首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Integrating information on nitrogen (N) mineralization potentials into a fertilization plan could lead to improved N use efficiency. A controlled incubation mineralization study examined microbial biomass dynamics and N mineralization rates for two soils receiving 56 and 168 kg N ha?1 in a Panoche clay loam (Typic Haplocambid) and a Wasco sandy loam (Typic Torriorthent), incubated with and without cotton (Gossypium hirsutum L.) residues at 10 and 25°C for 203 days. Microbial biomass activity determined from mineralized carbon dioxide (CO2) was higher in the sandy loam than in clay loam independent of incubation temperature, cotton residue addition and N treatment. In the absence of added cotton residue, N mineralization rates were higher in the sandy loam. Residue additions increased N immobilization in both soils, but were greater in clay loam. Microbial biomass and mineralization were significantly affected by soil type, residue addition and temperature but not by N level.  相似文献   

2.
Changes to soil nutrient availability and increases for crop yield and soil organic C (SOC) concentration on biochar‐amended soil under temperate climate conditions have only been reported in a few publications. The objective of this work was to determine if biochar application rates up to 20 Mg ha?1 affect nutrient availability in soil, SOC stocks and yield of corn (Zea mays L.), soybean (Glycine max L.), and switchgrass (Panicum virgatum L.) on two coarse‐textured soils (loamy sand, sandy clay loam) in S Quebec, Canada. Data were collected from field experiments for a 3‐y period following application of pine wood biochar at rates of 0, 10, and 20 Mg ha?1. For corn plots, at harvest 3 y after biochar application, 20 Mg biochar ha?1 resulted in 41.2% lower soil NH on the loamy sand; the same effect was not present on the sandy clay loam soil. On the loamy sand, 20 Mg biochar ha?1 increased corn yields by 14.2% compared to the control 3 y after application; the same effect was not present on the sandy clay loam soil. Biochar did not alter yield or nutrient availability in soil on soybean or switchgrass plots on either soil type. After 3 y, SOC concentration was 83 and 258% greater after 10 and 20 Mg ha?1 biochar applications, respectively, than the control in sandy clay loam soil under switchgrass production. The same effect was not present on the sandy clay loam soil. A 67% higher SOC concentration was noted with biochar application at 20 Mg ha?1 to sandy clay loam soil under corn.  相似文献   

3.
Increased crop diversity and length of rotation may improve corn (Zea mays L.) yield and water- and nitrogen-use efficiency (WUE and NUE). The objectives of this study were to determine effects of crop rotation on corn yield, water use, and nitrogen (N) use. No-tillage (NT) crop rotations were started in 1997 on a Barnes clay loam (fine-loamy, mixed, superactive, frigid Calcic Hapludoll) near Brookings, S.D. Rotations were continuous corn (CC), corn–soybean [Glycine max (L.) Merr.] (CS), a 3-year rotation of corn–soybean–oat/pea (Avena sativa L. and Pisum sativum L.) hay (CSH), a 3-year rotation of corn–soybean–spring wheat (Triticum aestivum L.) (CSW), and a 5-year rotation of corn–soybean–oat/pea hay companion seeded with alfalfa (Medicago sativa L.)–alfalfa–alfalfa (CSHAA). Fertilizer N was applied to corn on all rotations at planting (16 kg N ha?1) and side-dressed (64 kg N ha?1). Average corn grain yields (1998–2007) were greatest under CSW (7.38 Mg ha?1) and least under CC (4.66 Mg ha?1). Yields were not different among CSH, CSW, and CSHAA rotations. Water-use efficiency of rotation was ordered as CSW > CSH > CSHAA > CS > CC. Nitrogen-use efficiency was greatest under CSW and least under CC. There were no differences in yield advantage (YA) among crop rotations during years with plentiful early-season rainfall (May 1–July 31). In years with low spring rainfall, YA was greatest under CSW (54%) and least under CSHAA (33%). Corn yields under extended rotations (CSH, CSW, and CSHAA) were greater than under CC and CS, but lack of rainfall may result in reduced yields under CSHAA.  相似文献   

4.
Computer simulation was used for predictive analysis of the effects of weather and soil type on crop yield in the U.S.crop insurance program.The Environmental Policy Integrated Climate (EPIC) model was modified to include hail weather events,which completed the modifications necessary to simulate the four most frequent causes of crop yield loss (hail,excessive wet,excessive cold,and excessive dry) associated with soil type in Kansas,USA.At the region level,per hectare yields were simulated for corn,wheat,soybean,and sorghum.We concluded that it was possible to predict crop yields through computer simulation with greater than 93% accuracy.The hail damage model test indicated EPIC could predict hail-soil-induced yield losses reasonably well (R2 > 0.6).The investigation of soil type influence on dryland sorghum and wheat production indicated that Wymore silty clay loam soil and Kenoma silt loam produced the highest sorghum yields statistically;Kuma silt loam,Roxbury silt loam,Crete silty clay loam,and Woodson silt soils produced the second highest sorghum yields statistically;and Richfiled silt loam,Wells loam,and Canadian sandy loam produced the lowest sorghum yields.By contrast,wheat production showed less sensitivity to soil type variation.The less sensitive response of wheat yields to the soil type could be largely due to the unconsidered small-scale variability of soil features.  相似文献   

5.
The phosphorus-use efficiency of crops in high pH soil is low. A randomized complete block design in a 3 × 2 split-plot experiment was conducted on a high pH silt loam (Typic Ustochrepts) to evaluate whether P-solubilizing microbial (PSM) inocula were able to improve the P fertilization effects on irrigated cotton (Gossypium hirsutum L., cultivar CIM-482). Cotton was planted after seed treatment with PSM inoculation at 0, 22 and 44 kg P ha?1. Results showed that soil microbial populations were significantly higher throughout the cotton-growing season in response to P fertilization and PSM inoculation. Both P fertilization and PSM inocula exerted a significant effect on cotton biomass and Puptake without an interaction. Economic analyses suggest that PSM inocula alone significantly increased P-use efficiency (8%), reduced cost and improved net income (by $36 ha?1) of irrigated cotton production. Moreover, the relationship between relative yield and P fertilization with PSM inocula showed that 95% of the maximum yield of cotton was produced at 22 kg P ha?1, whereas in the absence of PSM inocula, 95% relative yield was obtained at 36 kg P ha?1, asaving of ~39% applied P with PSM inoculation.  相似文献   

6.
ABSTRACT

Soybean [Glycine max (L.) Merr.] seeds contain isoflavones that have positive impacts on human health. The objective of this study was to determine the impact of pre-plant mineral fertilization on isoflavone, oil and crude protein concentrations, and seed yield of field-grown soybean. The effects of potassium (0, 50, 100, and 150 kg K ha?1), phosphorus (0, 25, 50, and 75 kg P ha?1), sulfur (0, 15, 30, 45 kg S ha?1), and boron (0, 1.5, 3.0, and 4.5 kg B ha?1) were tested separately, each with two 00 soybean cultivars (‘Golden’ and ‘Grand Prix’) grown in replicated trials at Sainte-Anne-de-Bellevue, Québec, Canada in 2002/3. Seed total and individual isoflavone concentrations were determined by high-performance liquid chromatography. Seed yield, 100-seed weight, and oil and crude protein (CP) contents were determined concurrently. Across years and cultivars, no fertilizer treatments effects were observed for most variables. This overall lack of response to fertilizers was attributed to the relatively high initial fertility of the sandy loam and sandy clay loam soils used. However, total and individual isoflavone concentrations were significantly affected by year and cultivar. Across experiments, total isoflavone concentration was 33% greater on average in 2003 than in 2002, which was characterized by above-average temperatures and severe drought. Cultivar with the greatest isoflavone concentration varied depending on the year. Fertilization does not appear to be a viable strategy to increase isoflavone concentration of soybean seeds on medium-to high-fertility soils.  相似文献   

7.
Long-term effects of the different combinations of nutrient-management treatments were studied on crop yields of sorghum + cowpea in rotation with cotton + black gram. The effects of rainfall, soil temperature, and evaporation on the status of soil fertility and productivity of crops were also modeled and evaluated using a multivariate regression technique. The study was conducted on a permanent experimental site of rain-fed semi-arid Vertisol at the All-India Coordinated Research Project on Dryland Agriculture, Kovilpatti Centre, India, during 1995 to 2007 using 13 combinations of nutrient-management treatments. Application of 20 kg nitrogen (N) (urea) + 20 kg N [farmyard manure (FYM)] + 20 kg phosphorus (P) ha?1 gave the greatest mean grain yield (2146 kg ha?1) of sorghum and the fourth greatest mean yield (76 kg ha?1) of cowpea under sorghum + cowpea system. The same treatment maintained the greatest mean yield of cotton (546 kg ha?1) and black gram (236 kg ha?1) under a cotton + cowpea system. When soil fertility was monitored, this treatment maintained the greatest mean soil organic carbon (4.4 g kg?1), available soil P (10.9 kg ha?1), and available soil potassium (K) (411 kg ha?1), and the second greatest level of mean available soil N (135 kg ha?1) after the 13-year study. The treatments differed significantly from each other in influencing soil organic carbon (C); available soil N, P, and K; and yield of crops attained under sorghum + cowpea and cotton + black gram rotations. Soil temperature at different soil depths at 07:20 h and rainfall had a significant influence on the status of soil organic C. Based on the prediction models developed between long-term yield and soil fertility variables, 20 kg N (urea) + 20 kg N (FYM) + 20 kg P ha?1 could be prescribed for sorghum + cowpea, and 20 kg N (urea) + 20 kg N (FYM) could be prescribed for cotton + black gram. These combinations of treatments would provide a sustainable yield in the range of 1681 to 2146 kg ha?1 of sorghum, 74 to 76 kg ha?1 of cowpea, 486 to 546 kg ha?1 of cotton, and 180 to 236 kg ha?1 of black gram over the years. Beside assuring greater yields, these soil and nutrient management options would also help in maintaining maximum soil organic C of 3.8 to 4.4 g kg?1 soil, available N of 126 to 135 kg ha?1, available soil P of 8.9 to 10.9 kg ha?1, and available soil K of 392 to 411 kg ha?1 over the years. These prediction models for crop yields and fertility status can help us to understand the quantitative relationships between crop yields and nutrients status in soil. Because black gram is unsustainable, as an alternative, sorghum + cowpea could be rotated with cotton for attaining maximum productivity, assuring sustainability, and maintaining soil fertility on rain-fed semi-arid Vertisol soils.  相似文献   

8.
Abstract

Four rates of straw (0, 4, 8 and 12 t ha?1 yr?1) were incorporated in a field experiment with continuous spring barley. The experiment was conducted on a sandy soil (5.5% clay) and a sandy loam soil (11.2% clay). After eight years, the straw incorporation was combined with catch-crop growing with and without winter application of animal slurry and also spring fertilization with mineral fertilizer (0, 50, 100 or 125 kg N ha?1 yr?1). The combined experiment was conducted for three lyears on the sandy soil and for four years on the sandy loam soil. The effects on barley dry matter yield and N uptake are presented together with the long-term effects of the straw incorporations on crop growth and soil C and N. Grain yield on the sandy loam was unaffected by straw incorporation. On the sandy soil the highest straw application rates reduced grain yield in the unfertilized barley. When the barley received mineral fertilizer at recommended levels (100 kg N ha?1 yr?1), grain yield on this soil was also unaffected by the high straw rates. Including a catch crop had a positive effect on the grain yield of barley on both soils. The total N uptake in grain and straw generally increased with straw application up to 8 t ha?1 yr?1. With the highest straw application rate (12 t ha?1 yr?1), the total N uptake decreased but still exceeded N uptake in barley grown with straw removal. The barley accumulated higher amounts of N when a catch crop was included. The total N uptake in the barley was significantly higher after animal slurry application. The extra N uptake, however, was much lower than the amounts of N applied with the slurry. Incorporation of straw had only a small influence on N uptake after slurry application. The straw, therefore, was not able to store the applied N during winter. In the two four-year periods before the combined experiment, grain yield on the sandy loam was generally negatively affected by straw incorporations. In the second period, N uptake began to show a positive effect of the straw. On the sandy soil, grain yield and N uptake during the whole period were generally positively affected by the straw incorporations except for the highest straw rate (12 t ha?1 yr?1). The sandy loam soil showed higher increases in C and N content after the repeated straw incorporations and catch-crop growing than the sandy soil. When application of animal slurry was combined with the catch crop, no further increases in soil C and N were found relative to soil where a catch crop was grown without slurry application. Large amounts of the N applied with the slurry may therefore have been lost by denitrification or nitrate leaching.  相似文献   

9.
Farmers are looking for better management practices to utilize animal manure as an alternative to chemical fertilizers. A 2-year field experiment was conducted to study the effects of nitrogen (N) fertilizer source and application methods to Nicholson silt loam soil in central Kentucky, USA for no-till corn (Zea mays) production. The region has a temperate climate with a mean temperature of 14.5°C and rainfall of 1300 mm year?1. Treatments included a control, 179 kg N ha?1 urea ammonium nitrate (UAN) applied as preplant and sidedress, and swine effluent that was applied by three methods: broadcast, injection, and Aerway. Injection method produced the greatest corn grain yield (11.88 Mg ha?1) and biomass yield (18.9 Mg ha?1) in 2007. Results demonstrated that the effluent application methods and the timing of UAN application may not be agronomically important for corn production in this region. Hence, more studies are needed on different soils in this region.  相似文献   

10.
The influence of soil properties on phosphorus (P) availability of Louisiana alluvial soils is not fully understood. A pot experiment was conducted in 2011 to evaluate the effect of different P fertilizer rate (0, 34, 67, 101 and 134 kg P2O5 ha?1) on corn growth and development on Perry clay and Commerce silt loam (sil) soils and relate Mehlich-3 and Bray-2 soil test P values with yield, total biomass, and P uptake of corn. The Bray-2 P values were six times higher than Mehlich-3 P values for Commerce sil while they were similar for Perry clay. Bray-2 and Mehlich-3 extractable-P of both soils increased with increasing P rate but only corn grown on Perry clay responded to P rate (P < 0.05). Implementation of appropriate testing procedure for estimating plant-available P in soil is an important component of effective P fertilization guidelines for corn.  相似文献   

11.
Abstract

Winter wheat was grown in 26 field trials in Norway during the period 2004–2006. The main aim was to determine the effect of various sulphur (S) fertilization strategies at two different nitrogen (N) levels on grain yield and quality of winter wheat. With the exception of four trials in central Norway, all the trials were located in the south-eastern part of the country.

Increasing the N fertilization from 170 to 210 kg N ha?1 resulted in significantly higher grain protein content (GPC) and sodium dodecyl sulphate (SDS) sedimentation volume. On clayey soils in southeast Norway, increased N-fertilization also resulted in higher grain yield and lower test weight and thousand grain weight (tgw).

Omitting S fertilization significantly reduced grain yields on sandy soils in southeast Norway and on loam and silt loam in central Norway, whereas no yield reduction was found on clay soils. SDS sedimentation volume and specific SDS (sSDS = SDS/GPC) were significantly reduced when S-fertilization was omitted. GPC was reduced by S fertilization in central Norway. Generally there were no significant responses at application rates higher than 12 kg S ha?1.

The malate:sulphate method is a field-based diagnostic test used to determine whether S deficiency is likely to occur. The results did not indicate that this test is reliable under Norwegian conditions. On the other hand, the use of a chlorophyll meter measurements to assess S status gave promising results.  相似文献   

12.
In a greenhouse pot study, we examined the availability of N to grain sorghum from organic and inorganic N sources. The treatments were15N-labeled clover residues, wheat residues, and fertilizer placed on a sandy clay loam and loamy sand soil surface for an 8-week period. Soil aggregates formed under each soil texture were measured after 8 weeks for each treatment. Significantly greater 15N was taken up and recovered by grain sorghum in sandy clay loam pots compared with loamy sand pots. Greater 15N recovery was consistently observed with the inorganic source than the organic sources regardless of soil texture or time. Microbial biomass C and N were significantly greater for sandy clay loam soil compared with the loamy sand. Microbial biomass 15N was also significantly greater in the sandy clay loam treatment compared to the loamy sand. The fertilizer treatment initially had the greatest pool of microbial biomass 15N but decreased with time. The crop residue treatments generally had less microbial biomass 15N with time. The crop residues and soil texture had a significant effect on the water-stable aggregates formed after 8 weeks of treatments. Significantly greater water-stable aggregates were formed in the sandy clay loam than the loamy sand. Approximately 20% greater water-stable aggregates were formed under the crop residue treatments compared to the fertilizer only treatment. Soil texture seemed to be one of the most important factors affecting the availability of N from organic or inorganic N sources in these soils.Contribution from the MissouriAgricultural Experiment Station, Journal Series No.12131  相似文献   

13.
《Journal of plant nutrition》2013,36(6):1335-1343
Abstract

Many alternative management systems have been evaluated for corn (Zea mays L.), soybeans (Glycine max L.), and wheat (Triticum aestivum L.) production, however, most have involved rotations from one year to the next. Legume interseeding systems which employ canopy reduction in corn have not been thoroughly evaluated. One such study was initiated in 1994 at the Panhandle Research Station near Goodwell, OK, on a Richfield clay loam soil, to evaluate five legume species interseeded into established corn: yellow sweet clover (Melilotus officinalis L.), subterranean clover (Trifolium subterraneum L.), alfalfa (Medicago sativa L.), arrowleaf clover (Trifolium vesiculosum L.), and crimson clover (Trifolium incarnatum L.). In addition, the effect of removing the corn canopy above the ear (canopy reduction) at physiological maturity was evaluated. Canopy reduction increased light interception beneath the corn thus enhancing legume growth in late summer, early fall, and early spring the following year prior to planting. Forage growth from legumes incorporated prior to planting were expected to lower the amount of inorganic nitrogen (N) fertilizer needed for corn production. Crimson clover appeared to be more shade tolerant than the other species, and interseeding this species resulted in the highest corn grain yields when no N was applied. In the last two years, interseeding crimson clover at physiological maturity, followed by canopy reduction resulted in a 1.32 Mg ha?1 increase in yield compared to conventionally grown corn with no N applied. In 1999, interseeded legumes (except subterranean clover) in conjunction with the application of 56 kg N ha?1 and crimson clover interseeded without the addition of fertilizer N (with and without canopy reduction) resulted in grain N uptake levels equal to the 112 kg N ha?1 treatment.  相似文献   

14.
Annual potassium (K) balances have been calculated over a 40‐year period for five field experiments located on varying parent materials (from loamy sand to clay) in south and central Sweden. Each experiment consisted of a number of K fertilizer regimes and was divided into two crop rotations, mixed arable/livestock (I) and arable only (II). Annual calculations were based on data for K inputs through manure and fertilizer, and outputs in crop removal. Plots receiving no K fertilizer showed negative K balances which ranged from 30 to 65 kg ha?1 year?1 in rotation I, compared with 10–26 kg ha?1 year?1 for rotation II. On sandy loam and clay soils, the K yield of nil K plots (rotation I) increased significantly with time during the experimental period indicating increasing release of K from soil minerals, uptake from deeper soil horizons and/or depletion of exchangeable soil K (Kex). Significant depletion of Kex in the topsoil was only found in the loamy sand indicating a K supply from internal sources in the sandy loam and clay soils. On silty clay and clay soils, a grass/clover ley K concentration of ~2% (dry weight) was maintained during the 40‐year study period on the nil K plots, but on the sandy loam, loam and loamy sand, herbage concentrations were generally less than 2% K.  相似文献   

15.
《Journal of plant nutrition》2013,36(7):1295-1317
Abstract

A field experiment was conducted at Central Cotton Research Institute, Multan, Pakistan on Miani soil series, silt loam soil (Calcaric, Cambisols and fine silty, mixed Hyperthermic Fluventic Haplocambids) to assess the response of four cotton (Gossypium hirsutum L.) cultivars to potassium (K) fertilization. The treatments consisted of four cotton cultivars (CIM-448, CIM-1100, NIAB-Karishma, S-12), four potassium rates (0, 62.5, 125, 250 kg K ha?1), and two sources of potassium fertilizer [muriate of potash (KCl) and sulphate of potash (K2SO4)]. The cotton cultivars differed significantly in response to various potassium fertilizer levels and its sources with respect to seed cotton yield and its components. The highest yield was obtained with the application of 250-kg K ha?1, however, it was economical to add 125 kg K ha?1. Seed cotton yield of cv. CIM-448 was considerably greater than that of the other cultivars in K-unfertilized treatments, which was related to cultivar differences in K uptake efficiency in utilizing native potassium nutrient. Potassium added as muriate of potash caused a significant depression in seed cotton yield than that of sulphate of potash. The increase in yield seemed to have resulted largely from the higher K concentration of leaf tissues at bloom stage and available soil-K because of potassium application. A significant relationship between the yield and number of bolls per plant (r = 0.92**) and boll weight (r = 0.85**) indicated that these two growth attributes were responsible for enhancing the quantum of final harvest of seed cotton.  相似文献   

16.
Our objectives were to document effects of nitrogen (N), phosphorus (P), and potassium (K) fertilizer rates on forage yields and uptake of N, P, and K by Midland bermudagrass [Cynodon dactylon (L.) Pers.] on a Minco fine, sandy loam in southern Oklahoma. After six years of this long-term experiment, forage yield responses to fertilization were mixed and depended on year. Stability analysis indicated forage yields responded positively to N fertilization during favorable weather conditions but negatively during poor weather conditions. Application of 112 kg N ha?1 provided the best yield stability and mean annual forage yield among treatments, 11.5 Mg ha?1, across years. In years with near-average weather conditions, uptake of N, P, and K increased linearly with N application rate. Limited water holding capacity of the soil and high soil P and K may have contributed to the limited yield responses to fertilization in this semi-arid environment.  相似文献   

17.
The Old Rotation cotton experiment was designed to aid farm managers in implementing rotation schemes that not only increase yield, but also improve soil quality. Six different crop rotation treatments were imposed since 1896. Rotations were: IA, cotton (Gossypium hirsutum L.) grown every year without a winter legume and without N fertilization; IB, cotton grown every year with a winter legume and without N fertilization; IC, cotton grown every year without a winter legume and with 134 kg N as NH4NO3 ha-1 year-1; IIA, 2-year cotton-corn (Zea mays L.) rotation with a winter legume and without N fertilization; IIB, 2-year cotton-corn rotation with a winter legume and with 134 kg N ha-1 year-1 as NH4NO3; and III, 3-year cotton-corn- alternating soybean [Glycine max (L.) Merr.] or rye (Secale cereale L.) rotation with a winter legume and with 134 g N as NH4NO3 ha-1 year-1. Crimson clover (Trifolium incarnatum L.) was the winter legume cover crop. The 2-year cotton-corn rotation with a winter legume and with 134 kg N ha-1 year-1 (IIB) and the 3-year cotton-corn soybean/rye rotation with a winter legume and with 134 kg N ha-1 year-1 (III) had higher amounts of soil organic matter, soil microbial biomass C and crop yield than the other four treatments. The cotton grown every year without a winter legume or N fertilizer (IA) had a lower amount of soil organic matter, soil microbial biomass C and N and cotton seed yield than all other rotations. In 1988 and 1992 cotton seed and legume yield were correlated in positive, curvilinear relationships with soil organic matter (r 2 ranged from 0.72 to 0.87). In most months, soil microbial biomass C and N was lower in the cotton grown every year without winter legumes or fertilizer (IA) than the other five rotations. In 1994, microbial biomass C and the Cmic:Corg ratio correlated in positive, curvilinear relationships with seed cotton yield (r 2=0.87 and 0.98, respectively). After 99 years of management the Old Rotation cotton experiment indicates that winter legumes increase amounts of both C and N in soil, which ultimately contribute to higher cotton yields. Microbial biomass C and the Cmic:Corg ratio are poor predictors of annual crop yield but may be an accurate indicator of soil health and a good predictor of long-term crop yield.  相似文献   

18.
To efficiently use nitrogen (N) while protecting water quality, one must know how a second-year crop, without further N fertilization, responds in years following a manure application. In an Idaho field study of winter wheat (Triticum aestivum L.) following organically fertilized sugarbeet (Beta vulgaris L.), we determined the residual (second-year) effects of fall-applied solid dairy manure, either stockpiled or composted, on wheat yield, biomass N, protein, and grain N removal. Along with a no-N control and urea (202 kg N ha?1), first-year treatments included compost (218 and 435 kg estimated available N ha?1) and manure (140 and 280 kg available N ha?1). All materials were incorporated into a Greenleaf silt loam (Xeric Calciargid) at Parma in fall 2002 and 2003 prior to planting first-year sugarbeet. Second-year wheat grain yield was similar among urea and organic N sources that applied optimal amounts of plant-available N to the preceding year’s sugarbeet, thus revealing no measurable second-year advantage for organic over conventional N sources. Both organic amendments applied at high rates to the preceding year’s sugarbeet produced greater wheat yields (compost in 2004 and manure in 2005) than urea applied at optimal N rates. On average, second-year wheat biomass took up 49% of the inorganic N remaining in organically fertilized soil after sugarbeet harvest. Applying compost or manure at greater than optimum rates for sugarbeet may increase second-year wheat yield but increase N losses as well.

Abbreviations CNS, carbon–nitrogen–sulfur  相似文献   

19.
Field experiments were made on a sandy clay loam Fluvent to determine direct effects of NPK applied to wheat and their residual effects on succeeding rice at the Indian Agricultural Research Institute, New Delhi. A significant response of wheat was recorded only for nitrogen which when applied at 120 kg N ha?1 or more had also significant but only little residual effects on succeeding rice. Adequate ? fertilization of both wheat and rice is necessary. Application of ? and ? had no significant on wheat or succeeding rice but NPK application produced the highest grain yield. Wheat‐rice rotation removed 286.4 to 424.4kg ha?1 of NPK, which is much more than the rates applied. Thus for sustaining good yields from the wheat‐rice cropping system balanced NPK fertilization is recommended.  相似文献   

20.

Commercial fertilizer (particularly nitrogen) costs account for a substantial portion of the total production costs of cellulosic biomass and can be a major obstacle to biofuel production. In a series of greenhouse studies, we evaluated the feasibility of co-applying Gibberellins (GA) and reduced nitrogen (N) rates to produce a bioenergy crop less expensively. In a preliminary study, we determined the minimum combined application rates of GA and N required for efficient biomass (sweet sorghum, Sorghum bicolor) production. Co-application of 75 kg ha?1 (one-half of the recommended N rate for sorghum) and a modest GA rate of 3 g ha?1 optimized dry matter yield (DMY) and N and phosphorus (P) uptake efficiencies, resulting in a reduction of N and P leaching. Organic nutrient sources such as manures and biosolids can be substituted for commercial N fertilizers (and incidentally supply P) to further reduce the cost of nutrient supply for biomass production. Based on the results of the preliminary study, we conducted a second greenhouse study using sweet sorghum as a test bioenergy crop. We co-applied organic sources of N (manure and biosolids) at 75 and 150 kg PAN ha?1 (representing 50 and 100% N rate respectively) with 3 g GA ha?1. In each batch of experiment, the crop was grown for 8 wk on Immokalee fine sand of minimal native fertility. After harvest, sufficient water was applied to soil in each pot to yield ~1.5 L (~0.75 pore volume) of leachate, and analyzed for total N and soluble reactive P (SRP). The reduced (50%) N application rate, together with GA, optimized biomass production. Application of GA at 3 g ha?1, and the organic sources of N at 50% of the recommended N rate, decreased nutrient cost of producing the bioenergy biomass by ~$375 ha?1 (>90% of total nutrient cost), and could reduce offsite N and P losses from vulnerable soils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号