of Ca, Mg, and Mn. Uptake rates (μg‐1 g‐1 fresh root day‐1) of Ca and Mg were increased 7.5 and 13.7%, respectively, with NaNO3 vs. urea, while P uptake rate was 15.5% greater for urea‐fertilized plants vs. NaNO3‐fertilized plants. Dicyandiamide reduced Ca and Mg uptake rates. Phosphorus uptake rates were increased by DCD when urea was the N source. The effects of DCD on cotton growth and nutrient uptake generally resulted from the compound itself and were not an indirect result of nitrification inhibition. Although significant reductions in plant growth did not occur unless DCD exceeded that normally applied with recommended N rates on this soil, these results suggest a need for caution when applying DCD to cotton grown on sandy soils.  相似文献   

7.
Leaching of nutrients in soil can change the surface and groundwater quality. The present study aimed at investigating the effects of raw and ammonium (NH4+)-enriched zeolite on nitrogen leaching and wheat yields in sandy loam and clay loam soils. The treatments were one level of nitrogen; Z0: (100 kg (N) ha?1) as urea, two levels of raw zeolite; Z1:(0.5 g kg?1 + 100 kg ha?1) and Z2: (1 g kg?1 + 100 kg ha?1), and two levels of NH4+-enriched zeolite; Z3: (0.5 g kg?1 + 80 kg ha?1) and Z4: (1 g kg?1 + 60 kg ha?1). Wheat grains were sown in pots and, after each irrigation event, the leachates were collected and their nitrate (NO3?) and NH4+ contents were determined. The grain yield and the total N in plants were measured after four months of wheat growth. The results indicated that the amounts of NH4+ and NO3? leached from the sandy loam soil were more than those from the clay loam soil in all irrigation events. The maximum and minimum concentrations of nitrogen in the drainage water for both soils were observed at control and NH4+-zeolite treatments, respectively. Total N in the plants grown in the sandy loam was higher compared to plants grown in clay loam soil. Also, nitrogen uptake by plants in control and NH4+-zeolite was higher than that of raw-zeolite treatments. The decrease in the amount of N leaching in the presence of NH4+-zeolite caused more N availability for plants and increased the efficiency of nitrogen fertilizers and the plants yield.  相似文献   

8.
Abstract

Relatively high amounts of Cu are found in manure of hogs (Sus scrofa domesticus) maintained on diets containing growth‐stimulating levels of Cu. While disposal of Cu‐enriched hog manure through repeated long‐term application to agricultural land is commonly practiced, concern exists regarding Cu availability in these soils. Field studies were conducted on a Bertie fine sandy loam (Aquic Hapludults) and a Starr‐Dyke clay loam (Fluventic Dystochrepts‐Typic Rhodudults), located in the Coastal Plain and Piedmont regions of Virginia. The objective was to examine the effects of long‐term Cu application on corn (Zea mays L.) growth and to ascertain the Cu sorption capacity of these soils. Field plots were treated with Cu‐enriched hog manure or CUSO4 (on an equivalent Cu basis) annually. Manure amendments totaled about 240 t ha‐1 (dry weight) over an 11 yr period (1978 through 1989). The manure averaged 1300 mg Cu kg‐1 (dry weight) over this time period totaling 340 kg Cu ha‐1. Sorption isotherms were determined for sorption of Cu by the Bertie and Starr‐Dyke soils. In comparison with unamended control plots, studies conducted in 1989 showed an early season stunting effect for corn grown on the CUSO4 treated Bertie soil. No differences in plant heights were observed for corn grown in CuSO4 treated Starr‐Dyke soil or control plots. Plant growth rates were increased on plots amended with Cu‐enriched hog manure. Copper sorption capacity of Bertie and Starr‐Dyke soils increased following several annual applications of manure.  相似文献   

9.
Field experiments were conducted to determine the effect of nitrogen (N) fertilizer forms and doses on wheat (Triticum aestivum L.) on three soils differing in their ammonium (NH4) fixation capacity [high = 161 mg fixed NH4-N kg?1 soil, medium = 31.5 mg fixed NH4-N kg?1 soil and no = nearly no fixed NH4-N kg?1 soil]. On high NH4+ fixing soil, 80 kg N ha?1 Urea+ ammonium nitrate [NH4NO3] or 240 kg N ha?1 ammonium sulfate [(NH4)2SO4]+(NH4)2SO4, was required to obtain the maximum yield. Urea + NH4NO3 generally showed the highest significance in respect to the agronomic efficiency of N fertilizers. In the non NH4+ fixing soil, 80 kg N ha?1 urea+NH4NO3 was enough to obtain high grain yield. The agronomic efficiency of N fertilizers was generally higher in the non NH4+ fixing soil than in the others. Grain protein was highly affected by NH4+ fixation capacities and N doses. Harvest index was affected by the NH4+ fixation capacity at the 1% significance level.  相似文献   

10.
To study the influence of potassium (K) fertilizer rate on soil test K values, crop yield, and K-leaching in sandy soils, four long-term fertilizer experiments (0–60–120–180 kg K ha?1 a?1) were initiated in 1988 in northern Germany on farmers fields. Clay content of the plow layer was about 4%, and organic matter between 2% and 5%. Plant available soil K was estimated with the double lactate (DL) method. Small grain cereals (rye and barley) did not respond to K fertilization in the 7-year period even though the soil test value of the K-0 plots decreased from ca. 90 to ca. 30 mg KDL kg?1 within 3 years. This value remained almost constant thereafter. Crop removal (including straw) of 75 kg K ha?1 a?1 was therefore apparently supplied from nonexchangeable K fractions. Compared to the optimum, no K application reduced the yield of potato by up to 21%, and that of white sugar yield up to 10%. Maximum potato yield was obtained by annually applying 60 kg K ha?1 which resulted in a test value of 60 mg KDL kg?1 soil. Maximum potato yield was also obtained at 40 mg KDL kg?1 soil, however, with a single application of 200 kg K ha?1. Similar results were obtained with sugar beet. This indicates that for maximum yield, even for K demanding crops, it is not necessary to maintain KDL values above 40 mg K kg?1 soil throughout the entire crop rotation. Soil test values increased roughly proportional to the K fertilizer level. About 120 kg fertilizer K ha?1 a?1, markedly more than crop K removal, was required to maintain the initial KDL of 90 mg kg?1. The K concentration of the soil solution in the top soil measured after harvest was increased exponentially by K fertilizer level and so was K leaching from the plow layer into the rooted subsoil. The leached quantity increased from 22 kg K ha?1 a?1 in the plot without K application to 42.79 and 133 kg Kha?1 a?1 in plots supplied with 60, 120 and 180 kg K ha?1 a?1 respectively. Soil test values around 100 mg KDL kg?1 on sandy soils, as often found in the plow layer of farmers fields, lead to K leaching below the root zone that may exceed the critical K concentration of 12 mg K T?1 for drinking water.  相似文献   

11.
Soil sulfur (S) partitioning among the various pools and changes in tropical pasture ecosystems remain poorly understood. Our study aimed to investigate the dynamics and distribution of soil S fractions in an 8‐year‐old signal grass (Brachiaria decumbens Stapf.) pasture fertilized with nitrogen (N) and S. A factorial combination of two N rates (0 and 600 kg N ha–1 y–1, as NH4NO3) and two S rates (0 and 60 kg S ha–1 y–1, as gypsum) were applied to signal grass pastures during 2 y. Cattle grazing was controlled during the experimental period. Organic S was the major S pool found in the tropical pasture soil, and represented 97% to 99% of total S content. Among the organic S fractions, residual S was the most abundant (42% to 67% of total S), followed by ester‐bonded S (19% to 42%), and C‐bonded S (11% to 19%). Plant‐available inorganic SO4‐S concentrations were very low, even for the treatments receiving S fertilizers. Low inorganic SO4‐S stocks suggest that S losses may play a major role in S dynamics of sandy tropical soils. Nitrogen and S additions affected forage yield, S plant uptake, and organic S fractions in the soil. Among the various soil fractions, residual S showed the greatest changes in response to N and S fertilization. Soil organic S increased in plots fertilized with S following the residual S fraction increment (16.6% to 34.8%). Soils cultivated without N and S fertilization showed a decrease in all soil organic S fractions.  相似文献   

12.
Annual potassium (K) balances have been calculated over a 40‐year period for five field experiments located on varying parent materials (from loamy sand to clay) in south and central Sweden. Each experiment consisted of a number of K fertilizer regimes and was divided into two crop rotations, mixed arable/livestock (I) and arable only (II). Annual calculations were based on data for K inputs through manure and fertilizer, and outputs in crop removal. Plots receiving no K fertilizer showed negative K balances which ranged from 30 to 65 kg ha?1 year?1 in rotation I, compared with 10–26 kg ha?1 year?1 for rotation II. On sandy loam and clay soils, the K yield of nil K plots (rotation I) increased significantly with time during the experimental period indicating increasing release of K from soil minerals, uptake from deeper soil horizons and/or depletion of exchangeable soil K (Kex). Significant depletion of Kex in the topsoil was only found in the loamy sand indicating a K supply from internal sources in the sandy loam and clay soils. On silty clay and clay soils, a grass/clover ley K concentration of ~2% (dry weight) was maintained during the 40‐year study period on the nil K plots, but on the sandy loam, loam and loamy sand, herbage concentrations were generally less than 2% K.  相似文献   

13.
Tomato (Lycopersicon esculentum Mill. cv. Sunny) was grown with the full‐bed polyethylene mulch‐seepage (modified furrow) irrigation system for three seasons to evaluate the effects of potassium (K) sources and K rates on fruit yields and leaf K concentrations. Soil in the experimental area was an Eau Gallie fine sand (sandy, siliceous, hyperthermic Alfic Haplaquods) that varied from 12 mg kg‐1 (very low) to 56 mg kg‐1 (medium) K by Mehlich I extraction prior to planting. Potassium sources, potassium chloride (KC1), potassium nitrate (KNO3), and potassium sulfate (K2SO4) were evaluated at 0, 90, 180, 270, and 360 kg kg‐1 K rates. Nitrogen (N) was applied at 270 kg kg‐1 and P at 43 kg kg‐1 with all K rates. Yields of extra‐large and marketable total yields in one season were higher (P<0.05) with potassium nitrate (KNO3) than with KC1. Maximum yields were produced from 270 to 360 kg K kg‐1, regardless of pre‐plant soil K concentrations. In the shoots, K concentrations increased with increasing K rates. At 90 and 180 kg K kg‐1 application rates, K concentrations in the shoots were <2% and the plants and fruits had K‐deficiency symptoms.  相似文献   

14.
We assessed cadmium (Cd) and zinc (Zn) availability when applying reactive phosphate rock (RPR) in combination with lime and chicken manure on Indonesian acidic upland soils. Maize plants were grown on unamended soil and soils treated with several combinations of 2 tons dolomite ha–1, 2 tons of chicken manure ha–1, 1 ton ha–1 of RPRL (reactive phosphate rock containing 4 mg Cd kg–1 and 224 mg Zn kg–1), and 1 ton ha–1 of RPRH (RPR containing 69 mg Cd kg–1 and 745 mg Zn kg–1). In addition to its positive effect on plant yield, application of RPR in combination with chicken manure did not result in toxic Cd concentrations. Although liming is effective to reduce plant Cd concentrations, it results in more soil Cd accumulation and more plant Zn deficiency. Cadmium and Zn concentrations in shoots and grains can be predicted well from amounts extracted from the soil by 0.5 M ammonium (NH4) acetate + 0.02 M ethylenediaminetetraacetic acid (EDTA) at pH 4.65.  相似文献   

15.
Changes to soil nutrient availability and increases for crop yield and soil organic C (SOC) concentration on biochar‐amended soil under temperate climate conditions have only been reported in a few publications. The objective of this work was to determine if biochar application rates up to 20 Mg ha?1 affect nutrient availability in soil, SOC stocks and yield of corn (Zea mays L.), soybean (Glycine max L.), and switchgrass (Panicum virgatum L.) on two coarse‐textured soils (loamy sand, sandy clay loam) in S Quebec, Canada. Data were collected from field experiments for a 3‐y period following application of pine wood biochar at rates of 0, 10, and 20 Mg ha?1. For corn plots, at harvest 3 y after biochar application, 20 Mg biochar ha?1 resulted in 41.2% lower soil NH on the loamy sand; the same effect was not present on the sandy clay loam soil. On the loamy sand, 20 Mg biochar ha?1 increased corn yields by 14.2% compared to the control 3 y after application; the same effect was not present on the sandy clay loam soil. Biochar did not alter yield or nutrient availability in soil on soybean or switchgrass plots on either soil type. After 3 y, SOC concentration was 83 and 258% greater after 10 and 20 Mg ha?1 biochar applications, respectively, than the control in sandy clay loam soil under switchgrass production. The same effect was not present on the sandy clay loam soil. A 67% higher SOC concentration was noted with biochar application at 20 Mg ha?1 to sandy clay loam soil under corn.  相似文献   

16.
Abstract

Urea applications to soil are subject to loss by ammonia (NH3) volatilization, unless incorporated. It has been proposed that this loss can be reduced by stimulating populations of soil nitrifiers by an ammonium sulfate [(NH4)2SO4] pretreatment two to four weeks before urea application. The objective of this laboratory trial was to evaluate this concept with five diverse soils, two North American Mollisols and three South American Oxisols. The soils were incubated untreated for two weeks, followed by pretreatment with 0 or 5 kg nitrogen (N) ha‐1 as (NH4)2SO4, on a soil surface area basis. After another two weeks of incubation, the soils were treated with the equivalent of 0 or 50 kg N ha‐1 as urea. Ammonia loss was estimated after trapping into phosphoric acid (H3PO4). Ammonium sulfate pretreatment reduced NH3 loss with the two Mollisols and a sandy Oxisol and increased the recovery of the urea application as mineral [ammonium (NH4 +) + nitrate (NO3 )] N in these soils. Little NH3 loss was detected from the two clay Oxisols, and (NH4)2SO4pretreatment did not influence NH3 loss or recovery of urea as mineral N. An example of a cropping system where this concept may have utility is discussed.  相似文献   

17.
Most farming systems involving tilled crops require use of pesticides and nitrogen fertilizers in different combinations although most pesticides effects on soil N transformation are scantly documented. Studies were initiated to compare atrazine and simazine herbicides with two biological nitrification inhibitors (nitrapyrin and terrazole) for their effects on biological nitrification and corn (Zea mays L.) growth. In a laboratory study, inhibition of nitrification was less than 3% in a Tifton loamy sand incubated with 10 μg a.i g‐1 soil atrazine or simazine but was more than 10% in soil amended with nitrapyrin or terrazole, applied separately or in combinations with either herbicide at the same rate. Similar trends were observed with soil treated with different combinations of 2.5 μg a.i. g‐1 soil nitrapyrin or terrazole and 1.25 μg a.i. g‐1 soil atrazine or simazine and incubated with and without corn plants under greenhouse conditions. The combination of either herbicide with nitrapyrin or terrazole significantly reduced the corn dry weights with substantial accumulation of Kjeldahl N and NO3 in tissues of plants, probably due to a concentration effect. However, these chemical combinations, applied at the rate of 1.2 kg a.i. ha‐1 in conjunction with 35 kg ha‐1 N as (NH4)2SO4 in split banded applications (at planting and at the 6th leaf stage), showed a nonsignificant trend towards increased corn ear yields in two‐year field studies. Generally, when atrazine or simazine was part of the chemical treatment, its effects on nitrification, plant growth and total N contents outweighed or masked those of nitrapyrin or terrazole.  相似文献   

18.
Abstract

Coastal bermudagrass yields were increased by 3.1 Mg ha‐1 with K applications of 300 kg ha‐1 yr‐1 in a 7‐year study on Olivier silt loam at Baton Rouge, but available soil K depletion occurred even though K applications exceeded K removal in the forage. At lower rates of K application, K removal exceeded K applications, causing severe depletion of available soil K. Applying 600 kg of K ha‐1 exceeded both the crop K requirement and K removal in the forage, resulting in increased levels of available soil K. Ninety percent of the maximum yield was obtained at about 100 kg of K ha‐1. Potassium concentrations in the forage averaged 9.2 and 13.4 g kg‐1 at K rates of 100 and 300 kg ha‐1, respectively. Apparent recovery of fertilizer K decreased from 53 to 47% as K applications increased from 37 to 300 kg ha‐1. The Olivier silt loam supplied 105 kg of K ha‐1 annually where no K was applied. The study indicates that K applications must be sufficient to produce yields very near the maximum yield in order to avoid depletion of available soil K by high‐yielding Coastal bermudagrass.  相似文献   

19.
Abstract

Mungbean [Vigna radiata (L). Wilczek] grown in rainfed calcareous soils suffers with phosphorus (P) deficiency. In view of high cost and low use efficiency of P fertilizer, greenhouse, incubation, and field experiments were carried out for determining P deficiency diagnostic criteria and efficient method of P fertilizer application in mungbean. In a pot culture experiment using a P‐deficient Typic Ustocherpt, maximum increase in grain yield with P was 686% over the control; and fertilizer requirement for near‐maximum (95%) grain yield was 30 mg P kg‐1 soil where fertilizer was mixed with the whole soil volume (broadcast) and 14 mg P kg‐1 where mixed with 1/4th soil volume (band placement). In a field experiment on a P‐deficient Typic Camborthid, however, maximum increase in grain yield was 262% over the control. Band placement resulted in 73% fertilizer saving as P requirement was 66 kg ha‐1 by broadcast and only 18 kg ha‐1 by band placement. Critical P concentration range appears to be 0.27–0.33% in young whole shoots (≤30 cm tall) and 0.25–0.30% in recently matured leaves. In an incubation study using the same Typic Ustochrept, P extracted by the sodium bicarbonate (NaHCO3), the ammonium bicarbonate‐diethlylenetriaminepentaacetic acid (AB)‐DTPA), and the Mehlich 3 soil tests correlated closely with each other, P concentration of whole shoots, and total P uptake by mungbean plants. Critical soil test P levels for pot grown mungbean were NaHCO3,9 mg kg‐1; AB‐DTPA, 7 mg kg‐1; and Mehlich 3, 23 mg dm‐3 soil. The more efficient and economical ‘universal’ soil test, AB‐DTPA, is recommended for P fertility evaluation of calcareous soils.  相似文献   

20.
Abstract

The presidedress soil nitrate test (PSNT) and the presidedress tissue nitrogen test (PTNT) have been developed to assess residual soil nitrogen (N) sufficiency for corn (Zea mays L.) in the humid eastern U.S. We conducted field studies at 47 sites during 1990 and 1991 to evaluate the use of the PSNT and PTNT for corn in Coastal Plain, Piedmont, and Appalachian Ridge and Valley regions of Virginia. Seven rates of fertilizer N (0, 45, 90, 135, 180, 225, and 270 kg/ha) were applied at corn height of 0.40 to 0.50 m and replicated four times in a randomized complete block design. Whole corn plants and soil to a depth of 0.30 m were sampled when corn height was 0.15 to 0.30 m to estimate available soil N prior to the application of fertilizer N treatments. Corn grain yield response to fertilizer N was used to assess residual soil N availability. Nitrogen concentration of whole corn plants at 0.15 to 0.30 m height was not an accurate indicator of plant‐available soil N. Corn yields were maximized without sidedress N at the 19 sites where soil NO3‐N was at least 18 mg‐kg‐1 and at the 17 sites where soil (NO3+NH4)‐N was at least 22 mg‐kg‐1. The PSNT predicted corn N sufficiency regardless of soil physiographic region or surface texture; however, the critical values for NO3‐N and (NO3+NH4)‐N were 3 to 5 mg‐kg‐1 lower than those established in Pennsylvania and Maryland, where cooler soil temperatures may permit greater residence time of inorganic N.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号