首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 32 毫秒
1.
Abstract

Three methods for soil potassium extraction (M NH4OAc pH 7, 0.01 M AgTU and 30 % hot H2SO4) were compared for a variety of kaolinitic soils of the tropics. The AgTU‐extractable K was much higher than the M NH4OAc‐extractable K when vermiculite clay was present in the soil. The correlation between both was given by an R value of 0.937. The amounts of K extracted by 0.01 M AgTU and by hot H2SO4 were approximately the same. The R value for these two methods was 0.843.

It is suggested that the AgTU extractant could be used for determination of plant‐available K in soil and for testing for the presence or absence of vermiculite clay in soils.  相似文献   

2.
R. Greene-Kelly 《Geoderma》1974,11(4):243-257
The hypothesis that the shrinkage of soils is greater when expansible minerals are dominant was tested with 63 soils containing between 40 and 64% clay. Shrinkage between pF 2 and 4 (0.1 and 10 bar) correlated significantly with the expansible mineral content (measured by ethylene glycol retention) for remoulded but not for dried and rewetted specimens. Shrinkage between pF 4 and 6 (10 and 103 bar) was strongly correlated with the expansible mineral content for both kinds of specimens. The physical significance of the results is discussed, and it is concluded that interlamellar shrinkage is not the principal component of bulk shrinkage.  相似文献   

3.
Abstract

Twenty‐eight agriculturally important Delaware soils were cropped intensively in a greenhouse experiment. There was no consistent positive correlation between K uptake and percent sand, silt, clay, clay minerals of the clay fraction, K‐feld‐spars of the sand fraction or K‐feldspar weathering of the soils from the A horizon. Only potassium feldspar from the sand fraction and K‐feldspar weathering correlated with K uptake in the soils of the B horizon. This correlation was only significant at the latter part of the experiment when nonexchangeable K was probably the source of plant available K.  相似文献   

4.
The role of the mineralogy of the clay fraction and the physicochemical properties of alluvial soils in the floodplain of the Iput River and its tributary the Buldynka River (in the region of the settlement of Starye Bobovichi in Bryansk oblast) in the distribution and immobilization of radioactive isotope 137Cs from the atmospheric fallout after the Chernobyl accident was studied. The soils had a sandy texture; a significant variation in the content of amorphous iron oxides (0.1–0.77%) and labile manganese (11.2–193 mg/kg), the cation exchange capacity (6.1–54.2 meq/100 g soil), and the base saturation (29–100%) was common; an appreciable content of X-ray amorphous mineral substances in the clay fraction (<1 μm) enriched with organic carbon (7.7–13.1%); the predominance of trioctahedral hydromicas (Me=50%) in the clay fraction; and the presence of fine-disperse quartz and lepidocrocite. The specific activity of the 137Cs in the clay fraction of the moderately and strongly contaminated layers increased with the increasing portion of smectite formations and (or) hydromicas. On the whole, the presence of the clay fraction favored a decrease in the 137Cs mobility (the correlation between its content and that of exchangeable cesium was r=?0.608, n=17). However, the portion of exchangeable radiocesium (extracted with 1 M CH3COONH4, 1:10) had a tendency toward an increase with increasing content of hydromicas in the clay fraction. Thus, the minerals of this group were a potential source of exchangeable 137Cs in the soils. The significant role of amorphous and mobile iron forms in the immobilization and migration of radiocesium in the secondary contaminated horizons of the alluvial soils was revealed.  相似文献   

5.
Abstract

We investigated boron (B) adsorption characteristics for 16 acid alluvial soils as a function of equilibrium B concentration (0–80 μg/mL) and the effect of soil properties on such adsorption. The adsorption data for the soils could be described by Freundlich, Temkin, and BET isotherm equations over the entire concentration ranges studied, and by Langmuir and Eadie‐Hofstee equations only over a limited range. In general, the B adsorption capacity and the energy of retention of the soils calculated from different equations are low, the average Langmuir adsorption maxima and bonding energy constant being 21.47 μg/g and 0.113 mL/μg, respectively, making B susceptible to leaching losses. Simple and multiple regression analysis show that the adsorption capacities are significantly influenced by organic carbon (C), cation exchange capacity (CEC), and different forms of aluminium (Al) content in soils. The energy related constants are also influenced by the forms of Al in soils. Existence of significant correlations between constants obtained from different equations confirmed the adsorption characteristics of the soils.  相似文献   

6.
Total Zn in alluvial and calcareous soils (average 138 and 70 ppm respectively) was significantly related to their contents of CaCO3 (negatively), O.M. and clay (positively). Extracting Zn by Na2EDTA gave the highest values for both soil types. Total Cu contents varied widely from 26 to 111 ppm in alluvial and from 15 to 30 ppm in calcareous soils. They were negatively correlated with the CaCO3 contents. The pot experiments showed that EDTA(NH4)2CO3, Na2EDTA and DTPA are reasonable extractants for available Zn from both soil types. DTPA was efficient for all soils investigated, while Na2 EDTA and EDTA-citrate were specific for extracting Cu from calcareous soils.  相似文献   

7.
ABSTRACT

Increasing exchangeable potassium (ExK) content in soil to an appropriate level is important to mitigate the transfer of radioactive cesium to crops. We focused on a buckwheat (Fagopyrum esculentum Moench) field with a low ExK content, despite the application of K, in Fukushima Prefecture, Japan (Field A), following the Tokyo Electric Power Company Fukushima Dai-ichi (No. 1) Nuclear Power Plant accident in March 2011. We examined the relationship between K concentration and clay mineral composition in the soil of Field A and compared the findings with another field in Fukushima Prefecture (Field B) to clarify whether K applied to the soil was leached or remaining fixed. Pot experiments showed that K concentration in water seepage from pots following irrigation was significantly lower in pots from Field A than in those from Field B. Soil ExK content after soybean cultivation was lower in soils of Field A than those of Field B. These results indicate that K applied to Field A was fixed in the soil. Analysis of clay mineral composition confirmed the distinctive vermiculitic nature of Field A soils. This clay mineralogy would be associated with the higher K fixation ability of Field A than Field B soils. This study demonstrated that K fixation in vermiculite was a factor preventing the increase in ExK content from K application to Field A.  相似文献   

8.
Abstract

Results from 2 pastoral field lime trials showed that liming reduced exchangeable Mg. This effect increased with increasing rate of lime and with time following lime application, and was greatest in the top 0–50 mm depth. Soil solutions, sampled 2 years after liming, showed that solution Mg increased in increasing rate of lime. This effect was greatest in the top 20 mm of soil.

Lime incubation studies indicated that Mg fixation did occur on some of the soil studied, at pH >6.2. However, this did not account for the size of the observed effects of liming on exchangeable Mg in the field or explain the observed effects of liming at pH <6.2.

It is suggested therefore, that the major mechanism by which liming reduces exchangeable Mg, on these soils, is through displacement of exchangeable Mg into solution by the added Ca in lime, and subsequent leaching.

Results from other field trials suggest that liming will decrease exchangeable Mg if the change in pH‐dependent CEC (?ECEC) per unit change in soil pH is <15 me 100 g‐1.  相似文献   

9.
An incubation experiment was conducted to study the changes that occur in potassium availability and other soil properties with ingestion of soil by earthworms. Two soils were used. Raumai soil with high non-exchangeable K and Milson soil with low non-exchangeable K were incubated with two species of earthworm, Aporrectodea caliginosa and Lumbricus rubellus, for 8 weeks. The casts and soil samples were analysed for exchangeable K, Ca, Mg, Na, and H, pH, organic C, and texture. The results indicated that in Raumai soil, the exchangeable K levels of the casts of both earthworm species were significantly higher than for the control soil, the effect being more marked for L. rubellus than for A. caliginosa. In Milson soil, the exchangeable K levels were significantly lower in the casts of both types of earthworm than in the control soil. The nitric acid-extractable K of the soil and casts was not markedly different for either soil type, but available non-exchangeable K values were significantly higher for the casts of L. rubellus from Milson soil than for the noningested Milson soil. In Raumai soil, the exchangeable Ca was higher in the casts of L. rubellus, exchangeable Mg and H were reduced, and exchangeable Na did not change markedly in the cast compared to the control soil. For Milson soil, the casts contained lower exchangeable Ca and H but higher Na and Mg than the control. The casts of both species of earthworm had significantly higher pH values for both soil types. There was no marked difference in the organic C content of the control soil and cast samples for Milson but a reduction in the casts of A. caliginosa for the Raumai soil. Finer fractions increased in the casts of both earthworm species in both soil types.  相似文献   

10.
The failure mechanisms causing mole channel deterioration or collapse, which are controlled mainly by the shear, swell/shrink and apparent viscosity properties of soils, are shown to be sensitive to the influence of soil density and clay mineralogy. These two properties have, therefore, a clear potential role in helping to assess the suitability of soils for mole drainage and in helping to define the particular failure mechanisms which are most likely to be active in given situations.  相似文献   

11.
Abstract

The effect of drying on the cation (CEC) and anion (AEC) exchange capacity, and on potassium (K) and magnesium (Mg) adsorption by three New Zealand soils was investigated. Air‐drying resulted in no significant changes in these properties compared with the field‐moist samples. Oven‐drying at 105°C significantly decreased the CEC and increased the AEC of most soils compared with air‐dried samples. The decrease in CEC was related to increased solubility of organic matter and a decrease in surface area on which charge could be developed. The increase in AEC was attributed to a decrease in soil pH.

Potassium and Mg adsorption by two soils decreased following oven‐drying. This was consistent with the effect of drying on CEC. For the remaining soil, K adsorption increased following oven‐drying. This was attributed to K fixation.  相似文献   

12.

Purpose  

Depositional seals, formed when turbid waters infiltrate into soils, lead to a reduction in soil hydraulic conductivity (HC) and enhance runoff and soil erosion. Since clay size particles constitute a dominant proportion of depositional seals, soil texture and clay mineralogy play a significant role in determining the seal’s hydraulic characteristics. Presence of high molecular weight anionic polyacrylamide (PAM) in suspension flocculates fine sediments, and therefore, its application to the soil surface may modify the characteristics of the depositional seal. The impact of PAM on the latter is expected to be influenced by soil properties. The aim of this study was to elucidate the effects of PAM application on clay flocculation and the HC of depositional seals formed in four soils varying in texture (ranging from loamy sand to clay loam), and diverse proportions of clay mineral constituents (kaolinite, smectite, and vermiculite).  相似文献   

13.
Abstract

The zinc (Zn) content of ten selected soils in Louisiana was partitioned into the following fractions: water‐soluble, exchangeable, chelated, organic and residual. In seven of the soils, water‐soluble > exchangeable < chelated < organic < residual Zn. In three of the soils, water‐soluble < exchangeable < chelated < organic < residual Zn.

The ten soils contained an average of 1.7, 0.9, 2.6, 4.4 and 86.4 per cent of the total in the water‐soluble, exchangeable, chelated, organic and residual mineral Zn fractions respectively.  相似文献   

14.
Abstract

Alfisols, Vertisols, Inceptisols, Aridisols, Mollisols, and Entisols were sampled (0–30 cm) from 32 locations across Ethiopia. The soils were analyzed for copper (Cu), zinc (Zn), manganese (Mn), and iron (Fe) contents using 0.005 M diethylene triamine pentaacetic acid (DTPA), 0.05 M hydrochloric acid (HC1), and 0.02 M ethylene diamine tetraacetic acid (EDTA) extractants. EDTA extracted more of each micronutrient than DTPA, which extracted greater amounts than HC1. The quantities of EDTA and DTPA‐extractable micronutrients were significantly correlated, and were in the order: Mn>Fe>Cu>Zn. The order of HCl‐extractable micronutrients was Mn>Fe>Zn>Cu. Micronutrient contents of Mollisols, Vertisols, and Alfisols were usually greater than those of the other soils, and Entisols usually had the lowest micronutrient contents. The contents were mostly positively correlated with clay and Fe2O3 contents, but negatively correlated with soil pH and A12O3contents. While comparison of DTPA‐ and EDTA‐extractable micronutrients with critical levels showed that most soils had adequate amounts of the micronutrients for crops, the amounts extracted by HC1 were below critical levels in most soils. Since the critical levels that were used in the comparisons were not established in Ethiopia, calibration of the soil contents of these micronutrients with crops grown in Ethiopia is required to identify the most suitable extractant(s).  相似文献   

15.
16.
Previous papers [Soil Use and Management (2004) vol. 20, 410; (2007) vol. 23, 162] derived relationships for different soil types in south England of change in topsoil K (ΔKex) or P (ΔPres) against K or P balance over 3–5 years for fields in commercial farms given variable rates of fertilizer but no manure. Shown here is how ΔKex or ΔPres on manured fields can be converted to a fertilizer equivalent (fertilizer substitute) K or P value of the manure (FEK or FEP). There were significant increases in Pres and Kex when animal manures were applied, and in Pres using sewage sludge cake or liquid. Median FEP and FEK values for one application were – cattle farm yard manure (FYM) 36 kg P per hectare and 153 kg K per hectare, pig manure 70 and 149, digested sludge cake 62 P and digested liquid 31 P. Poultry manures and slurries also showed a significant benefit. When <12 months (only one cultivation) elapsed between application and soil sampling, FEP was much lower than in the second year and further increased over 4 years, whereas the maximum FEK was attained within a year of manure application. Release of P is slow compared with K. After 2–4 years FEP and FEK per tonne of FYM calculated as 0.95 kg P and 4.5 kg K, but farmer-reported application rates may be inaccurate. For biosolids <60% of the total P showed as FEP within 4 years. Even single manure applications register a large benefit in soil P and K supply (currently worth >£225 per hectare as fertilizer), but are variable in effect, which must be evaluated by soil analysis: at least one season and two cultivations should elapse before sampling; ideally more than a 2-year interval.  相似文献   

17.
18.
Abstract. The pH of soil samples was remeasured after storage for 20 years in the laboratory. The pH decreases were minor in acid to neutral soils (-0.3), but greater in alkaline soils (-0.63). The pH differences were statistically significant only for alkaline soils. The decreases of pH with time are probably mainly due to the decomposition of organic matter, the CO2 produced, the hydroscopic water and the presence of CaCO3.  相似文献   

19.
The clay mineralogy of 22 samples of the Ap horizons of Ando soils was determined by a combination of methods. Of these samples, 15 did and 7 did not contain allophane and imogolite. Opaline silica was found in 4 samples, whereas aluminum—humus complexes, iron oxides and layer silicates were found in all samples. The presence of allophane and imogolite and the absence of opaline silica in a few Ap horizons was related to mixing of A1 horizons and subsoils by cultivation and to lower supplies of organic matter relative to the amounts of aluminum released from volcanic ash by weathering. The contents of 2:1 and 2:1:1 layer silicates and their intergrades were larger in soils in which quartz predominated in fine fractions. It was inferred that aluminum bound with humus and in allophane-like constituents, rather than aluminum in allophane and imogolite, is important in reactions with phosphate and fluoride.  相似文献   

20.
At present precise information on the b-fabric of Vertisols is inadequate for gaining a comprehensive knowledge about such soils formed in alluvium of basic igneous and metamorphic rocks and spread in varying agro-climatic zones of peninsular India. The aim of the present study, on five benchmark Vertisol series (Sarol, Aroli, Nimone, Bellary and Kovilpatti), was to assess the possible reasons for differences in the b-fabric of the subsoils despite their common shrink-swell properties, as evidenced by the presence of sphenoids and/or slickensides, and similar clay contents and amounts of fine clay smectite. In Sarol and Aroli soils from the sub-humid region, the b-fabric is porostriated, whereas in Nimone and Kovilpatti soils of the semi-arid and Bellary soils of the arid regions the fabric is either mosaic-speckled or granostriated, indicating weak plasma separation, a result of restricted swelling of clays. The related distribution pattern of the s-matrix in all these soils was open porphyric. Recent literature has suggested that weak plasma separation is an effect of dissolution and crystallization of calcite. However, generally low concentrations of soluble calcium (c. 1 mmol dm?3) in soil solutions of Vertisols in arid and semi-arid agroclimates suggest that the presence of calcite does not guarantee the presence of sufficient soluble calcium to impair swelling of clays by contracting the diffuse double layer. Weak plasma separation in Bellary and Kovilpatti soils compared with Sarol and Aroli soils is explained in terms of a decrease in the internal surface area of fine smectite, as evident from a very high degree of chloritization in smectite interlayers, and smaller proportions of coarse smectite. In Nimone soils the weak plasma separation is primarily due only to a decreased internal surface area of fine smectite.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号