首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到11条相似文献,搜索用时 15 毫秒
1.
Abstract

Growing evidence of positive crop responses to gypsum or phosphogypsum (PG) application in acid soils strongly support the use of these amendments as an ameliorant of subsoil acidity. Although gypsum improves Ca availability in subsoils, its role in alleviation of Al toxicity needs careful attention. In the current study, either PG, CaSO4.2H2O or CaCl2.2H2O was added (to supply 12 mM Ca) to solutions containing 40 μM Al at pH 4.1 + 0.1. Solution pH was gradually raised to 4.5, 4.8 and then to 5.3 at various time intervals during 25 d aging of the solutions at 25 + 1OC.

Concentration of Al measured by aluminon method without preacidification and preheating, referred to as “reactive Al”; in this paper, was 16 μM in 2 g L‐1PG solution without added Al. This accounted 38% of total soluble Al in PG solution. Addition of 2 g L‐1PG to solution containing 40 μM Al, resulted in only 42% of total Al in solution present in forms reactive with aluminon. According to MINTEQ speciation model, Al in solution was present as an entirely complexed form with F. An increase in solution pH up to 5.3 had no effect on measured concentration of reactive Al or predicted distribution of Al species.

Addition of CaSO4.2H2O to 40 μMAl solutions had no effect on the concentration of reactive Al within pH 4.1 ‐4.8, however, up to 62% of total Al was in a form complexed with SO4 2‐, as predicted by MINTEQ model. The concentration of reactive Al decreased by 60% at pH 5.3. Addition of CaCl2.2H2O also had no effect on the concentration of reactive Al within pH 4.1 ‐ 4.8. Nearly 73 ‐ 94% of total Al was present in Al3+form. An increase in pH to 5.3, decreased the concentration of reactive Al by 27%. The results suggest that ion‐pairing of Al with Fwould appear to be a possible mechanism for alleviation of Al toxicity by PG at pH range 4.1 ‐ 5.3. With regard to CaSO4.2H2O, at pH 4.1 ‐ 4.8 ion‐pairing with SO.4 2‐appears to be possible mechanism for the alleviation of Al toxicity. In addition, at pH 5.3 a considerable decrease in reactive Al was evident which would further alleviate Al toxicity.  相似文献   

2.
Abstract

Effects of varying additions of phosphorus (0, 0.8, 8 and 80 μM P) on the concentrations of total and monomeric aluminum (Al) and on calculated sum of activities of monomeric Al species (SaAl mono) were investigated during 21 d of aging in deionised water containing 40 μM Al with either 0 or 1500 μM calcium (Ca). These P and Ca treatments were also maintained in deionised water without the addition of Al. The concentrations of total and monomeric Al decreased with an increase in P additions at the 8 and 80 μM P although the effect was negligible at the 0.8 μM P. The effects of increase in P additions on the monomeric Al were almost instant as evident from 12 to 49 percent decrease in its concentration after only an hour of aging. However, marked effects of P on the total Al were observed after 3 d of aging. On 21 d of aging in solutions with 8 and 80 pH P, the concentrations of total and monomeric Al decreased by 17 to 34 percent and 20 to 60 percent, respectively. The presence of Ca had negligible effects on the concentrations of either total or monomeric Al at the varying P additions. However, the calculated SaAl mono for a given P concentration treatment over Al mono 21 d of aging were considerably lower in solutions with 1500 μM Ca than with 0 Ca. At each P concentration treatment, SaAl mono were considerably lower than the concentration of monomeric Al in solutions with 1500 μM Ca, while in solutions with 0 Ca the above difference was negligible. During the 21 d of aging, in solutions containing 40 μM Al, the measured P concentrations in the 0.8, 8 and 80 μM nominal P concentration treatments decreased by 44, 37, and 19 percent respectively, at the 0 Ca treatments and 50, 56 and 24 percent respectively, at the 1500 μM Ca treatments.  相似文献   

3.
Abstract

Signal molecules are among the major factors required for the legume–bacteria symbiosis. The excretion of signal molecules by plants stimulates the bacterial Nod genes resulting in the production of lipochitooligosacharides (LCOs). LCOs cause root hair deformation (RHD) and induction of nodule cells division, leading to the formation of nodules. The chemical structure of LCOs determines their biochemical activities; for example, removal of the sulfate group can significantly reduce the morphogenic activities of LCOs. Stressful conditions interrupt the excretion of signal molecules by the legumes' roots and consequently the inhibition of LCO production by the bacteria. This research has studied the effect of different concentrations of LCOs on RHD of two soybean [Glycine max (L.) Merr] cultivars, AC Bravour and Maple Glen, under acidity stress. In the first experiment, two different concentrations of LCO (10?7 and 10?6M) and in the second experiment, three different concentrations of LCO (10?7, 10?6, and 10?5M) were added to the soybean roots subjected to the pH levels of 4, 5, 6, and 7 for 24 h. By microscopy observation, the ratios of RHD were determined. Addition of LCOs resulted in RHD in both cultivars. Maple Glen roots responded similarly to different concentrations of LCO, whereas roots of AC Bravour responded differently. The concentration of 10?5M LCO could inhibit the stressful effect of pH 4 on RHD compared with pH 7 in both cultivars. The significant interaction between LCO and pH suggests that the effect of LCO on RHD may be more significant under higher levels of acidity.  相似文献   

4.
Abstract

Knowledge of the effect of supplying P to portions of the soybean (Glycine max L. Merr) root system on P influx kinetics and root growth is important in developing P fertilizer placement practices for efficient fertilizer use. The objective of this research was to determine the effect of restricting P supply to portions of the root system on plant P status, root growth, and P influx kinetics. Two solution experiments were conducted in a controlled climate chamber. Phosphorus influx kinetics were determined on 25‐day‐old soybean plants that had been grown with 100, 75, 50, 25, and 12.5% of their roots initially exposed to P. Phosphorus influx kinetics were also measured on 25‐day‐old plants that had been P‐starved for the last 1, 2, 4, and 6 days prior to the determining P influx kinetics in order to relate plant P status to P influx kinetics.

Reducing the portion of the roots supplied with P reduced P uptake. This resulted in a reduction in plant P concentration and was related to a 3.41‐fold increase in maximum P influx measured on 25‐day‐old plants. Restricting the proportion of roots supplied with P had no significant effects on the Michaelis‐Menten constant or on the concentration in solution where net influx was zero. Root growth rate of the roots in the P containing solution was not significantly different from those in the ‐P solution.

Phosphorus uptake was correlated with final root surface area exposed to P (r2 = 0.88??). Starving the plants for P reduced P concentration in the shoot and root and this resulted in as much as a 1.68‐fold increase in maximum influx.  相似文献   

5.
Application of glyphosate herbicide in genetically modified (GM) soybean [Glycine max (L.) Merrill] in soils with low zinc (Zn) concentration may interfere in the uptake of this and other nutrients, with negative impact on productivity. Thus, an experiment was conducted in greenhouse conditions on Ustoxix Quatzipsamment soil to investigate the effects of the interaction of glyphosate with Zn for the yield, photosynthesis, soil fertility and nutritional status of soybean. The treatments consisted of two soybean varieties [BRS 133 (conventional—NGM) and its essentially derived transgenic line BRS 245RR (GM) with and without glyphosate application] and five Zn rates (0, 5, 10, 20 and 40 mg kg?1, source zinc sulfate (ZnSO4)), with four replicates. Except for the copper (Cu) and iron (Fe) concentrations, the introduction of the herbicide-resistant gene is the predominant factor reducing nutrient uptake, photosynthetic (A) rate, stomatal conductance (Gs), leaf chlorophyll and ureide concentrations. The administration of Zn rates lowered the leaf phosphorus (P) concentration, and there was significant increase in Zn concentration in the soil and in the plant. Except for the 20 mg kg?1 of Zn rate, the use of the herbicide did not affect the shoot dry weight (SDW) and seed yield, and on average, the maximum seed yield was obtained with Zn concentrations of 26.4 and 18.7 mg kg?1 extracted by Mehlich 1 and diethylenetriaminepentaacetic acid-triethanolamine (DTPA-TEA), respectively.  相似文献   

6.
The pollution of agricultural soils by metals is of growing concern worldwide, and is increasingly subject to regulatory limits. However, the effect of metal pollutants on the responses of plants can vary with soil types. In this study, we examined the growth and antioxidant responses of soybean plants exposed to contrasting soils (Oxisol and Entisol), which were artificially contaminated with cadmium (Cd) or barium (Ba). Cadmium reduced plant growth at concentrations higher than 5.2 mg (kg soil)–1, while Ba only affected plant growth at 600 mg kg–1. Such levels are higher than the limits imposed by the Brazilian environmental legislation. Lipid peroxidation was increased only at a Cd concentration of 10.4 mg kg–1 in the Oxisol, after 30 d of exposure. Twelve superoxide dismutase (SOD; EC 1.15.1.1) isoenzymes were evaluated, most of which were classified as Cu/Zn forms. The SOD activity in the leaves of plants grown in the Oxisol decreased over time, whilst remaining high in the Entisol. Catalase (CAT; EC 1.11.1.6) activity in the leaves exhibited little response to Cd or Ba, but increased over time. Glutathione reductase (GR; EC 1.6.4.2) activity was reduced over time when exposed to the higher Cd concentrations, but increased following Ba exposure in the Oxisol. The enzyme‐activity changes were mainly dependent on soil type, time of exposure and, to a lesser extent, the metal concentration of the soil. Soybean plants grown in a sandy soil with a low buffering capacity, such as Entisol, suffer greater oxidative stress than those grown in a clay soil, such as Oxisol.  相似文献   

7.
Standard white oat genotypes were subjected to different methods and aluminum (Al) levels under hydroponic conditions to verify the relationship between plantlet characteristics and their Al tolerance using multivariate analyses. A completely randomized design with three replications was used, adopting three evaluation protocols: “complete nutrient solution” with 0, 8, 16, and 32 mg L?1 of Al supplied as aluminum sulfate [Al2(SO4)3·18H2O]; “complete nutrient solution” with 0, 8, 16 and 32 mg L?1 of Al supplied as aluminum chloride (Al2Cl3?6H2O); and the “minimum nutrient solution” with 0, 1, 3, and 5 mg L?1 of Al supplied as Al2Cl3?6H2O. The performance of white oat plantlet genotypes subjected to excess Al in hydroponic conditions is greatly associated with root length, where the nutrient solution composition and the Al sources interfere in these associations. The study based on the joint analysis of characteristics at plantlet level does not allow an efficient discrimination of Al-tolerant and Al-sensitive white oat genotypes.  相似文献   

8.
A greenhouse experiment was conducted in which four varieties of soybean (Glycine max L.) and three varieties of sorghum (Sorghum bicolor L. Moench) were grown in a calcareous soil with and without soil applied FeEDDHA (0 and 2 mg Fe/kg soil). Soil applications of FeEDDHA increased Fe concentrations and reduced Mn concentrations in all varieties of soybean and eliminated Mn toxicity symptoms in Corsoy soybeans. Soil applications of FeEDDHA did not increase Fe uptake or affect Mn uptake into sorghum leaves. This study tends to support the hypothesis that there are distinct plant mechanisms between dicots and graminaceous species for the uptake of Fe, and that these mechanisms have a direct effect on Mn availability for plant uptake.  相似文献   

9.
Abstract

Acid soil limitations to plant growth were assessed In 55 horizons of 14 major Appalachian hill land soils. Aluminum sensitive “Romano” and Al‐tolerant “Dade” snapbeans (Phaseolus vulgaris L.) were grown for 5 weeks in limed and unlimed treatments of the 55 horizons. Shoot and root growth was depressed >20% in unlimed relative to limed treatments in approximately 2/3 of the horizons. Dade snapbeans were generally more tolerant of the acid soil conditions and had higher Ca concentrations in the shoots than Romano snapbeans. However, the sensitive‐tolerant snapbean pair could not consistently be used to identify horizons with soil Al problems. Growth of both snapbeans was generally best in A horizons and worst in E horizons. The E horizons in this study were characterized by low Ca saturation (exchangeable Ca x 100/cation exchange capacity) and high Al saturation (exchangeable Al x 100/cation exchange capacity). Exchangeable Ca, soil Ca saturation and total soil solution Ca were positively correlated (p<0.01) with snapbean root and shoot growth. Soil Al saturation, total soil solution Al and soil solution Al reacting in 15 seconds with 8‐hydroxyquinoline were negatively correlated (p<0.01) with growth. The ratio of Ca/Al in soil solution was more closely related to snapbean growth than the soil solution concentration of any individual element. Soil and soil solution Mn were, in general, not significantly correlated with snapbean growth. Many of the horizons in this study had both Al toxicity and Ca deficiency problems and interaction between Ca and Al affected both snapbean growth and Ca uptake. These findings confirm the importance of considering Ca as well as Al when investigating Al phytotoxicity.  相似文献   

10.
Abstract

Black walnut foliage samples collected from a wide range of sites during a national survey of the New Zealand (NZ) resource conducted in 1979 were analysed for N, P, K, Ca, Mg, B, Fe, Mn, and Zn. Provisional American standards applied to the foliar data indicate that only very small proportions of the field population (individually 1 to 2%) have foliar levels of N, P, Fe, Mn, or Zn rating deficient. For K, Ca, Mg, or B foliar levels consistently exceeded the deficiency threshold. The proportions of the population rating intermediate were very large (40 to 95%) for certain elements (P, Mg, Fe, Zn), and fairly large (16 to 27%) for the remainder. In this transitional bracket response to fertiliser is uncertain. As the applicability of the American criteria to NZ conditions is unproven, this evaluation must remain tentative.

To study the distributions for the foliar concentrations of the elements determined, two functions of the Weibull distribution were used ‐ one for cumulative density and the other for probability density. The cumulative density function fitted the arrayed data for each nutrient very closely (R = 0.992 to 0.998). Quartile values for cumulative probability are given for each nutrient; these allow a preliminary ranking of individual foliar analyses as an aid in assessing nutrient status relative to the expected NZ norm. Estimated parameters of the same function are given for each nutrient so that percentile values can easily be calculated.  相似文献   

11.
To reduce the availability of soil cadmium (Cd) to soybeans (Glycine max (L.) Merr.), we employed a liming by partial mixing (PM) technique in two drained paddy fields on Gray Lowland soils, which had 0.1 mol L–1 hydrochloric acid-extractable Cd concentrations as high as 1.08 and 1.40 mg kg–1. Among the different application methods tested, PM application (PM2) using a width of 20 cm and a depth of 20 cm was found to be most appropriate for reducing the seed Cd concentration and to obtain the optimum yield at Site A. Under PM2, a liming rate of 38% of that for broadcast incorporated into the surface 15 cm layer (Bc) was suitable to reduce the seed Cd concentration at Site A, whereas the lime rate with PM2 was set at 50% of that for Bc (PM2-50) at Site B due to the higher availability of soil Cd. The root system was limited within the range of lime and fertilizer application for PM2 as well as PM2-50; thus, the lime and fertilizer were supplied successfully to the rooting zone. The soil pH value was lower under PM2 at Site A and PM2-50 at Site B compared with Bc, whereas the seed Cd concentration was lower for PM2 and PM2-50. This may be explained by the intensive uptake of calcium and magnesium with PM2 as well as PM2-50. The seed Cd concentration in the cultivar “Ryuhou” at the target pH of 6.5 was approximately 30% lower with PM2-50 than Bc at Site B. In addition, the average seed Cd concentrations in one cultivar and two lines, characterized by the lower Cd uptake with higher retention in roots and higher accumulation in leaves, were approximately 40% lower compared with “Ryuhou.” Thus, the combination of liming with PM2-50 at the target pH of 6.5 and a low-Cd cultivar (or lines) minimized the seed Cd concentration. The highest seed Cd concentration was found in the first year of soybean cultivation, which was considered to be caused by the release of Cd from organic nitrogen compounds during the nitrogen mineralization process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号