首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
Abstract

The relative effectiveness of Mehlich I (.025N H2SO4 + .05N HCl) and Mehlich III (0.2N CH3COOH + 0.25N NH4NO3 +.015N NH4F + .013N HNO3 + .001M EDTA) extractants as predictors of Mn, Cu and Zn uptake was assessed in a greenhouse experiment with four Delaware soils. The soils were adjusted to eight pH levels by addition of Ca(OH)2 or elemental S, and received comparable amounts of Mn, Cu and Zn as either (1) MnSO4 + CuSO4 + ZnSO4 or (2) Poultry Manure. Mehlich 1 and III extractable Mn and Zn, but not Cu, were well correlated in most instances. Excellent correlations were obtained between Mn uptake and Mehlich I and Mehlich III extractable Mn, for all soils and sources. In general, however, neither Zn nor Cu was found to correlate well with plant uptake. Based on this study, conversion to Mehlich III, as a routine soil test extractant for micronutrients, would not result in a significant improvement over the currently used Mehlich I extractant.  相似文献   

2.
Abstract

The Mehlich 3 (M3) universal soil extraction method was compared with the ammonium acetate (AA), Bray 1, and DPTA extraction procedures for the analysis of calcium (Ca), magnesium (Mg), potassium (K), phosphorus (P), zinc (Zn), copper (Cu), manganese (Mn), and iron (Fe). Upland Malawi soils from 112 smallholder farmers’ fields of the Alfisol, Ultisol, and Oxisol soil orders were analyzed by the four procedures. Calcium, Mg, and K extracted by the M3 and AA procedures were highly correlated (r2 = 0.98, 0.98, and 0.99 for the respective elements). The M3 extractant also correlated well with the DPTA procedure for Zn and Cu (r2 = 0.88 for both elements) and the Bray 1 method for P (r2 = 0.80). Amounts of Mn and Fe extracted by M3 and DPTA were poorly correlated (r2 = 0.28 and 0.47, respectively), with both elements testing high in all soils. The high levels suggest that Mn and Fe deficiencies are likely to be rare, and that analysis for these elements is not generally necessary. Special precautions for Zn and Cu analyses are advised due to the low conentrations of these elements in the M3 extract and various laboratory sources of Zn contamination. The use of soil pH along with M3‐extractable Zn is recommended in the identification of potentially Zn‐deficient soils. The preference for expressing analytical results on a volume rather than weight basis is discussed. Based on a review of literature relating to the M3 extractant, the following critical M3 soil test values are tentatively recommended for maize on upland Malawi soils: Ca, 50 mg/dm3; Mg, 75 mg/dm3 and Mg:Ca ratio >0.067; K, 70 mg/dm3; P, 20 mg/dm3; Zn, 1.0 mg/dm3; and Cu, 0.5 mg/dm3. These suggested values should not preclude in‐country correlation studies. Because the M3 procedure is well correlated with the AA, DPTA, and Bray 1 methods, and because it is a rapid procedure, the M3 method can be highly recommended as a replacement for the three current procedures for Malawi upland soils. Caution is advised in extending the results to Malawi lowland soils, which are characterized by higher pH values.  相似文献   

3.
This study evaluated the suitability of the Mehlic h3 universal extractant as a part of a multielement test to assess the nutrient status of Australian sugarcane soils. Soil samples from BSES Soil Exchange Programs, representing all major soil types and geographic sugarcane-growing regions, were analyzed using existing BSES, acid-based extraction methods for calcium (Ca), magnesium (Mg), sodium (Na), potassium (K), copper (Cu), zinc (Zn), iron (Fe), manganese (Mn), and phosphorus (P) and the ASPAC 10B3 method for sulfur (S). These were compared with the Mehlich 3 procedure. Mehlich 3 results for Ca, Mg, Na, S, and Mn correlated highly with the BSES procedures (R2 = 0.95, 0.98, 0.99, 0.91, and 0.91, respectively). Satisfactory correlations were also obtained with 0.1 M HCl–extracted Zn, Cu, and Fe (R2 = 0.89, 0.85, and 0.85, respectively) and with the BSES sulfuric acid (H2SO4)–extracted P (R2 = 0.81). The poorest correlation (R2 = 0.79) was observed for K. In conclusion, the Mehlich 3 procedure is suitable as a diagnostic tool to assess the basic nutrient status of Australian sugarcane soils.  相似文献   

4.
Abstract

Simultaneous extraction of nutrients using ammonium bicarbonate–diethylene triamine penta acetic acid (ABDTPA) extractant has been successful for highland soils, but its potential for lowland soils is still uncertain. This study evaluated the suitability of ABDTPA extractant to determine available phosphorus (P), potassium (K), sodium (Na), calcium (Ca), magnesium (Mg), iron (Fe), manganese (Mn), zinc (Zn), and copper (Cu) in lowland rice soils of Sri Lanka. Available nutrients were analyzed both by conventional and ABDTPA methods, using the original ABDTPA (1∶2 soil–extractant) method as well as a modified (1∶4 soil–extractant) method. Conventional methods tested were Olsen, Bray 1, and FeO strip for available P; neutral NH4OAc extraction for exchangeable Ca, Na, K, and Mg; and DTPA extraction for available Zn, Cu, Fe, and Mn. Nutrient content and uptake by plants were determined by a pot experiment with rice (Oryza sativa). Nutrients extracted by the conventional methods and ABDTPA methods correlated well, in general, for all nutrients. Highly significant correlations were observed between plant uptake and extractable nutrients by 1∶2 and 1∶4 ABDTPA methods for P (r=0.85***and 0.73***, respectively), K (r=0.79*** and 0.66***, respectively), Na (r=0.86*** and 0.78***, respectively), Zn (r=0.66*** and 0.60***, respectively), Mn (r=0.72*** and 0.84***, respectively), and Fe (r=0.74*** and 0.68***, respectively). Calcium and Mg extracted by ABDTPA showed a poor relationship with their respective plant uptake. The ABDTPA method was as effective as or even better than the conventional methods in evaluating fertility status of lowland rice soils with respect to most nutrients. Replacing the conventional methods by the single ABDTPA multielement extractant will reduce the time and cost of soil analysis.  相似文献   

5.
Abstract

Predictive soil tests were used to detect possible need for Cu, Zn, and Mn fertilizers for the optimum production of watermelons (Citrullus lanatus (Thumb.) Masf.) in north and central Florida. Predictive Mehlich‐I soil testing indicated a possible response to additions of Mn and Cu but not to additions of Zn at three locations: Gainesville, Dunnellon, and Live Oak. Results showed no total marketable yield response to selected Cu, Zn, and Mn treatments at any of the three sites. Yields for the Gainesville, Dunnellon, and Live Oak sites were 41.5, 29.0, and 38.0 Mg/ha, respectively, well above the state average watermelon yield of 19.0 Mg/ha. Tissue analyses at the Gainesville and Live Oak sites showed Cu, Zn, and Mn levels within or above suggested sufficiency ranges. This study indicates that current University of Florida interpretations for the Mehlich‐I extractant can identify sites with adequate extractable Cu, Zn, and Mn levels, thus avoiding unnecessary fertilization. At no time were University of Florida Cu, Zn, or Mn interpretations and recommendations found to be limiting for watermelon production.  相似文献   

6.
Abstract

Soil nutrient extraction methods, which are currently being used in Malawi, are time consuming and require too many resources. The use of a universal soil extractant would greatly reduce resource requirements. The objectives of the study were to (i) compare the universal soil extractants, Mehlich 3 (M3) and Modified Olsen (MO) with ammonium acetate (AA), Bray P1 (BPl), and diethylene triamine penta acetic acid (DTPA) in the amount of nutrients extracted, (ii) determine the relationship among the extractants for the nutrients they extract, and (iii) determine the critical soil‐test levels of phosphorus (P), potassium (K), and zinc (Zn) for a maize crop. Missing nutrient trials involving P, K, and Zn were conducted on thirty sites across Malawi using maize (Zea mays L.). Phosphorus application rates ranged from 40 to 207 kg P2O5 ha‐1. Potassium and Zn were applied at 75 kg K2O and 10 kg Zn ha‐1, respectively. Procedures of Cate and Nelson were used to identify soil nutrient critical levels. Results showed that the correlations between M3 and BP1, and MO and BPl were highly significant (r=0.93, 0.94, respectively). Mehlich 3 extractable K and AA extractable K (r=0.90), MO and AA extractable K (r=0.94) were highly significant (P<0.01) and the correlations between M3 and AA and MO and AA extractable calcium (Ca) (r=0.92, 0.90, and 0.94, respectively) were also highly significant (P<0.01). The correlations between M3, MO, and AA extractable magnesium (Mg) (r=0.99) were highly significant (P<0.01). Zinc, copper (Cu), and manganese (Mn) extracted with M3 and DTPA were significantly correlated (r=0.89, 0.87, and 0.95, respectively). Correlations between MO and DTPA extractable Zn, Cu, and Mn were also highly correlated (r=0.89,0.85, and 0.95, respectively). Maize grain yields ranged from 730 to 9,400 kg ha‐1. Mehlich 3‐P and MO‐P critical levels were 31.5 and 28.0 μg g‐1, respectively. Mehlich 3 and MO gave a similar critical level of 0.2 cmol kg‐1 for K while Zn critical levels were 2.5, and 0.8 μg g‐1 for M3 and MO, respectively. Mehlich 3 and MO were equally effective in separating responsive to none responsive soils for maize in Malawi.  相似文献   

7.
Abstract

Extractants employed for routine soil analysis vary from one laboratory to another. Lack of a universal soil extractant is a serious limitation for interpretation of analytical results from various laboratories on nutritional status of a given soil. This limitation can be overcome by developing functional relationships for concentrations of a given nutrient extractable by various extradants. In this study, extractability of Ca, Mg, P, and K in a wide range of soils (0–15 cm) from citrus groves in Florida representing 21 soil series, with varying cultural operations, were compared using Mehlich 3 (M3), Mehlich 1 (M1), ammonium acetate (NH4AOc), pH = 7.0 (AA), 0.2M ammonium chloride (NH4Cl), and ammonium bicarbonate‐DTPA (AB‐DTPA) extractants. Soil pH (0.01M CaCl2) varied from 3.57 to 7.28. The concentrations of Ca or Mg extractable by M3, M1, AA, and NH4Cl were strongly correlated with soil pH (r2 = 0.381–0.482). Weak but significant correlations were also found between AB‐DTPA extractable Ca or Mg and soil pH (r2 = 0.235–0.278). Soil pH relationships with extractable K were rather weak (r2 = < 0.131) for M1 and NH4Cl but non‐significant for M3, AB‐DTPA, and AA. Concentrations of Ca, Mg, and K extractable by M3 were significantly correlated with those by either M1, AA, or NH4Cl extractants. Mehlich 3‐P was significantly correlated with P extractable by M1 extractant only. Mehlich 3 versus AB‐DTPA relationship was strong for K (r2 = 0.964), weaker for Mg and P (r2 = 0.180–0.319), and non‐significant for Ca. With the increasing emphasis on possible use of M3 as an universal soil extractant, data from this study support the hypothesis that M3 can be adapted as a suitable extractant for routine soil analysis.  相似文献   

8.
Abstract

The effect of grinding on soil extraction was determined for two soil fractions and three extractants. Arsenic (As), beryllium (Be), cadmium (Cd), cobalt (Co), chromium (Cr), copper (Cu), nickel (Ni), lead (Pb), vanadium (V), and zinc (Zn) were extracted by aqua regia and 2 M nitric acid. Mehlich 3 extractant was used for determination of potassium (K), magnesium (Mg), calcium (Ca), phosphorus (P), iron (Fe), and aluminum (Al). One hundred forty‐seven agricultural soil samples representing all major soil types, climatic regions, and proportions of agronomic cultures in the Czech Republic were collected for the study. Particle size fractions smaller than 2 mm and smaller than 0.150 mm were chosen for investigation. Extraction of elements by aqua regia was similar for both size fractions of soil. Cold 2 M nitric acid is a weaker extractant than aqua regia, and a statistically significant increase in extractable Be (5%), Cd (6%), Co (11%), Cu (5%), Ni (5%), and V (2%) was measured with the finely ground soils. An increase for the finer fraction for K (10%) and Mn (25%) was found for Mehlich 3. A more complex nonlinear relationship was found for Mehlich 3 extractable Al and Fe. This was probably caused by a more intensive re‐adsorption of Fe and Al to the finely ground soils.  相似文献   

9.
Abstract

Acid extractants were found to be a problem when determining phosphorus in some soils especially in soils with a higher content of carbonates. Carbonate content, soil pH or extractable calcium cannot exactly predict the behavior of a particular soil. On the other hand, measurement of pH after extraction reflects the ability of soil to change the properties of an extractant. The objective of this study was to find the relationships between pH changes during the extraction and the extraction of phosphorus for Mehlich 3, Mehlich 2, CAL, and Egner extractants. Twelve soil samples from various regions of the Czech Republic were taken for investigation. The pH/KCl of the samples was in the range 4.9–7.3. Calcium carbonate was added into the extracting bottles to the soil samples before extraction. The CaCO3/soil ratio was from 0 to 0.5. The content of phosphorus and pH were measured in filtrates after extraction. The ratio P1 =Pmeas /PO was calculated for all measurements, all additions of calcium carbonate and all soils. Pmeas is the measured value of phosphorus after extraction with the addition of calcium carbonate and Po is the value of phosphorus determined after the extraction without addition of calcium carbonate. The ratio Pr reflects the changes in the extractability of phosphorus and it is independent of the absolute content of phosphorus in soil. The relationships between Pr and pH after extraction for CAL, Mehlich 2, and Mehlich 3 extractants were found. No such relationship was found for Egner extractant. Correction equations (x=pH after extraction, y=Pr):  相似文献   

10.
Abstract

Agricultural use of sewage sludges can be limited by heavy metal accumulations in soils and crops. Information on background levels of total heavy metals in soils and changes in soil metal content due to sludge application are; therefore, critical aspects of long‐term sludge monitoring programs. As soil testing laboratories routinely, and rapidly, determine, in a wide variety of agricultural soils, the levels of some heavy metals and soil properties related to plant availability of these metals (e.g. Cu, Fe, Mn, Zn, pH, organic matter, texture), these labs could participate actively in the development and monitoring of environmentally sound sludge application programs. Consequently, the objective of this study was to compare three soil tests (Mehlich 1, Mehlich 3, and DTP A) and an USEPA approved method for measuring heavy metals in soils (EPA Method 3050), as extractants for Cd, Cu, Ni, Pb and Zn in representative agricultural soils of Delaware and in soils from five sites involved in a state‐monitored sludge application program.

Soil tests extracted less than 30% of total (EPA 3050) metals from most soils, with average percentages of total metal extracted (across all soils and metals) of 15%, 32%, and 11% for the Mehlich 1, Mehlich 3, and DTPA, respectively. Statistically significant correlations between total and soil test extractable metal content were obtained with all extractants for Cu, Pb, and Zn, but not Cd and Ni. The Mehlich 1 soil test was best correlated with total Cu and Zn (r=0.78***, 0.60***, respectively), while the chelate‐based extractants (DTPA and Mehlich 3) were better correlated with total Pb (r=0.85***, 0.63***). Multiple regression equations for the prediction of total Cu, Ni, Pb, and Zn, from soil test extractable metal in combination with easily measured soil properties (pH, organic matter by loss on ignition, soil volume weight) had R2 values ranging from 0.41*** to 0.85***, suggesting that it may be possible to monitor, with reasonable success, heavy metal accumulations in soils using the results of a routine soil test.  相似文献   

11.
Abstract

Different chemical reagents are used to assess plant‐available nutrients from soils with similar properties. The use of different extractants is a serious limitation when comparing results between different soil‐testing laboratories, often leading to large differences in fertilizer recommendations for similar crops.

In this study, 80 samples from acid soils from Galicia (Spain) were used to compare several soil nutrient extractants. Traditional and tested extractants for acid soil such as Bray 2 and ammonium acetate were used to evaluate multielement extractants such as ethylenediaminetetraacetic acid–ammonium acetate (EDTA‐aa), ammonium bicarbonate–diethylenetriaminepentaacetic acid (AB‐DTPA), and Mehlich 3.

Linear regression analyses were performed to relate the amount of each nutrient obtained by traditional soil extractants to the amount obtained by multielement extractants. Strong correlation was found between extractable Bray 2 P and Mehlich 3 P (r2=0.97, slope=0.87, and intercept=?0.48). The slope of the regression line between EDTA‐aa‐extractable calcium (Ca) and that from ammonium acetate (Aa) approached 1∶1 (r2=0.86). Similar results were obtained for magnesium (Mg) (r2=0.99). Soil zinc (Zn) concentrations extracted by Mehlich 3 and EDTA‐aa were similar; slope of the regression line was 0.95 (r2=0.88). With regard to copper (Cu), Mehlich 3 extracted approximately 20% more Cu than EDTA‐aa.

The results showed that Mehlich 3 and EDTA‐aa are suitable for assessment of plant available phosphorus (P), potassium (K), Ca, Mg, Cu, Zn, and iron (Fe) in acid soils.  相似文献   

12.
采取Mehlich3(以下简称M3法)方法和常规标准方法测定了41个土壤样品的有效磷、速效钾、交换性钙、交换性镁、有效铁、有效锰、有效铜、有效锌和有效硼。通过对两种方法测定结果的分析,探讨二者的相关性。土壤有效磷M3方法与常规方法相关系数达到0.9085,为最高,有效铜M3方法与常规方法相关系数为0.1556,为最低。有效铜、有效硼测定结果的相关性很差。M3方法与常规方法测定土壤养分在有效磷、速效钾、交换性钙、交换性镁、有效铁、有效锰、有效锌上达到极显著水平,其数值可以通过回归方程相互转换利用。  相似文献   

13.
Abstract

The objectives of this study were to modify the Mehlich 2 (M2) extractant to include Cu among the extractable nutrients, retain or enhance the wide range of soils for which it is suitable and minimize it's corrosive properties. The substitution of nitrate for chloride anions and the addition of EDTA accomplished those objectives. The new extracting solution, already designated Mehlich 3 (M3) is composed of 0.2N CH3COOH‐0.25N NH4N03‐0.015NNH4F‐0.013NHN03‐0.001M EDTA. Extractions from 105 soils using M3, M2, Bray 1 (Bl) and Ammonium Acetate (AA) were compared to evaluate the new extractant. The quantity of F extracted by M3 exceeded that by M2 20% and that by Bl 4% but the results from all extractions were highly correlated. Extractions of both K and Mg by M3 were 6–8% higher than those by AA and 3–4% higher than those by M2, but, again, there was high correlation among methods. Addition of EDTA increased Cu extractions by 170%, Mn by 50% and Zn by 25%. Cu extractions by M3 correlated with those from the Mehlich‐Bowling method. High correlations between Mn, as well as Zn, extracted by M3 and M2 were shown.  相似文献   

14.
Abstract

Applications of zinc (Zn) and copper (Cu) at excessive rates may result in phytotoxicity. Experiments were conducted with mixtures of soils that were similar except for their Zn and Cu levels. The critical toxicity levels (CTL) in the soils and plants for these elements were determined. Peanut (Arachis hypogaea L.), soybean [Glycine max (L.) Merr.], corn (Zea mays L.), and rice (Oryza sativa L.) were the crops grown. One soil mixture had Mehlich 3‐extractable Zn concentrations up to 300 mg dm‐3 with no corresponding increase in soil Cu; two soil mixtures had soil Zn concentrations up to 400 and 800 mg dm‐3 with a corresponding increase in soil Cu up to 20 and 25 mg dm‐3, respectively; and four soil mixtures had no increase in soil Zn, but had Mehlich 1‐extractable Cu concentrations from 6 to 286 mg kg‐1. Under a given set of greenhouse conditions, the estimated Mehlich 3‐extractable Zn CTL was 36 mg dm‐3 for peanut, 70 mg dm‐3 for soybean, between 160 and 320 mg dm‐3 for rice, and >300 mg dm‐3 for corn. No soil Cu CTL was apparent for peanut or soybean, but for corn it was 17 mg dm‐3 and for rice 13 mg dm‐3. With different greenhouse procedures and the Mehlich 1 extractant, the soil CTL for rice was only 4.4 mg kg‐1. Therefore, peanut and soybean were more sensitive to Zn toxicity, whereas corn and rice were more sensitive to Cu toxicity. Plant Zn CTL for peanut was 230 mg kg‐1, while that for soybean was 140 mg kg‐1. Copper appeared to be toxic to corn and rice at plant concentrations exceeding 20 mg kg‐1.  相似文献   

15.
Eucalyptus is the most widely planted forest species in Brazil (~3.4 million hectares). Ongoing rotations and high yields lead to the occurrence of copper (Cu), manganese (Mn), iron (Fe), and zinc (Zn) deficiency symptoms. The objectives of this work were to identify the most appropriate extractant for evaluating micronutrient availability in commercial Eucalyptus plantations and to evaluate the influence of soil properties on Eucalyptus foliar micronutrient contents. Soil micronutrient contents were extracted by Mehlich 1, Mehlich 3, and diethylenetriaminepentaacetic acid (DTPA). Mehlich 1 and Mehlich 3 extracted the greatest amounts for all micronutrients analyzed. Foliar Cu, Mn, and Zn contents showed significant and positive relationships with soil Cu, Mn, and Zn contents extracted by the three solutions. Soil organic carbon (SOC), soil clay content, and soil pH improved significantly the power of regression models in estimating foliar micronutrient contents. The improvement was greater for Mehlich 3 and DTPA extractants than for Mehlich 1.  相似文献   

16.
Minimum tillage cropping systems and the use of animal manures on cropland are becoming more prevalent. An experiment was initiated to determine the effects of tillage and lime/gypsum variables on uptake of zinc (Zn), manganese (Mn), and copper (Cu) by corn (Zea mays L.) and to show correlations between plant uptake of these metals and soil pH and Mehlich 1‐extractable soil metals where poultry litter was used as a nitrogen (N) source. Surface soil samples were taken in the spring and fall for two years from a long‐term tillage experiment that had been in place for nine years. There were two tillage treatments [conventional (CT) and no‐tillage (NT)] and six lime/gypsum treatments (control, 8,960 kg gypsum ha‐1 every fourth year, 4,480 kg lime ha‐1 every fourth year, and three treatments of 8,960 kg lime ha‐1 in a four‐year period divided by application times into 1, 2, and 4 treatments). Poultry litter was applied each year of the two‐year experiment at a rate of 8.96 Mg ha‐1 on a dry weight basis. Soil samples were analyzed for pH and Mehlich 1‐extractable Zn, Mn, and Cu, and plant tissue (small plant, ear leaf, stalk, and grain) was analyzed for Zn, Mn, and Cu concentrations. Lime treatments resulted in lower Zn in the small plant and ear leaf for CT, but not for NT. Plant Mn was decreased by lime and gypsum rates for small plant, ear leaf, stalk and grain for both years for CT and NT. Correlations for plant Zn versus soil pH were generally non‐significant, except for one year for ear leaf Zn (R=‐0.413**). Correlations for soil pH and plant tissue Cu were all nonsignificant. Correlations for plant Mn and soil pH were strong with R values over 0.80. Plant Mn response to treatments was found at a pH range of 4.2 to 5.8 for ear leaf and pH 5.2 to 6.2 for stalks. Plant Mn and Zn versus Mehlich 1‐extractable soil Mn and Zn, respectively, were negative. This response was possibly due to oxidation‐reduction and non‐incorporation of the lime for Mn and non‐incorporation of the lime for Zn. Also, the poultry litter was high in Zn (447 mg kg‐1), which could have masked pH effects. It was concluded that soil sampling for plant micronutrients for NT, especially where a waste material high in micronutrients is applied, can give erratic and even erroneous results. However, lime and tillage treatments had a predictable effect on micronutrient uptake as related to soil pH.  相似文献   

17.

To study the availability of sludge-borne Zn, Cu, Cd, Ni and Pb over time, a field study was conducted. Anaerobically digested sewage sludge (dried on sandbeds) from Huntsville and Chicago were applied to a Decatur silty clay loam soil (clayey, kaolinitic, thermic, Rhodic Paleudult), pH 6.2, for 5 consecutive yr. The sludges were applied at rates of 0, 20 (annual application for 5 yr) and 100 mt ha?1 (single application). Corn (Zea mays L.) and sudangrass (Sorghum sudanenses) were grown on the sludge-treated plots as test crops in 1987. Plant tissue samples were collected at different growth stages. Soil samples collected from the sludge-treated plots were extracted for Zn, Cu, Cd, Ni and Pb by 0.1 M HCI, DTPA, Mehlich 1 and Mehlich 3 extractants. Statistically, Mehlich 1, Mehlich 3, DTPA and 0.1M HCI extractants all gave highly significant correlations with the plant accumulation of Zn, Cu, Ni and Cd, with DTPA giving the highest at any growth stage for both corn and sudangrass, but they gave poor correlations for Pb. Zinc removed by four extractants was more highly correlated with Zn accumulation by corn (r=0.72** to 0.93** p=0.01) and sudangrass (r=0.50** to 0.96**, p=0.01) than other metals. Based on higher significant linear correlation coefficients (r), DTPA would be the extractant of choice for both crops; however the advantage to using the Mehlich 3 extractant is that, with a shorter shaking time of 5 min (compared to 2 hr for DTPA), it may be better suited for routine analysis of large numbers of soil samples.

  相似文献   

18.
Abstract

Many soil extractants have been developed for determination of zinc (Zn) availability to plants. The optimum soil Zn extractant should be useful not only for prediction of plant Zn concentration but also for detection of applied Zn levels. The objectives of this study were: i) to compare soil Zn extradants for detecting applied Zn and for predicting peanut leaf Zn over a range of soil pH levels, and ii) to correlate other soil‐extractable Zn levels with Mehlich‐1. Soil and peanut leaf samples were taken from a field study testing pH levels as the main plots and Zn application rates in the sub‐plots. Extractable Zn was determined on soil samples using Mehlich‐1, Mehlich‐3, DTPA, MgNO3, and many dilute salt extradants of varied strength and pH. Correlation of extractable soil Zn to cumulative applied Zn levels revealed Mehlich‐1, Mehlich‐3, DTPA, and AlCl3 extradants to be among the best indicators of applied Zn. Leaf Zn concentration was best correlated with soil Zn extracted by dilute salts, such as KCl, CaCl2, NH4Cl, CaSO4, and MgCl2. Including soil pH as an independent variable in the regression to predict leaf Zn considerably improved R‐square values. The DTPA‐extractable soil Zn levels were very well correlated with Mehlich‐1‐extractable Zn. Mehlich‐3 extracted about 20% more soil Zn than Mehlich‐1, but Mehlich‐3 soil Zn was not as well correlated to Mehlich‐1 soil Zn as DTPA soil Zn. Lower pH solutions extracted more of the applied Zn, but more neutral solutions extracted Zn amounts which were better correlated with Zn uptake. On the other hand, Mehlich‐1, which had a lower pH, had better correlations with both applied Zn and leaf Zn than did Mehlich‐3. Shortening the DTPA extraction time to 30 minutes resulted in better correlations than the standard two hour extraction time. Chloride (Cl) was the best anion tested in relation to soil applied Zn recovery in combination with potassium (K), calcium (Ca), and aluminum (Al), and Cl optimized leaf Zn correlations for ammonium (NH4), K, Ca, and magnesium (Mg). The larger the valence of the cation, the better the correlation with applied Zn and the poorer the correlation with leaf Zn.  相似文献   

19.
Abstract

The Modified Olsen (MO) extracting reagent is used extensively as a soil test extractant in Latin America. Little correlation or calibration research hasbeenreportedonit, however, especially for the micronutrients. wheat, corn, and soybeans were grown successively in the greenhouse to evaluate Cu, Zn, and Mn, respectively. Lime and micronutrient variables (one micronutrient per crop) were imposed on six soils representing four orders. After each cropping the soils were extracted with MO and with three other extracting reagents for which there are referenced critical levels: Mehlich‐1 (Ml), Mehlich‐3 (M3) and Soltanpour‐Schwab (SS). The correlations between nutrient uptake and the concentrations extracted were fairly similar for the four solutions, but were better for Mn and Zn than Cu. The poor relationship for Cu occurred partly because a maximum wheat concentration of about 10 mg/kg was reached, creating a curvilinear function. The amounts of nutrients extracted by the four reagents were also well correlated except for that between MO and Ml for Cu. Using these relationships, along with critical levels previously determined with reference extractants, the MO critical levels for Cu, Zn, and Mn were estimated to be 0.3, 1.0, and 3.0 mg/L, respectively  相似文献   

20.
Abstract

Samples of four soils having a wide range of volume weights (0.65, 1.02, 1.25, 1.62 g/cm3) were either weighed or measured by volume and extracted with: (a) the Bray P1 extractant, (b) the Mehlich double acid extractant for P, K, Ca, Mg, Mn, Zn and (c) neutral N NH4OAc for K, Ca, Mg all at a soil/extracting solution ratio of 1:10. The soil test results were recorded on a volume basis in mg/dm3 and on a weight basis in mg/kg.

The test values for all macronutrients obtained with all extractants decreased, relative to a constant volume, with increasing VW of soil when analyzed and expressed on a weight basis. Results based on the use of a volume sample (scooped) but calculated on an assumed weight of soil changed the values in direct ratio of 1/assumed VW. The use of an assumed VW has no justification, since uniform soil test results can be obtained when expressed on a volume basis by either using a scooped sample of known volume or a weighed sample followed by multiplication with the VW of each soil.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号