首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
Deficiency of micronutrients is increasing in crop plants in recent years in Oxisols and Ultisols in the tropics. The predominant soils in the coastal tablelands of Brazil are Ultisols and Oxisols, with low cation exchange capacity and kaolinitic clay mineralogy. Soil copper (Cu), manganese (Mn), and zinc (Zn) extracted by the Mehlich 1 solution, currently used in the regional soil-testing laboratories, were compared with those extracted by the Mehlich 3 and diethylenetriaminepentaacetic acid (DTPA) solutions in a greenhouse experiment with 10 soil samples (0–20 cm deep) collected from representative Ultisols and Oxisols from various locations in the region. Corn was grown as a test crop, and its dry matter and micronutrient uptake was measured at 30 days of growth. Soil Cu, Mn, and Zn extracted with the three solutions were significantly correlated (0.65–0.95 range for r values), with the Mehlich 3 solution extracting greater quantities than the Mehlich 1 and DTPA solutions. Zinc and Cu taken up by corn plants were significantly related to their soil-extractable levels measured at harvest with all three of the solutions, except for Zn DTPA. However, similar relations between plant uptake and soil extractable Mn were poor, except for DTPA extracting solution.  相似文献   

2.
Abstract

Soil extraction techniques to measure the status of available micronutrients for plants are important in the diagnosis of deficiency or toxicity. Mehlich 3 (M3), EDTA (pH=8.2), DTPA‐TEA, and Soltanpour and Schwab (SS) solutions were confronted for their ability to extract simultaneously copper (Cu), zinc (Zn), manganese (Mn), and iron (Fe). Argentinean soils from different taxonomic orders with widely varying properties were investigated. The values obtained showed that DTPA‐TEA and SS solutions extracted similar amounts of Zn, Fe, and Mn, while EDTA dissolved comparatively higher amounts of Fe and Mn. Mehlich 3 yielded the highest extractions for the four micronutrients. Soil pH not only affected the extraction of Mn by DTPA‐TEA, SS, and EDTA extractions, but also the extraction of Fe by EDTA. The organic carbon affected the determination of Fe and Zn in all cases. The correlations of the different tests for Cu, Zn, Mn, and Fe were significant. The results suggest that for the determination of the bioavailable status of micronutrients, any of the studied tests could be applied using the soil edaphic properties as factors to improve the correlations between them and standardize the methods.  相似文献   

3.
The purpose of the present study was to compare the ability of three micronutrient soil-test extractants [diethylenetriaminepentaacetic acid (DTPA), Mehlich 3, and Soltanpour and Schwab] to determine plant-available concentrations of manganese (Mn), iron (Fe), and zinc (Zn) in three soils (from parent material Marl, Gneiss schist, and Peridotite) from central Macedonia, northern Greece. In black plastic bags containing 3 kg of air-dried soil, self-rooted olive plants (cv. Chondrolia Chalkidikis) were grown for about 5 months and irrigated with distilled water during the experimental period. At the end of the experimental period, the three extractants were evaluated, based on correlation analysis among leaf micronutrient concentrations, total plant micronutrient content of olive plants, and soil micronutrient concentrations determined by each extractant. The largest extractable concentrations of Mn, Fe, and Zn were determined by Mehlich 3, compared to the other two soil-test extractants. However, for the correlation analysis, the greatest correlation coefficient between leaf Mn (and total plant Mn content) and soil extractable Mn was achieved when DTPA was used (varying from 0.76 to 0.88, depending on soil type). Therefore, it is concluded that DTPA was a better extractant to determine plant-available Mn than the other extractants for the three soils studied. For correlations between leaf Fe and Zn concentrations and also for total plant Fe and Zn content, and soil extractable concentrations, the type of extractant and soil type play a very important role in determining the best correlation. This means that in each soil type the greatest correlation was achieved with the use of other extractant. For example, for Fe in the Marl and Peridotite soils the best correlation was found for Mehlich 3, whereas in the Gneiss schist the best correlation was achieved for DTPA (R = 0.72–0.94). For Zn, in the Gneiss schist soil the best extractant in determining plant available concentration was Soltanpour and Schwab (R = 0.49–0.60), whereas in the other two soil types DTPA was found to be the most reliable extractant (R = 0.51–0.78). Therefore, soil type should be carefully and thoroughly studied by the researchers in similar future experiments.  相似文献   

4.
Abstract

Wetland soils (hydric soils) are unique in their chemical characteristics compared to upland soils. It is known that they are capable of removing a variety of wastes from polluted water entering the wetland including metals and potentially toxic heavy metals. When these metals are determined in wetland soils, it is necessary to use the proper chemical extractant(s). Four commonly used chemical extractants (Mehlich 1, Mehlich 3, 0.1M HCl, and DTPA) for soil fertility evaluation were selected to measure metal concentrations of three different wetland soils/spoils. Soil samples were collected from the constructed wetland cells which were lined with Abernathy silt loam topsoil and two different mine spoil materials [collected from active coal strip‐mined sites in Alabama (pH 5.9) and Tennessee (pH 3.2)]. Mehlich 3 extracted the most zinc (Zn), iron (Fe), manganese (Mn), calcium (Ca), magnesium (Mg), potassium (K), sodiumm (Na), and aluminum (Al), while 0.1M HC1 extracted more cadmium (Cd), copper (Cu), and lead (Pb). Extractants followed the same trend in removing quantities of the metals from the three soil/spoil materials, with DTPA generally extracting the least amount of the metal (the trend was Mehlich 3 > 0.1N HCl > Mehlich 1 > DTPA). However, DTPA removed larger quantities of metals from Tennessee spoil compared to Alabama spoil and topsoil, suggesting the higher effectiveness of DTPA under acidic conditions. Metal concentrations in plant tissue did not show a definite trend in correlation with metals extracted by the four chemical extractants.  相似文献   

5.
Abstract

Agricultural use of sewage sludges can be limited by heavy metal accumulations in soils and crops. Information on background levels of total heavy metals in soils and changes in soil metal content due to sludge application are; therefore, critical aspects of long‐term sludge monitoring programs. As soil testing laboratories routinely, and rapidly, determine, in a wide variety of agricultural soils, the levels of some heavy metals and soil properties related to plant availability of these metals (e.g. Cu, Fe, Mn, Zn, pH, organic matter, texture), these labs could participate actively in the development and monitoring of environmentally sound sludge application programs. Consequently, the objective of this study was to compare three soil tests (Mehlich 1, Mehlich 3, and DTP A) and an USEPA approved method for measuring heavy metals in soils (EPA Method 3050), as extractants for Cd, Cu, Ni, Pb and Zn in representative agricultural soils of Delaware and in soils from five sites involved in a state‐monitored sludge application program.

Soil tests extracted less than 30% of total (EPA 3050) metals from most soils, with average percentages of total metal extracted (across all soils and metals) of 15%, 32%, and 11% for the Mehlich 1, Mehlich 3, and DTPA, respectively. Statistically significant correlations between total and soil test extractable metal content were obtained with all extractants for Cu, Pb, and Zn, but not Cd and Ni. The Mehlich 1 soil test was best correlated with total Cu and Zn (r=0.78***, 0.60***, respectively), while the chelate‐based extractants (DTPA and Mehlich 3) were better correlated with total Pb (r=0.85***, 0.63***). Multiple regression equations for the prediction of total Cu, Ni, Pb, and Zn, from soil test extractable metal in combination with easily measured soil properties (pH, organic matter by loss on ignition, soil volume weight) had R2 values ranging from 0.41*** to 0.85***, suggesting that it may be possible to monitor, with reasonable success, heavy metal accumulations in soils using the results of a routine soil test.  相似文献   

6.
Abstract

Alfisols, Vertisols, Inceptisols, Aridisols, Mollisols, and Entisols were sampled (0–30 cm) from 32 locations across Ethiopia. The soils were analyzed for copper (Cu), zinc (Zn), manganese (Mn), and iron (Fe) contents using 0.005 M diethylene triamine pentaacetic acid (DTPA), 0.05 M hydrochloric acid (HC1), and 0.02 M ethylene diamine tetraacetic acid (EDTA) extractants. EDTA extracted more of each micronutrient than DTPA, which extracted greater amounts than HC1. The quantities of EDTA and DTPA‐extractable micronutrients were significantly correlated, and were in the order: Mn>Fe>Cu>Zn. The order of HCl‐extractable micronutrients was Mn>Fe>Zn>Cu. Micronutrient contents of Mollisols, Vertisols, and Alfisols were usually greater than those of the other soils, and Entisols usually had the lowest micronutrient contents. The contents were mostly positively correlated with clay and Fe2O3 contents, but negatively correlated with soil pH and A12O3contents. While comparison of DTPA‐ and EDTA‐extractable micronutrients with critical levels showed that most soils had adequate amounts of the micronutrients for crops, the amounts extracted by HC1 were below critical levels in most soils. Since the critical levels that were used in the comparisons were not established in Ethiopia, calibration of the soil contents of these micronutrients with crops grown in Ethiopia is required to identify the most suitable extractant(s).  相似文献   

7.
Abstract

The purposes for this research were: to examine the long‐term residual effects of farmland applications of municipal sludges from four treatment technologies on the total and extractable Zn, Cu, Mn, Fe, Pb, Ni and Cd concentrations in Coastal Plain soils; to investigate the effects of sludge sources and rates on the effectiveness of soil extractants to remove the various metals; and to determine correlation coefficients for soil extractable versus plant accumulation in tobacco. The extractants evaluated were Mehlich 1 and 3, and DTPA‐pH 7.3. Composite Ap horizon soil samples and tobacco leaf samples were obtained in 1984 from research plots at two sites in Maryland that were established in 1972 and 1976, respectively, using sludge materials from three wastewater treatment facilities in the Washington, D.C. metropolitan region. Similar application rates were used at both sites.

A wide range in soil pH values was found among treatments at each site. Significant (p ≤ 0.05) increases were observed in total Zn, Cu, Fe, Pb, Ni, and Cd for all sludge sources with increased rates; however, values for total soil Mn exhibited high variability in all cases. The rankings among the extractants varied for some elements depending on the sludge sources. For Zn, the rankings were Mehlich 1 > Mechlich 3 > DTPA‐pH 7.3 across all sources and rates. For Cu, Mehlich 3 > Mehlich 1 > DTPA‐pH 7.3 was found for soils amended with Blue Plains digested (BPD) and Piscataway limeddigested (PLD) sludges but Mehlich 1 ≥ DTPA pH 7.3 > Mehlich 3 for Blue Plains limed compost (BPLC) and Annapolis Fe and heat treated (AFH) sludges. Concerning extractable Mn, Mehlich Mehlich 1 > Mechlich 3 > DTPH pH 7.3 was the order for BPLC and AFH sludges but Mehlich 3 > Mehlich 1 > DTPA‐pH 7.3 was observed for BPD and PLD sludges. The rankings among extractants for Fe (Mehlich 3 > Mehlich 1 > DTPA‐pH7.3), Ni (Mehlich 3 ≥ Mehlich 1 > DTPA‐pH 7.3), Pb (Mehlich 3 > DTPA‐pH 7.3 > Mehlich 1) and Cd (Mehlich 1 > Mehlich 3 > DPTA‐pH7.3) were somewhat similar across all sludge sources. Significant correlation coefficients were obtained for all three extractants for soil extractable vs. plant Zn, Cu, Ni, and Cd at both sites; however, Mehlich 3 was not significant for Mn. Also, neither of the extractants produced significant coefficients for Fe and Pb.  相似文献   

8.
Abstract

Information on the redistribution of applied micronutrients into different fractions as a result of lime application is important to predict plant accumulation of nutrients and to select appropriate chemical extraction procedures for evaluation of micronutrient availability. The present work was carried out to study the influence of liming on the availability and redistribution of zinc (Zn) and copper (Cu) among soil fractions. Additionally, the effect of liming was evaluated on the recovery of these micronutrients by different chemical extractants (Mehlich‐1, Mehlich‐3, and diethylenetriaminepentaacetate (DTPA), which were correlated with Zn and Cu concentrations in corn (Zea mays L.) plants and soil fractions (exchangeable, organic matter, amorphous iron oxides, and crystalline iron oxides). The results showed that Zn added to soil samples that did not receive lime was retained mainly in the exchangeable and organic matter fractions. The liming resulted in distribution of Zn into iron oxides and as a result decreased the plant accumulation of Zn. Mehlich‐3 was the most efficient extractant to predict the plant accumulation of Zn in the acid soils, whereas DTPA was the most efficient in the limed soils. The oxide crystalline fraction was the major fraction responsible for retaining Cu in the soils. However, Cu added to soil was distributed mainly into organic matter. Mehlich‐3 was the most suitable extractant for predicting the bioavailability of Cu in limed or unlimed soils.  相似文献   

9.
Abstract

Crops grown on soils of the Kootenai River Valley of northern Idaho are showing an increasing tendency for micronutrient deficiencies. These soils are generally high in organic carbon (OC) and slightly alkaline. Soil pH has been increasing at the rate of 0.2 units every 10 years for the last 30 years. Normal soil sampling and testing procedures have failed to identify potential deficiencies of micronutrients prior to planting crops. Consequently, a different way to predict the tendency of micronutrient deficiencies is desired. The objectives of this study were to: (1) evaluate the effects of soil pH and OC on DTPA‐extractable Cu, Mn, and Zn, (2) establish relationships between pH, OC, Cu, Mn, and Zn and soil mapping units and geographic areas (drainage districts), and (3) predict tendencies for deficiencies or sufficiencies of evaluated micronutrients. One hundred fifty‐four soil samples were collected from the surface 30 cm of fields in the Kootenai River floodplain during 1989 and 1990. Six soil mapping units and eleven drainage districts were sampled. Soil pH, OC and DTPA‐extractable Cu, Mn, and Zn were determined on each sample. AU collected data were analyzed with the GLM procedure of SAS and quartile reference was used to separate the data. Manganese availability was negatively correlated with pH and OC. Significant correlations were also found between Cu and soil pH, and Zn and OC. The pH x OC interaction significantly affected both Mn and Zn availability. Soil pH, OC, and DTPA‐extractable Cu, Mn, and Zn were used to categorize soil mapping units and drainage districts into low, medium, and high tendencies for micronutrient availability. This categorization can be used as a tool for growers and consultants for soil micronutrient management  相似文献   

10.
Abstract

Many soil extractants have been developed for determination of zinc (Zn) availability to plants. The optimum soil Zn extractant should be useful not only for prediction of plant Zn concentration but also for detection of applied Zn levels. The objectives of this study were: i) to compare soil Zn extradants for detecting applied Zn and for predicting peanut leaf Zn over a range of soil pH levels, and ii) to correlate other soil‐extractable Zn levels with Mehlich‐1. Soil and peanut leaf samples were taken from a field study testing pH levels as the main plots and Zn application rates in the sub‐plots. Extractable Zn was determined on soil samples using Mehlich‐1, Mehlich‐3, DTPA, MgNO3, and many dilute salt extradants of varied strength and pH. Correlation of extractable soil Zn to cumulative applied Zn levels revealed Mehlich‐1, Mehlich‐3, DTPA, and AlCl3 extradants to be among the best indicators of applied Zn. Leaf Zn concentration was best correlated with soil Zn extracted by dilute salts, such as KCl, CaCl2, NH4Cl, CaSO4, and MgCl2. Including soil pH as an independent variable in the regression to predict leaf Zn considerably improved R‐square values. The DTPA‐extractable soil Zn levels were very well correlated with Mehlich‐1‐extractable Zn. Mehlich‐3 extracted about 20% more soil Zn than Mehlich‐1, but Mehlich‐3 soil Zn was not as well correlated to Mehlich‐1 soil Zn as DTPA soil Zn. Lower pH solutions extracted more of the applied Zn, but more neutral solutions extracted Zn amounts which were better correlated with Zn uptake. On the other hand, Mehlich‐1, which had a lower pH, had better correlations with both applied Zn and leaf Zn than did Mehlich‐3. Shortening the DTPA extraction time to 30 minutes resulted in better correlations than the standard two hour extraction time. Chloride (Cl) was the best anion tested in relation to soil applied Zn recovery in combination with potassium (K), calcium (Ca), and aluminum (Al), and Cl optimized leaf Zn correlations for ammonium (NH4), K, Ca, and magnesium (Mg). The larger the valence of the cation, the better the correlation with applied Zn and the poorer the correlation with leaf Zn.  相似文献   

11.
长期施肥对潮土耕层土壤和作物籽粒微量元素动态的影响   总被引:4,自引:0,他引:4  
Micronutrient status in soils can be affected by long-term fertilization and intensive cropping.A 19-year experiment (1990-2008) was carried out to investigate the influence of different fertilization regimes on micronutrients in an Aquic Inceptisol and maize and wheat grains in Zhengzhou,China.The results showed that soil total Cu and Zn markedly declined after 19 years with application of N fertilizer alone.Soil total Fe and Mn were significantly increased mainly due to atmospheric deposition.Applications...  相似文献   

12.
Abstract

Soil nutrient extraction methods, which are currently being used in Malawi, are time consuming and require too many resources. The use of a universal soil extractant would greatly reduce resource requirements. The objectives of the study were to (i) compare the universal soil extractants, Mehlich 3 (M3) and Modified Olsen (MO) with ammonium acetate (AA), Bray P1 (BPl), and diethylene triamine penta acetic acid (DTPA) in the amount of nutrients extracted, (ii) determine the relationship among the extractants for the nutrients they extract, and (iii) determine the critical soil‐test levels of phosphorus (P), potassium (K), and zinc (Zn) for a maize crop. Missing nutrient trials involving P, K, and Zn were conducted on thirty sites across Malawi using maize (Zea mays L.). Phosphorus application rates ranged from 40 to 207 kg P2O5 ha‐1. Potassium and Zn were applied at 75 kg K2O and 10 kg Zn ha‐1, respectively. Procedures of Cate and Nelson were used to identify soil nutrient critical levels. Results showed that the correlations between M3 and BP1, and MO and BPl were highly significant (r=0.93, 0.94, respectively). Mehlich 3 extractable K and AA extractable K (r=0.90), MO and AA extractable K (r=0.94) were highly significant (P<0.01) and the correlations between M3 and AA and MO and AA extractable calcium (Ca) (r=0.92, 0.90, and 0.94, respectively) were also highly significant (P<0.01). The correlations between M3, MO, and AA extractable magnesium (Mg) (r=0.99) were highly significant (P<0.01). Zinc, copper (Cu), and manganese (Mn) extracted with M3 and DTPA were significantly correlated (r=0.89, 0.87, and 0.95, respectively). Correlations between MO and DTPA extractable Zn, Cu, and Mn were also highly correlated (r=0.89,0.85, and 0.95, respectively). Maize grain yields ranged from 730 to 9,400 kg ha‐1. Mehlich 3‐P and MO‐P critical levels were 31.5 and 28.0 μg g‐1, respectively. Mehlich 3 and MO gave a similar critical level of 0.2 cmol kg‐1 for K while Zn critical levels were 2.5, and 0.8 μg g‐1 for M3 and MO, respectively. Mehlich 3 and MO were equally effective in separating responsive to none responsive soils for maize in Malawi.  相似文献   

13.
Abstract

The Modified Olsen (MO) extracting reagent is used extensively as a soil test extractant in Latin America. Little correlation or calibration research hasbeenreportedonit, however, especially for the micronutrients. wheat, corn, and soybeans were grown successively in the greenhouse to evaluate Cu, Zn, and Mn, respectively. Lime and micronutrient variables (one micronutrient per crop) were imposed on six soils representing four orders. After each cropping the soils were extracted with MO and with three other extracting reagents for which there are referenced critical levels: Mehlich‐1 (Ml), Mehlich‐3 (M3) and Soltanpour‐Schwab (SS). The correlations between nutrient uptake and the concentrations extracted were fairly similar for the four solutions, but were better for Mn and Zn than Cu. The poor relationship for Cu occurred partly because a maximum wheat concentration of about 10 mg/kg was reached, creating a curvilinear function. The amounts of nutrients extracted by the four reagents were also well correlated except for that between MO and Ml for Cu. Using these relationships, along with critical levels previously determined with reference extractants, the MO critical levels for Cu, Zn, and Mn were estimated to be 0.3, 1.0, and 3.0 mg/L, respectively  相似文献   

14.

To study the availability of sludge-borne Zn, Cu, Cd, Ni and Pb over time, a field study was conducted. Anaerobically digested sewage sludge (dried on sandbeds) from Huntsville and Chicago were applied to a Decatur silty clay loam soil (clayey, kaolinitic, thermic, Rhodic Paleudult), pH 6.2, for 5 consecutive yr. The sludges were applied at rates of 0, 20 (annual application for 5 yr) and 100 mt ha?1 (single application). Corn (Zea mays L.) and sudangrass (Sorghum sudanenses) were grown on the sludge-treated plots as test crops in 1987. Plant tissue samples were collected at different growth stages. Soil samples collected from the sludge-treated plots were extracted for Zn, Cu, Cd, Ni and Pb by 0.1 M HCI, DTPA, Mehlich 1 and Mehlich 3 extractants. Statistically, Mehlich 1, Mehlich 3, DTPA and 0.1M HCI extractants all gave highly significant correlations with the plant accumulation of Zn, Cu, Ni and Cd, with DTPA giving the highest at any growth stage for both corn and sudangrass, but they gave poor correlations for Pb. Zinc removed by four extractants was more highly correlated with Zn accumulation by corn (r=0.72** to 0.93** p=0.01) and sudangrass (r=0.50** to 0.96**, p=0.01) than other metals. Based on higher significant linear correlation coefficients (r), DTPA would be the extractant of choice for both crops; however the advantage to using the Mehlich 3 extractant is that, with a shorter shaking time of 5 min (compared to 2 hr for DTPA), it may be better suited for routine analysis of large numbers of soil samples.

  相似文献   

15.
Abstract

To examine sonic dispersion as an extraction procedure for DTPA micronutrient test, soil DTPA solution suspensions were sonicated to extract Fe, Zn, Mn, and Cu. The elements extracted after 15 or 60 seconds sonication were compared with those extracted after 1/2 or 2 hours shaking.

The mean differences between Fe, Zn, Mn, or Cu extracted after 15 seconds sonication and those extracted after 1/2 hour shaking were not significant. However, the extractions obtained after 2 hours shaking were significantly higher than those obtained after 15 or 60 seconds sonication.

The elements extracted after 15 or 60 seconds sonication correlated significantly with those extracted after 1/2 or 2 hours shaking. Therefore, 15 or 60 seconds sonication can replace 2 hours shaking in the extraction procedure for DTPA micronutrient test. However, 15 seconds sonication is more convenient than 60 seconds and does not require cooling of soil solution suspension during sonication. Therefore 15 seconds sonication ‐ a replacement for 2 hours shaking to extract Fe, Zn, Mn, and Cu ‐ is recommended.  相似文献   

16.
Salt-affected soils in arid and semi-arid tracts of the Indian Punjab are prone to deficiency of micronutrients. Nine profiles from alluvial terraces, sand dunes and palaeochannels in the southwestern Punjab were investigated for total and diethylenetriamine-penta-acetic acid (DTPA) extractable Zn, Cu, Mn and Fe. Soil physiography exerted significant influence on the spatial distribution of micronutrients. Total contents varied from 20–78 for Zn, 8–32 for Cu, and 88–466 mg kg?1 for Mn and 0.82–2.53% for Fe. DTPA-extractable contents varied from 0.10–0.98 for Zn, 0.14–1.02 for Cu, 0.54–13.02 for Fe and 0.82–9.4 mg kg?1 for Mn. Total contents were higher in fine-textured soil than in coarse-textured soils. Concentration of micronutrients in the surface layer was low and there occurred more accumulation in the Cambic horizon. Organic carbon, pH, clay, silt and calcium carbonate exerted strong influence on the distribution of micronutrients. DTPA extractable Zn, Cu, Mn and Fe increased with increasing organic carbon but decreased with increase in pH and calcium carbonate content. Total micronutrient contents increased with increase in clay, silt and calcium carbonate contents and decreased with increase in sand content.  相似文献   

17.
刘庆  夏江宝  陆兆华 《水土保持学报》2012,26(1):124-127,135
利用EDTA、DTPA、M3和ASI 4种提取剂对黄河三角洲不同利用方式土壤中Fe、Mn、Cu、Zn 4种微量元素有效形态进行提取,探讨不同提取剂对土壤微量元素的提取效果,并以DTPA提取的结果为基础,评价Fe、Mn、Cu、Zn 4种元素在土壤中的丰缺状况。结果表明:EDTA对4种元素的提取能力最强,M3提取能力相对较弱,但各提取剂对不同利用方式土壤微量元素的提取能力并不一致;DTPA所提取的微量元素有效态含量与总量相关性最好,其相关性程度均达到显著或极显著水平,明显优于其他3种提取剂;土壤中有效态含量较为丰富的元素是Cu,其含量范围为0.62~2.31mg/kg,除未利用地土壤有效Cu为中等水平外,其他3种用地类型中土壤有效Cu均达到丰富和极丰富水平,而土壤有效Mn含量范围为2.2~7.54mg/kg,4种用地类型土壤有效Mn均处于较低和极低的水平。  相似文献   

18.
ABSTRACT

The accumulation of potentially toxic elements (PTEs) in the soil can pose risks to human health, and precise risk assessment dealing with the production and consumption of plants is required. The 0.43 M of nitric acid (HNO?) solution was suggested by the International Organization for Standardization for reactive fraction of PTEs in the soil. The efficiency of some extractors was evaluated in tropical soils. Contents of barium (Ba), cadmium (Cd), copper (Cu), nickel (Ni) and zinc (Zn) were extracted in accordance with the methods of Environmental Protection Agency (EPA) 3051A, Aqua Regia, Diethylenetriaminepentaacetic acid (DTPA), Mehlich-1, Mehlich-3, 0.43 M HNO? and 0.01 M of calcium chloride (CaCl?), and these contents correlated with the contents of PTEs in roots, shoots, and fruits of vegetables. Mehlich-3 had the highest correlation with Ni and Zn contents extracted by the plants. Contents extracted with 0.43 M HNO? had high correlation with the amounts extracted by DTPA and Mehlich-3, as well as with the amounts of PTEs accumulated by plants.  相似文献   

19.
Abstract

Different chemical reagents are used to assess plant‐available nutrients from soils with similar properties. The use of different extractants is a serious limitation when comparing results between different soil‐testing laboratories, often leading to large differences in fertilizer recommendations for similar crops.

In this study, 80 samples from acid soils from Galicia (Spain) were used to compare several soil nutrient extractants. Traditional and tested extractants for acid soil such as Bray 2 and ammonium acetate were used to evaluate multielement extractants such as ethylenediaminetetraacetic acid–ammonium acetate (EDTA‐aa), ammonium bicarbonate–diethylenetriaminepentaacetic acid (AB‐DTPA), and Mehlich 3.

Linear regression analyses were performed to relate the amount of each nutrient obtained by traditional soil extractants to the amount obtained by multielement extractants. Strong correlation was found between extractable Bray 2 P and Mehlich 3 P (r2=0.97, slope=0.87, and intercept=?0.48). The slope of the regression line between EDTA‐aa‐extractable calcium (Ca) and that from ammonium acetate (Aa) approached 1∶1 (r2=0.86). Similar results were obtained for magnesium (Mg) (r2=0.99). Soil zinc (Zn) concentrations extracted by Mehlich 3 and EDTA‐aa were similar; slope of the regression line was 0.95 (r2=0.88). With regard to copper (Cu), Mehlich 3 extracted approximately 20% more Cu than EDTA‐aa.

The results showed that Mehlich 3 and EDTA‐aa are suitable for assessment of plant available phosphorus (P), potassium (K), Ca, Mg, Cu, Zn, and iron (Fe) in acid soils.  相似文献   

20.
Abstract

The benchmark soils collection of Pernambuco state contain 13 of the 14 soil orders of the Brazilian System of Soil Classification. Thus, information on zinc (Zn) and copper (Cu) status in such soils is useful as a reference of micronutrient distribution and availability in a representative set of Brazilian soils. The present work was performed to assess Zn and Cu distribution into operationally defined fractions of benchmark soils of Pernambuco state. In addition, chemical extractants, with contrasting chemical properties, were used to assess the availability of these micronutrients to relate such values with fertility guidelines concentrations and with the fractions defined by the sequential extraction. The results demonstrated that the organic matter was the most important fraction retaining Zn and Cu in the studied soils, as indicated by the sequential extraction. The Zn availability in the majority of the soils (90% of the samples) is sufficient to meet the requirement of the major field crops, although the available Cu concentrations are below the critical levels for plant growth in 46% of the analyzed samples. Mehlich‐1 extractant appeared to be the most efficient in predicting the availability of Zn in the soils because of its better correlation with exchangeable and organic fractions. DTPA and Mehlich‐3 were the most efficient extractants for the evaluation of Cu availability, as suggested by the better correlation with organic matter, which is the main pool of available Cu in the soils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号