首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
ABSTRACT

Nickel (Ni) is an essential element for plants. Abundant information exists on Ni toxicity in soil–plant system but not much is available on its critical level of deficiency (CLD) in soils and plants. Five chemical extractants were evaluated to find a suitable extractant for Ni in Inceptisol. Twenty-one soils having low to high levels of Ni were used to grow barley (Hordeum vulgare L). The amount of Ni extracted was correlated with Ni concentration and uptake by barley. The diethylene triamine penta acetic acid-calcium chloride (0.005 M DTPA-CaC12) was identified as the most promising soil extractant for Ni. The CLD of Ni for 0.005 M DTPA-CaC12 in soil was 0.22 mg kg?1 whereas in barley plant it was 2.14 mg kg?1. Application of 7.5 mg kg?1 Ni in soil caused a significant increase in Ni concentration in the shoot of barley in all the soils irrespective of the initial Ni status.  相似文献   

2.
Total vanadium (V) concentrations in soils commonly range from 20 to 120 mg kg?1. Vanadium added directly to soils is more soluble than geogenic V and can be phytotoxic at doses within this range of background concentrations. However, it is unknown how slow sorption reactions change the fate and effect of added V in soils. This study addresses the changes in V solubility, toxicity and bioavailability in soils over time. Four soils were amended with pentavalent V in the form of a soluble vanadate salt, and extractable V concentrations were monitored over 100 days. The toxicity to barley and tomato plants was evaluated in freshly spiked soils and in the corresponding aged soils that were equilibrated for up to 330 days after spiking. The V concentrations in 0.01 m CaCl2 soil extracts decreased approximately two‐fold between 14 and 100 days after soil spiking, and the reaction kinetics were similar for all soils. The phytotoxicity of added V decreased on average two‐fold between freshly spiked and aged soils. The reduced toxicity was associated with a corresponding decrease in V concentrations in the isolated soil solutions and in the shoots. The V speciation in the soil solution of the aged soils was dominated by V(V); less than 8% was present as V(IV). Oxalate extractions suggest that the V(V) added to soils is predominantly sorbed onto poorly crystalline oxyhydroxides. It is concluded that the toxicity of V measured in freshly spiked soils may not be representative of soils subject to a long‐term V contamination in the field.  相似文献   

3.
Abstract

In semiarid and arid regions, plant growth is limited by high pH, salinity, and poor physical properties of salt‐affected soils. A field experiment was conducted in the semiarid region of Kangping in northeast China (42°70′ N, 123°50′ E) to evaluate a soil‐management system that utilized a by‐product of flue‐gas desulfurization (FGD). Soil was treated with 23,100 kg ha?1 of the by‐product. Results of corn growth were grouped into three grades (GD) according to stages of corn growth: GD1, seeds did not germinate; GD2, seeds germinated but corn was not harvested; and GD3, plants grew well and corn was harvested. The pH, electrical conductivity (EC), bicarbonate (HCO3 ?), carbonate (CO3 2?), exchangeable and soluble calcium (Ca2+), chloride (Cl), and sulfate (SO4 2?) in surface soils of the three grades (>20 cm) was measured to assess the correlation between corn growth and soil properties. Vertical differences in subsoil properties (0‐100 cm) between GD1 and GD3 were compared to known benchmark soil profiles. The FGD by‐product significantly increased EC, exchangeable and soluble Ca2+, and SO4 2? and decreased CO3 2?, exchangeable sodium (Na+), and soluble Na+. pH, EC, HCO3 ?, CO3 2?, and Cl? were higher in surface soils of GD1 than GD3. Soil hardness, soil moisture content, Cl?, and calcium carbonate (CaCO3) were higher in GD1 than in GD3, whereas the amount of available P was lower in GD1. Interestingly, the concentration of Cl?, a toxic element for plant growth, was 2.5 and 1.5 times higher in GD1 than in GD3 and control soil, respectively. In the comparison study of subsoils, GD1 and GD3 were classified as having typical characteristics of saline‐alkali soil (pH>8.5; exchangeable‐sodium‐percentage [ESP]>15; EC>4.0) and alkali soil (pH>8.5; ESP>15; EC<4.0), respectively.  相似文献   

4.
Abstract

To evaluate labile selenium (Se) content in agricultural soils in Japan and to investigate its determining factors, 178 soil samples were collected from the surface layer of paddy or upland fields in Japan and their soluble Se contents were determined. Two grams of soil was extracted with 20 mL of 0.1 mol L?1 sodium sulfate (Na2SO4) solution for 30 min in boiling water, and the released Se was reduced to Se (IV) after organic matter decomposition. The concentration of Se (IV) was then determined by high performance liquid chromatography (HPLC) with a fluorescence detector after treatment with 2,3-diaminonaphthalene (DAN) and extraction with cyclohexane. Soluble Se content ranged from 2.5 to 44.5 μg kg?1 with geometric and arithmetic means of 11.4 and 12.8 μg kg?1, respectively, and corresponded to 3.2% of the total Se on average. The overall data showed log-normal distribution. In terms of soil type, Non-allophanic Andosols and Volcanogenous Regosols had relatively high soluble Se content, and Wet Andosols and Lowland Paddy soils had relatively low soluble Se content. In terms of land use, upland soils had significantly higher soluble Se content than paddy soils (p < 0.01). The soluble Se content had significant positive correlation with total organic carbon (TOC) content of the extract, soil pH and total Se content (p < 0.01). In conclusion, total Se content in combination with soil pH was the main determining factor of the soluble Se content of agricultural soils in Japan.  相似文献   

5.
Abstract: In recent years, sulfur (S) deficiencies in winter wheat (Triticum aestivum L.) have become more common, particularly on coarse‐textured soils. In Study I, field experiments were conducted in 2001/2002 through 2003/2004 on Mississippi River alluvial soils (Experiment I) and an upland, loessial silt loam (Experiment II) to evaluate the influence of spring S rates of 0, 5.6, 11.2, and 22.4 kg ha?1 and a fall rate of 22.4 kg sulfate (SO4)‐S ha?1 on grain yield of three varieties. In Study II, field experiments were conducted in 2001/2002 and 2004/2005 on alluvial soils to evaluate the influence of spring S rates of 0, 5.6, 11.2, and 22.4 kg SO4‐S ha?1 in fields where S‐deficiency symptoms were present. Grain yield response to applied S occurred only on alluvial, coarse‐textured, very fine sandy loam soils (Study II) that had soil SO4‐S levels less than the critical level of 8 mg kg?1 and organic‐matter contents less than 1 g kg?1 in the 0‐ to 15‐, 15‐ to 30‐, and 30‐ to 45‐cm depths. Soil pH increased with soil depth. Optimum S rate was 11.2 kg SO4‐S ha?1 in 2001/2002 and 5.6 kg SO4‐S ha?1 in 2004/2005. On the upland, loessial silt loam soil, soil SO4‐S levels accumulated with depth, whereas organic‐matter content and pH decreased. In the loessial soils, average soil SO4‐S levels in the 15‐ to 30‐ and 30‐ to 45‐cm soil depths were 370% greater than SO4‐S in the surface horizon (0 to 15 cm).  相似文献   

6.
Abstract

Fifty soil samples (0–20 cm) with corresponding numbers of grain, potatoes, cabbage, and cauliflower crops were collected from soils developed on alum shale materials in Southeastern Norway to investigate the availability of [cadmium (Cd), copper (Cu), zinc (Zn), lead (Pb), nickel (Ni), and manganese (Mn)] in the soil and the uptake of the metals by these crops. Both total (aqua regia soluble) and extractable [ammonium nitrate (NH4NO3) and DTPA] concentrations of metals in the soils were studied. The total concentration of all the heavy metals in the soils were higher compared to other soils found in this region. Forty‐four percent of the soil samples had higher Cd concentration than the limit for application of sewage sludge, whereas the corresponding values for Ni, Cu, and Zn were 60%, 38%, and 16%, respectively. About 70% the soil samples had a too high concentration of one or more of the heavy metals in relation to the limit for application of sewage sludge. Cadmium was the most soluble of the heavy metals, implying that it is more bioavailable than the other non‐essential metals, Pb and Ni. The total (aqua regia soluble) concentrations of Cd, Cu, Zn, and Ni and the concentrations of DTPA‐extractable Cd and Ni were significantly higher in the loam soils than in the sandy loam soils. The amount of NH4NCyextractable metals did not differ between the texture classes. The concentrations of DTPA‐extractable metals were positively and significantly correlated with the total concentrations of the same metals. Ammonium nitrate‐extractable metals, on the other hand, were not related to their total concentrations, but they were negatively and significantly correlated to soil pH. The average concentration of Cd (0.1 mg kg‐1 d.w.) in the plants was relatively high compared to the concentration previously found in plants grown on the other soils. The concentrations of the other heavy metals Cu, Zn, Mn, Ni, and Pb in the plants were considered to be within the normal range, except for some samples with relatively high concentrations of Ni and Mn (0–11.1 and 3.5 to 167 mg kg‘1 d.w., respectively). The concentrations of Cd, Cu, Zn, Ni, and Mn in grain were positively correlated to the concentrations of these respective metals in the soil extracted by NH4NO3. The plant concentrations were negatively correlated to pH. The DTPA‐extractable levels were not correlated with plant concentration and hence DTPA would not be a good extractant for determining plant availability in these soils.  相似文献   

7.
Abstract

Investigating the relation between concentration or release of phosphorus (P) into soil solution (CaCl2‐P, determined by 0.01 M CaCl2 extraction of soils) and soil test phosphorus (Olsen P, or 0.5 N NaHCO3‐extractable soil phosphorus) for 10 widely ranging and variously managed soils from central Italy, a change point was evident where the slopes of two linear relationships meet. In other words, it was possible to distinguish two sections of the plots of CaCl2‐P against Olsen P, for which increases of CaCl2‐P per unit of soil test P increase were significantly (p<0.05) greater above than below these change points. Values of change point ranged from 14.8 to 253.1 mg kg?1 Olsen P and were very closely correlated (p<0.001) to phosphorus sorption capacity of soils. Similar change points were also previously observed when Olsen P (and also Mehlich 3 P) of surface soils was related to the P concentration of surface runoff and subsurface drainage. Because insufficient data are available relating P in surface soils and amount of P loss by overland, subsurface, or drainage flow, using the CaCl2 extraction of soil can be convenient to determine a change point in soil test P, which may be used in support of agricultural and environmental P management.  相似文献   

8.
Abstract

Elevated soil phosphorus (P) content is common in the central coastal valleys of California, the result of decades of the intensive vegetable production. Undesirably high P concentration in surface water in this region stimulated interest in evaluating techniques to rank the potential for soil P loss to the environment. Phosphorus availability of 25 representative soils from fields in vegetable rotations were evaluated by the following techniques: bicarbonate‐extractable P (Pbc)–calcium chloride, extractable P (Pcc), P extractable by iron‐impregnated paper (PFe), P extractable by anion exchange resin (Pae), and the degree of P saturation (Psat). A column study was conducted in which these soils were evaluated for soluble P concentration in runoff and leachate from two simulated irrigation events. There were strong correlations among all measures of soil P availability (r=0.66–0.90). Runoff soluble P was most strongly correlated with Pcc, Pae, and Pbc (r=0.98, 0.93, and 0.91, or 0.98, 0.90, and 0.85 in the first and second irrigation, respectively). The relationship of runoff soluble P to Pbc, Pae, and Pcc was characterized by a change point; runoff soluble P from soils <50 mg kg?1 Pbc was minimal, whereas at higher Pbc runoff P reached levels of environmental concern. Leachate soluble P was also correlated with Pcc, Pae, and Pbc (r=0.84–0.99). Across soils, leachate soluble P averaged 1.4 mg L?1, compared to 0.11 mg L?1 for runoff P. We conclude that Pcc, Pae, and Pbc are useful tests to rank the potential for P loss in irrigation runoff or drainage. Given the relative complexity of the Pae technique, Pbc and Pcc appear to be the most practical soil tests for this purpose.  相似文献   

9.
Abstract

City sewage sludge was applied to the surface layer (0–10 cm) of two sandy soils, slightly calcareous with 8.9% CaCO3 and moderately calcareous with 26.7% CaCO3, at the rates of 0, 25, 50, 75, and 100 Mg ha‐1. The effects of sewage sludge and its rates on total soluble salts, pH of soils and concentration and movement of some heavy metals within soils were investigated. Soil samples were packed at bulk density of 1.5 g cm‐3 in PVC columns and incubated for 19 weeks. The results indicated that total soluble salts (EC) of the treated layer increased with increasing sewage sludge rates. Soluble salts also increased with an increase in soil depth for both soils. The pH values of treated layers in two soils decreased with increasing sewage sludge rates. With increasing sewage sludge rates, concentrations of heavy metals [cobalt (Co), nickel (Ni), cadmium (Cd), and leaf (Pb)] increased in the treated layers compared to the untreated layers and their mobility was restricted mostly to the upper 30‐cm depth. Movement of Co and Pb in both the soils was predominately limited up to a depth of 40 cm for Co and 5 cm for Pb below the treated soil layer. Nickel and Cd movement was mostly limited to a depth of 10 cm in slightly calcareous soil and 5 cm in moderately calcareous soil. Metal movement in the respective soils is ranked as Co>Ni=Cd>Pb and Co>Ni=Cd>Pb. The low concentrations of heavy metals and the restricted mobility with soil depth, suggest that this material may be used for agricultural crop production without any toxic effect on plants.  相似文献   

10.
Abstract

Speciation study of microelements in soils is useful to assess their retention and release by the soil to the plant. Laboratory and greenhouse investigations were conducted for five soils of different agro‐ecological zones (viz., Bhuna, Delhi, Cooch‐Behar, Gurgaon, and Pabra) with diverse physicochemical properties to study the distribution of zinc (Zn) among the soil fractions with respect to the availability of Zn species for uptake by rice plant. A sequential extraction procedure was used that fractionated total soil Zn into water‐soluble (WS), exchangeable (EX), specifically adsorbed (SA), acid‐soluble (AS), manganese (Mn)‐oxide‐occluded (Mn‐OX), organic‐matter‐occluded (OM), amorphous iron (Fe)‐oxide‐bound (AFe‐OX), crystalline Fe‐oxide‐bound (CFe‐OX), and residual (RES) forms. There was a wide variation in the magnitude of these fractions among the soils. The studies revealed that more than 90% of the total Zn content occurred in the relatively inactive clay lattice and other mineral‐bound form (RES) and that only a small fraction occurred in the forms of WS, EX, OM, AFe‐OX, and CFe‐OX. Rice (Oryza sativa L.) cultivars differ widely in their sensitivity to Zn deficiency. Results suggested that Zn in water‐soluble, organic complexes, exchange positions, and amorphous sesquioxides were the fractions (pools) that played a key role in the uptake of Zn by the rice varieties (viz., Pusa‐933‐87‐1‐11‐88‐1‐2‐1, Pusa‐44, Pusa‐834, Jaya, and Pusa‐677). Isotopic ally exchangeable Zn (labile Zn) was recorded higher in Typic Ustrochrept of Pabra soil, and uptake of Zn by rice cultivars was also higher in this soil. The kinetic parameters such as maximum influx at high concentrations (Imax) and nutrient concentration in solution where influx is one half of Imax (Km) behaved differentially with respect to varieties. The highest Imax value recorded was 9.2×10?7 µmol cm?2 s?1 at the 5 mg kg?1 Zn rate for Pusa‐933‐87‐1‐11‐88‐1‐2‐1, and the same was lowest for Pusa‐44, being 4.6×10?7 µmol cm?2 s?1 at the 5 mg kg?1 Zn rate. The Km value was highest for Pusa‐44 (2.1×10?4µmol cm?2 s?1) and lowest for Pusa‐933‐87‐1‐11‐88‐1‐2‐1 (1.20×10?4µmol cm?2 s?1). The availability of Zn to rice cultivars in Typic Ustrochrepts of Bhuna and Delhi soils, which are characterized by higher activation energy and entropy factor, was accompanied by breakage of bonds or by significant structural changes.  相似文献   

11.
Abstract

The effects of irrigating with saline water on native soil fertility and nutrient relationships are not well understood. In a laboratory experiment, we determined the extent of indigenous nutrient [calcium (Ca), magnesium (Mg), potassium (K), manganese (Mn), and zinc (Zn)] release in salt-saturated soils. Soils were saturated with 0, 75, and 150 mmolc L?1 sodium chloride (NaCl) solution and incubated for 1, 5, 10, and 15 days. The saturation extracts were analyzed for pH, ECe, and water‐soluble Ca, Mg, K, Mn, and Zn, and the remainder soil samples were analyzed for exchangeable forms of these elements. In a subexperiment, three soil types (masa, red‐yellow, and andosol) were saturated individually either with 100 mmolc L?1 of NaCl, sodium nitrate (NaNO3), or sodium sulfate (Na2SO4) salt. These salts were also compared for nutrient release. Soils treated with NaCl released higher amounts of water‐soluble than exchangeable nutrients. Except for Zn, the average concentrations of these nutrients in the soil solution increased significantly with time of incubation, but concentrations of the exchangeable forms varied inversely with time of incubation. The masa soil exhibited the highest concentrations of Ca and Mg, whereas K was highest in andosol. The extract from soils treated with NaCl contained greater amounts of soluble cations, whereas soils treated with Na2SO4 produced the lowest concentration of these elements irrespective of the type of soil used.  相似文献   

12.

Purpose

This study assessed the effect of biosolid application on the bioavailable fraction of some trace elements (Cu, Cr, Ni, and Zn) using a bioassay with sunflower (Helianthus annuus) and a chemical assay, diffusion gradient in thin films (DGT).

Materials and methods

Five surface soil samples (0–20 cm) were collected from an agricultural zone in Central Chile where biosolids are likely to be applied. Municipal biosolids were mixed with the soil at concentrations of 0, 30, 90, and 200 Mg ha?1. The experiment to determine the bioavailability of metals in the soil using the bioassay was performed using sunflower. The DGT technique and Community Bureau of Reference (BCR) sequential extraction were used to determine the bioavailable fractions of the metals.

Results and discussion

The application of biosolids increased the phytoavailability of Zn, Ni, and Cr in most of the soils, as indicated by the increasing concentrations in sunflower plants as the biosolid application rate increased. In two of the soils, Codigua and Pelvín, this increase peaked at an application rate of 90 Mg ha?1. Decreases in the bioavailable fractions of Zn, Ni, and Cr were observed with higher biosolid application rates. The bioavailability of metals was estimated through multiple linear regression models between the metals in the sunflower plants and the different chemical fractions of metals in the soils treated with different biosolid rates, which displayed a positive contribution of the labile (water soluble, carbonate, and exchangeable), oxide, and organic metal forms in the soil, particularly with respect to Ni and Zn at application rates of 30 and 90 Mg ha?1. The bioavailable fraction of metals was determined in soils using the DGT technique. The effective concentration (C E) results were compared with those in sunflower plants. The DGT technique could effectively predict the bioavailable fractions of Cr, Ni, and Zn in the Taqueral soil but only that of Zn in the Polpaico soil.

Conclusions

The application of biosolids significantly increased the labile fraction of most of the metals in the studied soils, particularly at the highest biosolid application rate. C E increased as the concentration of biosolids increased for most of the metals. The effectiveness of the DGT technique for predicting the bioavailability of metals was dependent on the soil type and the metal. However, the C E for soil Cu was not related to plant Cu for all soils studied.  相似文献   

13.
The effects of six phosphate (P) fertilizers in mobilizing and immobilizing water-soluble lead (Pb) were determined in a contaminated soil (Alfisol from Shaoxing) from China and four Australian soils (an Oxisol from Twonsville Queensland and three South Australian soils from Cooke Plains (Typic Palexeralf)), Inman Valley (Vertisol), and Two Wells (Natric Palexeralf). The fertilizers tested were single superphosphate (SSP), triple superphosphate (TSP), monoammonium phosphate (MAP), diammonium phosphate (DAP), monocalcium phosphate (MCP), and dicalcium phosphate (DCP) to produce an initial P concentration of 1,000 mg/L. The Chinese soil contained 16,397 mg/kg total Pb, but the Australian soils were uncontaminated. The four Australian soils were each spiked with 1,000 mg Pb/kg soil (as Pb(NO3)2) and incubated for a month. Single superphosphate treatments decreased total soluble Pb in soil solution to 2–14 % of those of the nil-P (0P) treatment in the four Pb-spiked soils and to 48 % in the Chinese Pb-contaminated soil. The DAP treatment followed by the MAP treatment greatly increased the total soluble Pb in soil solution up to 135–500 % of the 0P treatment, except in the Two Wells soil. MCP could decrease the total soluble Pb in Cooke Plains, Inman Valley, Shaoxing, and Two Wells soils while increase it in the Queensland soil; DCP decreased the total soluble Pb in Cooke Plains and Queensland soils while increased it in the Shaoxing and Inman Valley soils. There were close relationships between the total soluble Pb, total soluble Al, and total soluble Fe in the water extracts of each. Soluble Al and Fe ions in soil solution increased soluble Pb concentrations. We conclude that not all phosphate fertilizers immobilize Pb in soils equally well. SSP and TSP are excellent Pb-immobilizing fertilizers, while MAP and DAP are strong Pb-mobilizing fertilizers. MCP and DCP are either Pb-immobilizing fertilizers or Pb-mobilizing fertilizers depending on their reactions with individual soils.  相似文献   

14.
Abstract

A study was conducted to investigate the chemical speciation of added cadmium (Cd) and lead (Pb) and their availability as influenced by fresh organic matter (OM) and sodium chloride (NaCl) in three agricultural soils. The soils were treated with 20 mg Cd/kg as cadmium nitrate [Cd(NO3)2 · 4H2O], 150 mg Pb/kg as lead nitrate [Pb(NO3)2], 20 g/kg alfalfa powder, and 50 mmol/kg of NaCl and then incubated for 3 months at 60% water‐holding capacity (WHC) and constant temperature (25 °C). Subsamples were taken after 1, 3, 6, and 12 weeks of incubation, and electrical conductivity (EC), pH, dissolved organic carbon (DOC), and concentrations of cations and anions were determined in the 1:2.5 soil/water extract. Available Cd and Pb were determined in 0.05 M ethylenediaminetetraacetic acid (EDTA) extract. Concentrations of organic and inorganic species of Cd and Pb in soil solution were also predicted using Visual Minteq speciation program. The most prevalent species of dissolved Pb and Cd in the soils were Pb‐DOC and Cd2+ species, respectively. Salinity application increased the available and soluble Cd significantly in the acid and calcareous soils. It, however, had little effect on soluble Pb and no effect on available Pb. Organic‐matter application decreased availability of added Pb significantly in all soils. In contrast, it raised soluble Pb in all soils except for the acid one and approximated gradually to the added Pb with time. Impact of OM on available Cd was somewhat similar to that of Pb. Soluble Cd increased by OM application in the calcareous soil, whereas it decreased initially and then increased with time in the other soils.  相似文献   

15.
Abstract

Though there exists a wide spectrum of sulfur‐oxidizing microorganisms in soils, the oxidation rate of soil‐applied elemental sulfur (S0) is regularly limited because of a restricted population size. An incubation experiment was conducted to determine the effect of repeated S0 applications on different microbial populations, sulphate (SO4 2?)‐S concentration, and soil pH. Elemental sulfur was applied repeatedly at a rate of 15 mg S g?1 soil in a 15‐day interval cycle of 7 times. After each cycle, 7.5 mg lime (CaCO3) g?1 soil was applied to adjust the soil pH to an optimum range. Soil pH and 0.025 M potassium chloride (KCl)–extractable SO4 2?‐S were determined every 3 days. The population of Thiobacillus spp. and aerobic heterotrophic sulfur‐oxidizing bacteria were counted 3 and 15 days after each S0 application. The results showed that the soil pH decreased rapidly from an initial value of 7.6 to 5.3, 15 days after the first S0 application. Lime applications successfully counterbalanced the acidifying effect of S0 oxidation, and soil pH values were maintained in the optimum range with a pH of about 6.4. The 0.025 M KCl–extractable SO4 2?‐S content increased with repeated applications of S0, showing a maximum value of 3,800 mg S kg?1 soil after the sixth S0 application. Thereafter, the SO4 2?‐S concentration decreased significantly. The Thiobacillus spp.count increased consistently with repeated S0 applications. The number of Thiobacillus spp. at the first application of S0 was significantly lower than the count after all other applications. A maximum Thiobacillus spp. count of 1.0 · 108 g?1 soil was observed after the seventh application of S0. The fastest S0 oxidation rate was found after the second application of S0. The population of aerobic heterotrophic sulfur‐oxidizing bacteria increased also with repeated S0 applications, showing a maximum count of 5.0 · 104 g?1 soil after the fourth S0 application. Thereafter, the population declined steadily. Significant relationships between SO4 2?‐S concentration and count of Thiobacillus spp. (R2=0.85, p<0.01) and aerobic heterotrophic sulfur‐oxidizing bacteria (R2=0.63, p<0.01) were found. Based on these results, it may be concluded that repeated S0 applications decrease soil pH, increase Thiobacillus spp. counts, and thus increase extractable SO4 2?‐S concentration in soils. The results further suggest that soils that receive regular S0 applications have a higher Thiobacillus spp. count and thus have conjecturally a higher S0 oxidation potential than soils that have never received S0. This again indicates a priming effect of S0 oxidation by Thiobacillus spp., which needs to be confirmed under field conditions.  相似文献   

16.
Abstract

Potassium (K) fixation and release in soil are important issues in long‐term sustainability of a cropping system. Fixation and release behavior of potassium were studied in the surface and subsurface horizons in five benchmark soil series, viz. Dhar, Gurdaspur, Naura, Ladowal, and Nabha, under rice–wheat cropping system in the Indo‐Gangetic plains of India. Potassium fixation was noted by adding six rates of K varying from 0 to 500 mg kg?1 soil in plastic beakers while K release characteristics were studied by repeated extractions with 1 M HNO3 and 1 M NH4OAc extractants. The initial status of K was satisfactory to adequate. Potassium fixation of added K increased with the rate of added K irrespective of soil mineralogy and soil depth. Soils rich in K (Ladowal and Nabha) fixed lower amounts (18–42%) of added K as compared to Gurdaspur, Dhar, and Naura (44.6–86.4%) soils low in K. The unit fertilizer requirement for unit increase in available K was more in low‐K soils. The study highlights the need for more studies on K fixation in relation to the associated minerals in a particular soil. Potassium‐release parameters such as total extractable K, total step K, and CR‐K varied widely in different soil series, indicating wide variation in the K‐supplying capacity of these soils. K released with 1 M NH4OAc extractant was 20–33% of that obtained with 1 M HNO3. Total extractable K using 1 M HNO3 varied from 213 to 528 mg kg?1 and NH4OAc‐extractable K ranged from 71 to 312 mg kg?1 soil in surface and subsurface layers of different soil series. The Ladowal and Nabha series showed higher rates of K release than Gurdaspur, Dhar, and Naura series, indicating their greater K‐supplying capacity.  相似文献   

17.
Abstract

Zinc (Zn) deficiency is a widespread micronutrient disorder in crops grown in calcareous soils; therefore, we conducted a nutrient indexing of farmer‐grown rainfed wheat (Triticum aestivum, cv. Pak‐81) in 1.82 Mha Potohar plateau of Pakistan by sampling up to 30 cm tall whole shoots and associated soils. The crop was Zn deficient in more than 80% of the sampled fields, and a good agreement existed between plant Zn concentration and surface soil AB‐DTPA Zn content (r=0.52; p≤0.01). Contour maps of the sampled areas, prepared by geostatistical analysis techniques and computer graphics, delineated areas of Zn deficiency and, thus, would help focus future research and development. In two field experiments on rainfed wheat grown in alkaline Zn‐deficient Typic Haplustalfs (AB‐DTPA Zn, 0.49–0.52 mg kg?1), soil‐applied Zn increased grain yield up to 12% over control. Fertilizer requirement for near‐maximum wheat grain yield was 2.0 kg Zn ha?1, with a VCR of 4∶1. Zinc content in mature grain was a good indicator of soil Zn availability status, and plant tissue critical Zn concentration ranges appear to be 16–20 mg kg?1 in young whole shoots, 12–16 mg kg?1 in flag leaves, and 20–24 mg Zn kg?1 in mature grains.  相似文献   

18.
In the present study, a laboratory experiment was designed to compare the 0.01 M calcium chloride (CaCl2) and diethylenetriaminepentaacetic acid (DTPA) extraction methods for their ability to predict cadmium (Cd), copper (Cu), iron (Fe), Manganese (Mn), nickel (Ni), and zinc (Zn) availability and mobility in five calcareous soils. The soils were spiked with different amounts of metals (0, 50, 100, 200, and 400 mg kg?1) both in binary (Cu and Zn; Ni and Cd; Fe and Mn) and in multi-systems (Cd, Cu, Fe, Mn, Ni, and Zn) and incubated for 1 months at field capacity. In metal-spiked soils, both extraction methods showed a linear relationship of extractable to total metals for all soils. The fraction of total metals extracted by DTPA was much higher than the fraction extracted by CaCl2, which was attributed to the formation of soluble metal-complexes in the complexing extracts calculated by the Visual Minteq program. DTPA extraction method showed higher selectivity for Cu over other metals both in binary and in multi-systems. Different order of metals extractability was found in binary and multi-systems for both extraction methods. Solid/solution distribution coefficient (Kd) was calculated by the ratio of the solid phase to soil solution concentration of metals extracted by CaCl2 or DTPA extraction methods. Both in binary and in multi-systems, the average Kd (l kg?1) of metals by soils were in the order of Mn (5398) > Fe (4413) > Zn (3376) > Cu (2520) > Ni (969) > Cd (350) in the CaCl2-extractable metals and Fe (35) ≥ Ni (34) > Zn (18) > Mn (11.2) > Cu (6.3) > Cd (4) in the DTPA-extractable metals. Results showed that among the six studied metals, Cd had the lowest Kd, implying a relative higher mobility in these calcareous soils. The Visual Minteq indicated that in the CaCl2-extraction method and in both binary and multi-systems the dominant species for Cu, Mn, Ni, and Zn were Cu2+, Mn2+, Ni2+ and Zn2+, respectively, while for Cd and Fe, the dominant species were CdCl+ and Fe(OH)2+, respectively.  相似文献   

19.
Abstract

A previous study indicated that agricultural biosolid applications increased the concentration of EPA3050‐digestible trace elements in soils on Pennsylvania production farms but could not indicate potential trace‐element environmental availability. This study was conducted to determine if biosolid application had altered the distribution of trace‐elements among operationally defined soil fractions and the relationship of trace element concentrations in soil and crop tissues. Biosolid‐amended and unamended soils from production farms in Pennsylvania were extracted using a modified Bureau Communautaire de Référence (BCR) sequential fractionation technique and analyzed for chromium (Cr), copper (Cu), nickel (Ni), lead (Pb), and zinc (Zn). Trace‐element concentrations in crop tissues (soybean silage, sudangrass, corn grain, alfalfa hay, and orchardgrass hay) from the same farms were also determined. Fractionation results indicated that the proportion of Cr, Cu, Ni, Pb, and Zn that is potentially bioavailable is quite small in unamended soils. Biosolid applications significantly (P≤0.1) increased concentrations of Cu in all soil fractions (average increase over unamended soil=1.14, 8.27, 6.04, and 5.84 mg kg?1 for the exchangeable, reducible, oxidizable, and residual fractions, respectively), Ni (0.41, 1.65 mg kg?1 for the reducible and residual fractions, respectively), Pb (5.12 and 1.49 mg kg?1 for the reducible and residual fractions, respectively), and Zn (8.28, 7.12, 4.44, and 8.98 mg kg?1 for the exchangeable, reducible, oxidizable, and residual fractions, respectively) but did not significantly increase Cr in any soil fraction. Concentrations of Cu in all soil fractions were significantly (P≤0.01) correlated with concentrations of Cu in orchardgrass tissue (r=0.70, 0.66, 0.76, and 0.69 for the exchangeable, reducible, oxidizable, and residual soil fractions, respectively). Concentrations of exchangeable and reducible Zn were significantly correlated with Zn in sudangrass tissue (r=0.81 and 0.67), and reducible Zn was significantly correlated with Zn concentrations in orchardgrass tissue (r=0.65). Application of biosolids had little effect on bioavailability of Cr, Ni, or Pb, whereas higher loadings of Cu and Zn led to a shift toward the more labile soil fractions. Loadings of Cu and Zn were much smaller than cumulative loadings permitted under U.S. Environmental Protection Agency (USEPA) Part 503 regulations. Chemical soil fractionation was able to detect increases in labile soil Cu and Zn that relate to increased phytoavailability.  相似文献   

20.
Abstract

The diffusive mobility of fluoride (F) in soil (Entisol heplaquent) has been investigated as a function of soil water content and F‐concentration gradient. The data on F‐diffusion coefficients were recorded by determining the F‐concentration profile in horizontally incubated and homogenized soil columns, under varied experimental conditions (volumetric soil water content (θ)=0.12?0.25 cm3 cm?3, initial concentration of F at source ([F]t=0)=8?32 µM/g, pH=7.6±0.5, incubation time (t)=96 and 384 h, temperature=303±1.2 K). The effects of aluminum (Al) and calcium (Ca) ions, which are known to be strong binders for F in soil, on the F mobility have also been investigated by observing F diffusion in soils amended with externally added Al and Ca. The study suggests that F diffusion in soil increases with increase in θ and [F]t=0. Further, when the soil was amended with Ca, F diffusion was observed to decrease regularly with the increase in Ca amount. In Al‐amended soil, when Al concentration is raised, F diffusion increases, at 96 h incubation time but decreases at 384 h incubation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号