首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Abstract

An automated barium sulfate (BaSO4) turbidimetric method for the determination of sulfate (SO4) in 0.002M CaCl2 soil extracts is presented which utilizes a dialysis stage to remove interferences. Dialysis was effective in removing particulates and organic coloration which caused overestimation of the SO4 concentration, producing results comparable to those achieved by ion chromatography.  相似文献   

2.
Abstract

Turbidimetric methods, using Ba ions to precipitate SO4, are frequently used to determine soil sulfates extracted with phosphate solutions. These methods, as routinely performed, seriously underestimate SO4 in some soils of the tropics because phosphate is removed from the extractant by soil adsorption and because many extracts fail to yield satisfactory precipitate even if the extracting procedure is adequate. Decolorizing the extracts with carbon black, treating extracts with strong oxidizing agents, adding SO4 spikes, and seeding the extracts with BaCl2 seed‐crystals improve precision, but some extracts, especially those from soils derived from volcanic ash, do not yield reliable precipitates even though these procedures are employed. This paper presents a method that consistanlty yielded more SO4 than other turbidimetric procedures with which it was compared. The proposed method was further validated against an ion‐chromatographic method for SO4 determination. The two methods yielded virtually identical results.

The proposed method consists of extracting SO4 with 0.04 M Ca(H2PO4)2 pH 4, at a soil‐to‐solution ratio of 1: 10. Repeated extraction is necessary for phosphate‐retentive soils. (A. single extraction was approximately 40% effective for removing indigenous SO4 from a Hydric Dystrandept subsoil, approximately 78% effective for an Eutrustox.) Organic materials are removed from the extracts by adsorption on charcoal; SO4 is concentrated in the extract by volume reduction; a SO4 spike is added; BaCl2seed crystal is added, after which volume is increased by adding BaCl2 solution. Optical density is read at 600 nm.  相似文献   

3.
Abstract

Sulfate (SO4 2‐) is present in soils as salts of various metals, and the different metals associated with sulfate may influence adsorption of SO4 2‐by soils. The analytical method used for determination of SO4 2‐could be affected by the type of metal associated with the SO4 2‐. Four analytical methods based on different principles were evaluated for determination of SO4 2‐in different metal salts and in soil extracts obtained with three extractants {0.1M lithium chloride (LiCl), 0.15% calcium chloride (CaCl2), and 500 mg P/L as calcium phosphate [Ca(H2PO4)2]}. The analytical methods were: (i) a methylene blue (MB) colorimetric method after the reduction of SO4 2‐to hyrogen sulfide (H2S), (ii) an ion Chromatographie (IC) method, (iii) a turbidimetric (TD) method, and (iv) an indirect barium (Ba) atomic absorption spectrophotometric (SP) method. The recovery of SO4 2‐associated with various mono‐, di‐, and tri‐valent metals was quantitative by the MB method. But, trivalent metals, such as aluminum (Al), indium (In), lanthanum (La), and scandium (IC), decreased the recovery of SO4 2‐by the other three methods. The MB and IC methods gave similar values for SO4 2‐in soils by using the three extractants. The TD and SP methods gave variable results and, in general, underestimated the amounts of SO4 2‐in soils. Among the four methods, the MB and IC methods were the most accurate and precise.  相似文献   

4.
Abstract

The absorption mechanisms for Na, K, SO4 and Cl were tested in a salt tolerant (PVR 1) and a salt sensitive (GEB 24) rice varieties. The salt tolerant variety accumulated significantly larger amounts of Na than the salt sensitive variety. Further, PVR 1 absorbed SO4 from Na2SO4 in preference to that from K2SO4. The absorption patterns for K and Cl were similar in both the varieties. It is concluded that the capacity of plant species to accumulate greater amounts of Na is a reflection of their halophytic feature.  相似文献   

5.
Abstract

An automated turbidimetric method has been developed for the rapid and accurate determination of sulfate. The method is practical and useful for accurately measuring total sulfur in plant tissues, and extractable sulfate in soils. The principle of intermittent reagent addition is used which eliminates drift and sensitivity changes caused by coating of BaSO4 on tubing and cell walls. Also, the appropriate chemistry is used to minimize interactions of the wash with the sample at a sampling rate of 30/H. The sensitivity of the method is excellent with a working range of 0 to 15 ppm sulfur for soils. For plant digests the sample solutions are diluted to 0–35 ppm S. The precision as determined by repeated analysis of a soil sample extract was 0.58% RSD with a mean of 9.26 pg/g extractable SO= 4‐S. On another soil sample using a different extractant and extraction procedure the RSD was 0.64%, mean of 9.26 μg/g. Multiple automated sulfur analyses on a plant tissue digest resulted in an RSD of 0.41% for a sample containing 0.21% S. The automated turbidimetric method for sulfate has excellent precision and sensitivity in plant tissue and soil analyses where gravimetric BaSO4 assays are not practical.  相似文献   

6.
Abstract

Several methods for the direct determination of sulfate (SO4) in aqueous extracts are available but most are not sensitive to low concentrations as may be found in natural waters, soil solutions, or for determining solubilities of sulfur (S) containing minerals. Nephelometry and turbidimetry analyses were undertaken to generate standard curves (0–10 ppm SO4) in three separate matrices, water (H2O), lithium chloride (LiCl), and calcium chloride (CaCl2). For each standard solution of each matrix, nephelometry proved itself to be a superior analytical tool, particularly at SO4 concentrations less than 4 ppm.  相似文献   

7.
Abstract

This study was conducted to ascertain the percent of available K, Cl, and SO4‐S recovered by alfalfa (Medicago sativa L. cv. ‘Vernal') herbage when various rates of K as KCl and K2SO4 were topdressed and also to determine where residual K, Cl, and SO4‐S accumulated in the soil profile. An established stand of alfalfa growing on low fertility silt loam soil was topdressed in the spring of each of two harvest years with 0, 448, 896, 1344, and 1792 kg/ha of K as KCl or K2SO4. Four harvests were taken during each harvest year (1972 and 1973). Soil samples were taken during the autumn of 1973 to a depth of 91.4 cm in KCl‐fertilized plots, and to a depth of 76.2 cm in K2SO4‐fertilized and control plots.

Potassium recovery by alfalfa during two harvest years where K as KCl was applied at 448, 896, 1344, and 1792 kg/ha/yr was 56, 33, 20, and 17%, respectively. Recovery of available Cl from those same treatments was 30, 17, 12, and 10%, respectively. Where K as K2SO4 was applied at 448, 896, 1344, and 1792 kg/ha/yr, 55, 35, 27, and 22%, respectively, of available K was recovered. Recovery of available SO4‐S from those same treatments was 16, 9, 7, and 5%, respectively. At the end of two years, a majority of the residual K was in the top 15.2 cm of soil. Residual Cl and SO4‐S were concentrated at a depth of 30.5 to 76.2 cm in the soil profile.  相似文献   

8.
Abstract

Tomato (Lycopersicon esculentum Mill. var. hybrid 6C‐204) plants were grown for 95 days after germination until each one bore 6 ripe clusters in a greenhouse using nutrient solutions with nine added sulfate levels ranging from 0 to 105 me/1.

Sulfur‐deficiency symptoms and characteristics of plants growing under hign SO4‐S levels were observed and described. Fruit yields were negatively affected by both S‐deficiency and high SO4‐S concentrations. Top growth was affected more than root growth by changes in the amount of SO4‐S supplied. The critical SO4‐S concentration in the growth media ranged from 2 a 22.5 me/1.

Leaf sulfate‐S increased gradually in leaves and roots as SO4‐S supply in the nutrient solution increased while organic‐S remained relatively constant. Leaf sulfate‐S critical value was growth stage dependent. Maximum yields at flowering were associated with leaf concentrations of 0.48–1.2% SO4‐S and 0.25–0.35% organic‐S.  相似文献   

9.
Abstract

The malachite green method was sometimes used to determine low concentrations of inorganic phosphate due to its high sensitivity. The aim of this work was to test the suitability of this method for the determination of phosphorus (P) extracted by various reagents, e.g., KCl 0.01–1.20M, CaCl2 0.01–0.1M, Na2SO4 0.01–0.40M, NaHCO3 0.1M at pH 8.5, and NaOH 0.1M+NaCl 1M. The malachite green method was also compared with the traditional molybdenum blue method on 35 soil extracts. Color development reached stability within 2 hrs and was stable for up to 24 hrs for dilute solutions. For concentrated solutions the stability was inversely proportional to the concentration of the reagent. Salt concentration appeared to have no effect on absorbance in KCl extracts of up to 1.2M and in Na2SO4 extracts of up to 0.05M. Higher concentrations of sodium sulfate induced flocculation and precipitation of the dye complex, as did CaCl2 above 0.04 M. A strong correlation was found between the malachite green and the molybdenum blue method. The malachite green method can be used for P determination in soil extracts when appropriate time of color development is provided and salt concentration is taken into account.  相似文献   

10.
Abstract

The determination of total sulfur (S) in soils and plant tissue samples can be accomplished using a combination of sodium bicarbonate/silver oxide, dry ashing and ion chromatography(IC). The proposed method offers high precision and acceptable accuracy for samples with more than 0.02% S. At the same time this procedure makes use of standard analytical equipment used in other phases of soil, water and plant tissue analysis. Soil sample sizes larger than 0.1g or high total S or barite (BaSO4) may not have acceptable S recoveries due to incomplete S oxidation or dissolution of BaSO4. In order to optimize recoveries of total S in these special soil samples, varying (decreasing) sample sizes is required.  相似文献   

11.
Abstract

Simple steam distillation methods are described for determination of ammonium N and nitrate N in acid KMnO4 solution used to absorb NH3, NO and NO2 evolved from soils. They involve use of MgO for distillation of ammonia and of FeSO4, Ag2SO4, and MgO for reduction of nitrate to ammonia. The methods are rapid and precise, and they permit nitrogen‐15 analysis of NH3‐N and (NO + NO2)‐N evolved from soils.  相似文献   

12.
Abstract

Very low recovery of NH4+‐N was observed in total N determination of (NH4)2SO4 in KC1 solutions by a semimicro Kjeldahl method using permanganate and reduced iron to recover NO3‐ and NO2‐, whereas complete recovery was obtained in analysis of NH4+‐N in water, and of NO3 ?‐N or NO2 ?‐N in either water or KC1 solutions. The loss of NH4 +‐N observed with KC1 was attributed to the formation of NCl3 upon reaction of NH4 + with Cl2 generated during oxidation of Cl? by MnO4 ?. This difficulty is avoided by using K2SO4 instead of KC1 for extraction of inorganic N from soil. Complete recovery was obtained by adding 15N‐labeled NH4+, NO3‐, or NO2‐ to 0.5 M K2SO4 soil extracts, and total 15N analyses of the labeled extracts were in good agreement with values calculated from the additions of 15N and the total N contents of the soil extracts.  相似文献   

13.
Abstract

Three methods for soil potassium extraction (M NH4OAc pH 7, 0.01 M AgTU and 30 % hot H2SO4) were compared for a variety of kaolinitic soils of the tropics. The AgTU‐extractable K was much higher than the M NH4OAc‐extractable K when vermiculite clay was present in the soil. The correlation between both was given by an R value of 0.937. The amounts of K extracted by 0.01 M AgTU and by hot H2SO4 were approximately the same. The R value for these two methods was 0.843.

It is suggested that the AgTU extractant could be used for determination of plant‐available K in soil and for testing for the presence or absence of vermiculite clay in soils.  相似文献   

14.
Abstract

We recently developed two rapid and precise chemical methods of assessing potentially available organic N in soils. One method involves determination of the ammonia‐N produced by steam distillation of the soil sample with pH 11.2 phosphate‐borate buffer solution for 8 min. The other involves determination of the ammonium‐N produced by treatment of the soil sample with 2M KCl solution at 100°C for 4 hours. Studies using 33 Brazilian soils showed that the results obtained by these methods were highly correlated with those obtained by anaerobic and aerobic incubation methods of assessing potentially available organic N in soil.

The two methods were further evaluated by applying them to 30 Iowa soils and by comparing their results and those obtained by other chemical methods with the results of the incubation methods considered to be the best laboratory methods currently available for assessment of potentially available organic N in soil. The chemical methods used included the acid KMnO4 method, the alkaline KMnO4 method, the CaCl2‐autoclave method, and the NaHCO3 UV method. The incubation methods used involved determination of the ammonium‐N produced by incubation of the soil sample under anaerobic conditions for 1 week or determination of the (ammonium + nitrate + nitrite)‐N produced by incubation of the sample under aerobic conditions for 2 and 12 weeks. The data obtained showed that the results of the two chemical methods evaluated were highly correlated with those obtained by the incubation techniques used for comparison and that the correlations observed with these two methods were higher than those observed with the previously proposed chemical methods. It is concluded that these two rapid and simple methods are the best chemical methods thus far developed for laboratory assessment of potentially available organic N in soil.  相似文献   

15.
Abstract

A rapid and precise method for determination of SO4 2‐‐S in soils is described. It involves the extraction of SO4 2‐ from soils and its reduction to H2S by a reagent containing Sn and H3PO4 and subsequent determination as methylene blue. The results agreed closely with those obtained by reduction with the a reagent containing HI, H3PO2, and HCOOH and by ion chromatrography. Tests indicated that, in addition to SO4 2‐, the Sn‐H3PO4 reagent reduces certain organic S and reduced inorganic S compounds, but these S compounds are not present in extracts of agricultural soils. By using a bank of 10 distillation units, a single operator can perform 60 analyses in a normal working day.  相似文献   

16.
Abstract

Four Italian surface soils were used to compare four different acid hydrolyses for the determination of the total content of carbohydrates in soils. Soil hydrolyses in 0.25M and 1M H2SO4 and by mechanical shaking for 16 h released carbohydrates as efficiently as the 8 h soil hydrolysis under reflux. Degradation of released carbohydrates was probably the cause of the low values given by the hydrolysis in 72% H2SO4 for 15 min followed by a 16 h shaking in 0.5M H2SO4. This study confirms that the carbohydrate determination based on the colorimetric phenol‐sulphuric acid method is more accurate than the colorimetric anthrone‐sulphuric acid method. Moreover, soil characteristics may influence the accuracy and precision of results depending on the hydrolysis procedure as it was shown by the soils rich in organic carbon and clay.  相似文献   

17.
Abstract

For Southeastern forest soils amounts of P, K, Ca, Mg, and Mn extracted by 0.05 N HCl + 0.025 N H2SO4 (double‐acid) were significantly correlated with amounts extracted by 0.2 N NH4Cl + 0.2 N HOAc + 0.015 N + NH4F + 0.012 N HCl (new‐Mehlich). The new‐Mehlich consistently removed more nutrients than the double acid.

Both P and Mn extracted by the two solutions were significantly correlated with their concentrations in the foliage of loblolly pine (Pinus taeda L.).  相似文献   

18.
Abstract

A procedure for the simultaneous extraction of phosphorus, potassium, calcium and magnesium from soils, by an ion‐exchange resin procedure applicable to large‐scale advisory soil testing, is described. The important steps are the disaggregation of soil by shaking in water during 15 minutes with a glass marble, the transference of the elements from the soil to a sodium bicarbonate treated mixture of anion and cation exchange resins during a 16‐hour shaking period, the separation of the resin from the soil by sieving and extraction of the elements from the resin.

The results of resin extractable calcium, magnesium and potassium were comparable to the results of these elements extracted with 1M NH4OAc, to calcium and magnesium extracted with 1M KCl, and to potassium extracted with 0.025M H2SO4.

For phosphorus the resin extractable values were not comparable to the results obtained by the former routine method, based on the extraction with 0.025M H2SO4. The results of resin extractable P presented closer correlation with cotton response to phosphorus application in 28 field experiments (r = 0.85**) as compared with 0.025M H2SO4 extractable P (r = 0.68**), and also with P uptake by flooded rice in a pot experiment with eight lowland soil samples (r = 0.98**), as compared with extraction with 0.0125M H2SO4 in 0.050M HCl, for which the correlation was not significant. The reasons for the superiority of the extraction of P with the described procedure are discussed.  相似文献   

19.
Abstract

The effects of ambient acidity on NO3 ? and Nh4 + absorption by 26‐day‐old tomato plants (Lycopersicon esculentum Mill.) were examined in solution culture. The absorption rate per unit root mass was measured for 6 hr. The NO3 ? absorption rate from 0.4 mM NaNO, was 36% greater at pH 4.5 than at pH 6.5. In contrast, the NhY absorption rate was approximately 42% greater at pH 5.5 or 6.5 than at pH 4.5. The presence of equimolar NHr from 0.4 mM NH^NO, decreased the NO, absorption rate at pH 5.5 or 6.5 but did not reduce the rate at pH 4.5. The NO, absorption rate was inhibited less at pH 5.5 when equimolar NHr was supplied from 0.2 mM (NH4)2S04 as opposed to NH4NO3. At pH 5.5, the N03 ? absorption rate increased with increased #OPNH4#CP2SO4 concentration. The presence of equimolar NO3 ? supplied as either NaNO3 or NH4NO3 had no effect on the NH4 + absorption rate at pH 5.5 or 6.5. However, at pH 4.5, the NH4 + absorption rate was slightly reduced from NH4NO3 solutions relative to that from a (NH4)2S04 solution.  相似文献   

20.
Abstract

Using mineral nutrients is recommended as a plan to alleviate or avoid spring frost damage to blossoms. The purpose of this study was to investigate the effects of potassium application on reducing or preventing spring frost damage of almond (Prunus dulcis Mill.) flowers. Treatments were four levels of K2SO4 (0, 1, 2, and 4%). The nutrition solutions were sprayed on trees in two times (bud swell stage and green tip stage) in 2018–2019. The spurs containing flower buds were collected during the full blooming phase. The spurs segments were exposed to three different freeze test temperatures (0, ?2, and ?4?°C), and some relevant physiochemical changes were evaluated. The application of K2SO4, especially 4% K2SO4, decreased freezing injury, electrolyte leakage percentage, hydrogen peroxide (H2O2), and malondialdehyde (MDA) concentrations of flowers after freezing tests compared with control. The nutrient treatments, especially 4% K2SO4, increased significantly the contents of soluble proteins, soluble carbohydrates, total phenolic compounds, and proline of flowers. The results of the present study could have implications for the use of potassium in freezing tolerance improvement of other temperate fruit trees grown in low temperatures regions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号