首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Summary

A simple, single‐step extraction with LiEDTA for the estimation of CEC and exchangeable bases in soils has been developed. Multivalent cations are stripped from the soil adsorption sites by the strongly chelating agent EDTA, and are replaced by Li. In soils without CaCO3 or water soluble salts, exchangeable divalent cations (Ca, Mg) are chelated by EDTA and exchangeable monovalent cations (Na, K) are replaced in a single extraction step using 0.25–2.5 g of soil and 10.0 ml of extractant.

In calcareous soils the CEC can be determined in the same way, but for the extraction of exchangeable Ca and Mg, another separate extraction is needed because dissolution of calcite by EDTA is unavoidable. This extraction is done with as much NaEDTA as needed to extract only exchangeable Ca and Mg in a 1:2 (m/V) soil/alkaline‐50% (V/V) aethanolic solution to minimize dissolution of calcite.

In gypsiferous soils gypsum is transformed into insoluble BaSO4 and soluble CaEDTA by LiBaEDTA thus avoiding interference of Ca from dissolution of gypsum, which renders the traditional methods for determining CEC unsuitable for such soils. To determine exchangeable Ca and Mg, Na4EDTA is used as for calcareous soils.

In saline/sodic soils replacement of Na by Li is incomplete but the Na/Li‐ratio at the complex after extraction is proportional to the molar Na/Li‐ratio in the extracts, so that the CEC and original exchangeable sodium (ESP) content can be calculated. Additional analysis of Cl and, if necessary, SO4 in the extracts of saline soils can be used to correct for the effect of dissolution of the salts on the sum of exchangeable cations.

This new method is as convenient as the recently developed AgTU (silverthiourea), but is better suitable for calcareous and gypsiferous soils.  相似文献   

2.
Abstract

A simple single‐extraction procedure for measuring exchangeable cations and effective CEC (ECEC, the CEC at natural pH and ionic strength) has been developed for routine advisory soil analysis. The method is based on the use of Sr (1.26M SrCl2) to displace exchangeable cations and effective CEC is taken as the sum of the exchangeable cations. A ten minute shaking time at 5 g:80 ml, soil solution ratio, was found to be optimum. Good agreement was found between the proposed method and the standard neutral IN ammonium acetate leaching procedure with correlation coefficients (r) for the individual cations Mg, Ca, Na and K of 0.99***, 0.99***, 0.83*** and 0.96*** respectively. Strontium chloride extracted more Al but less Mn (P<0.01) than IN KC1, but because of the low levels of these cations in relation to the total cations present, there was still a good relationship (r= 0.99) between ECEC determined by 1.26M SrCl2 and that determined as the sum of ammonium acetate extractable Mg, Ca, Na and K plus IN KCl‐extracted Al and Mn.  相似文献   

3.
Abstract

In soil samples from two study sites in southern Norway, exchangeable cations were determined using two different ammonium (NH4)‐salts as extractant. As expected, the cation exchange capacity (CEC) determined in 1M ammonium acetate (NH4OAc), buffered at pH 7.0 was higher than the CEC measured in ammonium nitrate (NH4NO3). By contrast, the amount of exchangeable calcium (Ca), magnesium (Mg), and barium (Ba) was lowest in the NH4OAc extract, in particular in the upper soil horizons high in organic matter (O‐ and E‐horizon). This suggests that NH4 in 1M NH4OAc does not compete effectively with multivalent base cations. The relatively high levels of exchangeable base cations in NH4NO3 could not be explained by increased weathering. An increase in selectivity of especially divalent cations may explain the relatively low amount of exchangeable base cations extracted by NH4OAc, as this involves increased deprotonation and thus a higher negative charge.  相似文献   

4.
ABSTRACT

Soil monitoring and research often requires a comparison of laboratory data generated by diverse instruments and in different laboratories to demonstrate the reliability and accuracy of the results. The outcomes of this work highlight a performance comparison among different analytical methods for the determination of calcium (Ca), magnesium (Mg), sodium (Na), and potassium (K), in soil. Five soil samples were used for analytical methods comparison, corresponding to an argentine agricultural soil interlaboratory, and four soil samples from the Pampa region of Argentina were used for analytical application of the instrumental methods. The results obtained with flame atomic absorption and emission spectrometry (FAAS-FAES) and microwave-induced plasma optical emission spectrometry (MIP OES) were compared to those obtained by conventional analytical methods as complexometric titration and flame photometry. As there were no significant differences between classical methods with instrumental ones, FAAS-FAES and MIP OES were validated following criteria based on international guidelines. Accuracy, precision, linearity, limits of detection and quantification, sensitivity, analytical sensitivity, and working range were evaluated. The results established the satisfactory performance of FAAS-FAES and MIP OES for exchangeable cations. MIP OES is an efficient alternative to FAAS-FAES, with wide linear dynamic range, which is advantageous concerning to the concentrations in which these exchangeable cations are found in soils, avoiding sample dilutions. The most remarkable advantage of MIP OES is the low running costs as it does not use flammable and toxic gases. Due to its benefits MIP OES could be recommended as the main analytical method for exchangeable cations determination.  相似文献   

5.

Background

Cation exchange capacity (CEC) is a routinely measured soil fertility indicator. The standard NH4OAc (pH 7) extraction procedure is time-consuming and overestimates actual CEC values of variable charge soils. Unbuffered extractants have been developed to measure the effective CEC (eCEC), but they differ in the type of index cation and extraction procedures.

Aim

This study was set up to systematically compare CEC values and exchangeable cation concentrations among different procedures and evaluate their practical aspects.

Methods

Five procedures were compared for (e)CEC, that is, silver thiourea (AgTU), cobalt(III) hexamine (Cohex), compulsive exchange (CE, i.e., BaCl2/MgSO4), BaCl2 (sum of cations in single-extract), and NH4OAc (pH 7). We applied these methods to a set of 25 samples of clay minerals, peat, or samples from soils with contrasting properties.

Results

The CEC values correlated well among methods (R2 = 0.92–0.98). Median ratios of eCEC (AgTU as well as CE) to the corresponding eCEC (Cohex) value were 1.0, showing good agreement between eCEC methods, but NH4OAc exceeded Cohex values (ratios up to 2.5 in acid soil). For BaCl2-extracteable cations, the ratio ranged from low (<1.0) in acid soils (acid cations not measured) to high (>1.0) in high-pH soil (dissolution of carbonates). Multiple-extraction methods (CE and NH4OAc) yielded more variation and increased labor.

Conclusions

The chemical properties of the sample cause method-specific interactions with chemical components of extractants. We found the Cohex method with ICP-MS detection to be the most efficient and cost-effective technique for determination of eCEC and exchangeable cations.  相似文献   

6.
Abstract

Eight methods to determine exchangeable cations and cation exchange capacity (CEC) were compared for some highly weathered benchmark soils of Alabama. The methods were: (1) 1N NH4OAc at pH 7.0 by replacement (for CEC only), (2) 1N NH4OAc at pH 7.0 (summation of basic cations plus 1N KCl extractable Al), (3) 1N NH4OAc at pH 7.0 (summation of basic cations plus exchangeable H+), (4) 0.1M BaCl2 (summation of basic cations plus exchangeable Mn, Fe and Al), (5) Mehlich 1 (summation of basic cations plus 1N KCl extractable Al), (6) Mehlich 1 (summation of basic cations plus exchangeable H+), (7) Mehlich 3 (summation of basic cations plus 1N KCl extractable Al), and (8) Mehlich 3 (summation of basic cations plus exchangeable H+). The 0.1M BaCl2 was chosen as the standard method for the highly weathered soils and the other methods compared to it. The results indicated that the 1N NH4OAc replacement method gave significantly higher CEC values compared to the summation methods. This was probably due to the overestimation of the field CEC caused by measurement of pH dependent cation exchange sites in these soils. There was, however, close agreement between the BaCl2 method and the summation methods that included extractable Al. The generally good agreement between these summation methods suggests that the Mehlich 1 and Mehlich 3 extractants, commonly used to determine available nutrients in the southeastem USA, may also be used to measure effective CEC of some acid‐rich sesquioxide benchmark soils of Alabama. However, 1N KCl extractable Al as opposed to exchangeable H+ should be included in the computation.  相似文献   

7.
Purpose

The majority of biochar studies use soils with only a narrow range of properties making generalizations about the effects of biochar on soils difficult. In this study, we aimed to identify soil properties that determine the performance of biochar produced at high temperature (700 °C) on soil pH, cation exchange capacity (CEC), and exchangeable base cation (Ca2+, K+, and Mg2+) content across a wide range of soil physicochemical properties.

Materials and methods

Ten distinct soils with varying physicochemical properties were incubated for 12 weeks with four rates of biochar application (0.5, 2, 4, and 8% w/w). Soil pH, CEC, and exchangeable base cations (Ca2+, K+, and Mg2+) were determined on the 7th and 84th day of incubation.

Results and discussion

Our results indicate that the highest biochar application rate (8%) was more effective at altering soil properties than lower biochar rates. Application of 8% biochar increased pH significantly in all incubated soils, with the increment ranging up to 1.17 pH unit. Biochar induced both an increment and a decline in soil CEC ranging up to 35.4 and 7.9%, respectively, at a biochar application rate of 8%. Similarly, biochar induced increments in exchangeable Ca2+ up to 38.6% and declines up to 11.4%, at an 8% biochar application rate. The increment in CEC and exchangeable Ca2+ content was found in soils with lower starting exchangeable Ca2+ contents than the biochar added, while decreases were observed in soils with higher exchangeable Ca2+ contents than the biochar. The original pH, CEC, exchangeable Ca2+, and texture of the soils represented the most crucial factors for determining the amount of change in soil pH, CEC, and exchangeable Ca2+ content.

Conclusions

Our findings clearly demonstrate that application of a uniform biochar to a range of soils under equivalent environmental conditions induced two contradicting effects on soil properties including soil CEC and exchangeable Ca2+ content. Therefore, knowledge of both biochar and soil properties will substantially improve prediction of biochar application efficiency to improve soil properties. Among important soil properties, soil exchangeable Ca2+ content is the primary factor controlling the direction of biochar-induced change in soil CEC and exchangeable Ca2+ content. Generally, biochar can induce changes in soil pH, CEC, and exchangeable Ca2+, K+, and Mg2+ with the effectiveness and magnitude of change closely related to the soil’s original properties.

  相似文献   

8.
Abstract

Cation‐exchange capacity (CEC) of 30 Alabama soils was estimated by two different methods based or routine soil‐test results consisting of soil‐water pH, Adams‐Evans buffer pH, and Mehlich‐1 extractable cations (K, Mg, and Ca), which were obtained automatically by a computerized data acquisition system. In one method, CEC was calculated by solving a quadratic equation involving soil‐water and buffer pH's; in the other, CEC was estimated as the summation of extractable cations and exchangeable acidity. The two estimated CEC's agreed well with each other and also had the same magnitude as CEC determined by the normal NaOAc, pH 8.2 method. By averaging the two calculated values, an even closer estimation of the measured CEC was found. These calculations and comparisons can be accomplished quickly and efficiently by a minicomputer via a simple FORTRAN program.

In addition, a discrepancy between the two estimated CEC's would indicate possible errors in analytical determinations and/or the inadequacy of the soil testing procedures. Therefore, an additional means for quality control in a routine soil‐test operation can be obtained by comparing the two CEC values.  相似文献   

9.
Abstract

In a study involving 212 samples of surface and sub‐surface soils derived from basaltic, granitic, and metamorphic parent materials in the high rainfall region of north Queensland, Australia, the Al extracted with 1 M KC1 has been compared with ‘exchangeable aluminium’, defined as the difference between CEC and sum of basic exchangeable cations. It was concluded that for these highly weathered soils KCl‐extractable Al is exchangeable, and therefore that the sum of basic and acidic cations (ECEC) is a reliable measure of CEC at field conditions.  相似文献   

10.
  目的  探究广东阳春鹅凰嶂山地雨林土壤阳离子交换量和交换性盐基离子的空间分布特征,了解该区域森林土壤的保肥能力及其影响因子。  方法  以鹅凰嶂山地雨林内不同位置、不同土层土壤作为研究对象,分析土壤阳离子交换量和交换性盐基离子空间分布格局、剖面垂直分布规律。  结果  鹅凰嶂山地雨林土壤阳离子交换量5.46 ± 0.97 cmol(+) kg?1,交换性阳离子呈现明显表聚现象;土壤交换性盐基总量在表层土(0 ~ 10 cm)中呈现阴坡 > 阳坡、下坡位 > 中坡位 > 上坡位的规律,土壤盐基离子含量基本呈现K+ > Mg2+ > Ca2+ > Na+的趋势,且Ca2+/Mg2+ < 1.6;土壤阳离子交换量、交换性盐基总量与土壤总有机碳含量呈极显著正相关。  结论  鹅凰嶂山地雨林土壤的保肥能力较差,且存在生理性缺钙的风险,阳坡尤为明显;同时存在土壤有机质稳定性不高导致阳离子交换量下降的潜在风险。  相似文献   

11.
Abstract

Soil cation exchange capacity (CEC) measurements are important criteria for soil fertility management, vaste disposal on soils, and soil taxonomy. The objective of this research was to compare CEC values for arable Ultisols from the humid region of the United States as determined by procedures varying widely in their chemical conditions during measurement. Exchangeable cation quantities determined in the course of two of the CEC procedures were also evaluated. The six procedures evaluated were: (1) summation of N NH4OAc (pH 7.0) exchangeable Ca, Mg, K, and Na plus BaCl2 ‐ TEA (pH 8.0) exchangeable acidity; (2) N Ca(OAc)2 (pH 7.0) saturation with Mg(OAc)2 (pH 7.0) displacement of Ca2+; (3) N NH4OAc (pH 7.0) saturation with NaCl displacement of NH4 +; (4) N MgCl2 saturation with N KCl displacement of Mg2+; (5) compulsive exchange of Mg2+ for Ba2+; and (6) summation of N NH4OAc (pH 7.0) exchangeable Ca, Mg, K, and Na plus N KCl exchangeable AJ. The unbuffered procedures reflect the pH dependent CEC component to a greater degree than the buffered methods. The compulsive exchange and the summation of N NH4OAc exchangeable cations plus N KCl exchangeable Al procedures gave CEC estimates of the same magnitude that reflect differences in soil pH and texture. The buffered procedures, particularly the summation of N NH4OAc exchangeable cations plus BaCl2 ‐ TEA (pH 8.0) exchangeable acidity, indicated inflated CEC values for these acid Ultisols that are seldom limed above pH 6.5. Exchangeable soil Ca and Mg levels determined from extraction with 0.1 M BaCl2 were consistently greater than values for the N NH4Oac (pH 7.0) extractions. The Ba2+ ion is apparently a more efficient displacing agent than the NH4 + ion. Also, the potential for dissolving unreacted limestone is greater for the Ba2 + procedures than in the NH4 + extraction.  相似文献   

12.
Data on accumulated exchangeable H, Al, Fe and Mn (Ma) cations in rock fractions in German soil profiles are scarce. The objective of this study was to describe the sum of accumulated Ma cations of fine earth and rock fragments in 11 deep soil profiles of varying genesis. Soil profiles were laid out at the sites Solling, Eifel, Harz mountains and the Erzgebirge and the parent materials included sandstones, siltstones, quartzite, slate, greywacke, diabase, gneiss and quartz porphyry. Exchangeable cations in the fine earth and rock fragments were measured in depths down to 6 m. Additionally, effective porosity and specific surface of rock fragments were determined. The effective porosity of the different rock fragments ranged from 4 to 28% (v/v), indicating that the rocks were accessible to solutions. For most samples, the cation exchange capacities (CEC) of the fine earth fractions were larger than those of the rock fragments, and the CEC (fine earth)/CEC (rock) ratios decreased with depth. All 11 profiles had small (<40%) amounts of exchangeable Na, K, Mg and Ca (Mb) cations in the fine earth fraction. Exchangeable Ma and Mb cations in the rock fragments changed similarly with depth as in the fine earth fractions for all profiles. Cumulative (rock + fine earth) Ma cations from 0—200 cm ranged from 474 to 1592 kmolc ha−1. The contribution of the rock fraction to the cumulative exchangeable Ma cations accounted for 13 to 85% of the total. The sum of exchangeable Ma cations was much higher than the cumulative acid deposition in western Germany since the beginning of industrialization, suggesting that carbonic acid and organic acids contributed largely to soil acidification. The rocks contribute significantly to buffering the acidity of the seepage water by silicate weathering and cation exchange. Therefore, acidification models which consider the fine earth fraction only, may lead to an overestimation of the rate of soil and groundwater acidification.  相似文献   

13.
The fine earth (<2 mm) and rock fragments (>2 mm) fractions of two soils derived from Oligocene sandstone have been examined to assess the origin of the discrepancies between cation exchange capacity (CEC) and effective CEC (ECEC). The soils differ in terms of acidity: soil A is more acid than soil B. When the A samples are treated with BaCl2, the solution became sufficiently acid (pH < 4·5) to dissolve and to maintain Al in solution. From these samples more Al is released than base cations. Aluminium was continuously replenished even after 192 h, so that the ECEC was always larger than the CEC. Samples from soil B contain less H and Al ions, and the BaCl2 solution could not lower the pH below 5·0. In these samples little Al is released, and the base cations dominate the exchangeable pool of ions. This Al can be considered to be exchangeable, and a good agreement exists between the ECEC and the CEC. The source of non-exchangeable Al in the A samples is the OH-Al polymers of the hydroxy-interlayered vermiculite (HIV) and hydroxy-interlayered smectite (HIS) that tend to dissolve during the BaCl2 treatments. In the less acid B samples the Al polymers are not affected by BaCl2 treatment. Different results were obtained when the clays, extracted from an Na-dispersed suspension, were treated with BaCl2 solution. Because the clays are no longer acid, no H+ is released, and the OH-Al polymers are not dissolved. Therefore, the saturating ions play an important role in the dissolution of the OH-Al polymers and cause differences between the CEC and ECEC. We discount organic matter and specifically Al-organo complexes as a source of non-exchangeable Al. Both A and B soils contain very similar pyrophosphate-extractable Al, but show substantial differences in the amount of exchangeable Al.  相似文献   

14.
改良剂对滴灌棉田镉分布及迁移特征的影响   总被引:1,自引:0,他引:1  
通过田间桶栽试验研究了高浓度镉(40mg/kg)条件下,4种改良剂(有机—无机复合稳定剂、无机高分子复配材料、聚丙烯酸盐复配材料、有机高分子复配材料)对棉田土壤剖面中土壤pH、阳离子交换量(CEC)、镉含量及其形态分布迁移的影响。结果表明:(1)4种改良剂均显著提高了棉田土壤剖面各层的pH和CEC,无机高分子复配材料在0—20cm土层效果最好,分别增加了0.43个单位和4.43cmol/kg;(2)改良剂促进土壤可交换态镉向其余4种形态的转化,相关分析表明碳酸盐结合态与可交换态镉含量呈极显著负相关(P0.01),在0—20cm和20—40cm土层中效果尤为突出,以无机高分子复配材料对土壤可交换态镉的降低效果最好,降低了3.61mg/kg;(3)各土层中的pH和CEC均与可交换态镉呈负相关,与其他形态呈正相关。即改良剂通过改变土壤pH和CEC,影响土壤镉的分布及迁移,从而降低镉的有效性,达到改善土壤环境的目的。  相似文献   

15.
On the determination of exchangeable cations in acid forest soils Different samples from acid forest soils were percolated with large amounts of H2O. Significant amounts of anions, especially sulfate, were found in the percolates mainly accompanied by Na. K, Ca and Mg (Mb-cations). The dissolution of Al-Sulfates and subsequent exchange of Mb-cations by Al as dominant mechanism is proposed. Thus the common method for determination of the cation exchange capacity (CEC) of acid forest soils, the percolation with NH4Cl may overestimate the CEC. The overestimation may be related to the sulfate content of the soil and also influences the calculation of relative CEC proportions of individual cations.  相似文献   

16.
Abstract

Different forms of soil aluminum (Al) are involved in the retention of anions and cations, phytotoxicity of Al in acid soils, CEC reduction and soil physical properties such as aggregate stability and water infiltration. Therefore it is desirable to quantify the different forms of Al in soil especially acidic soils. A rationale was developed from a literature survey to identify the following fractions of Al: (a) exchangeable quantified by 1M KC1 extraction; (b) organic bound quantified by 0.1M CuCl2 + 0.5M KCl extraction; (c) sorhed Al extractable with 1M NE4OAc at pH 4.0; (d) amorphous Al oxide and hydroxide and amorphous aluminosilicates (if present) extractable with 0.2M ammonium oxalate at pH 3.0; and (e) interlayered Al extractable with 0. 33M sodium citrate at pH 7.3. Pools (a), (b), and (c) are extracted sequentially. Amorphous Al oxide and hydroxide (pool d) is calculated from ammonium oxalate extractable Al minus (a + b + c). Interlayered Al is calculated from sodium citrate extractable Al minus ammonium oxalate extractable Al. The latter two extractions are done on separate subsamples of soils. From preliminary studies and data for 13 soil samples it is suggested that this fractionation of soil Al is more meaningful than that obtained by the KCl ‐> K4P2O7 ‐> ammonium oxalate > citrate‐bicarbonate‐dithionite extraction sequence.  相似文献   

17.
Abstract

Despite the increasing prevalence of salinity worldwide, the measurement of exchangeable cation concentrations in saline soils remains problematic. Two soil types (Mollisol and Vertisol) were equilibrated with a range of sodium adsorption ratio (SAR) solutions at various ionic strengths. The concentrations of exchangeable cations were then determined using several different types of methods, and the measured exchangeable cation concentrations were compared to reference values. At low ionic strength (low salinity), the concentration of exchangeable cations can be accurately estimated from the total soil extractable cations. In saline soils, however, the presence of soluble salts in the soil solution precludes the use of this method. Leaching of the soil with a prewash solution (such as alcohol) was found to effectively remove the soluble salts from the soil, thus allowing the accurate measurement of the effective cation exchange capacity (ECEC). However, the dilution associated with this prewashing increased the exchangeable calcium (Ca) concentrations while simultaneously decreasing exchangeable sodium (Na). In contrast, when calculated as the difference between the total extractable cations and the soil solution cations, good correlations were found between the calculated exchangeable cation concentrations and the reference values for both Na (Mollisol: y=0.873x and Vertisol: y=0.960x) and Ca (Mollisol: y=0.901x and Vertisol: y=1.05x). Therefore, for soils with a soil solution ionic strength greater than 50 mM (electrical conductivity of 4 dS/m) (in which exchangeable cation concentrations are overestimated by the assumption they can be estimated as the total extractable cations), concentrations can be calculated as the difference between total extractable cations and soluble cations.  相似文献   

18.
Abstract

An experiment was designed to evaluate several of the commonly used extractants and methods for determining “available”; elements in soils. The purpose of the study was to evaluate the suitability of these extraction procedures for use on forest soils typical for New England commercial forests. The extraction procedures selected included NH4OAc pH 4.8, NH4OAc pH 7.0, NH4Cl, Double Acid, Bray, and Mehlich methods. The elements measured varied somewhat by procedure but included the base cations, Al, Fe, Mn, and P. As a bioassay of element availability, a greenhouse study was conducted using six forest soil materials from different horizon types (i.e. O, Ap, B) and three conifer seedling species (red spruce, balsam fir, and white pine). Relatively small differences among extraction procedures were found among the methods used for exchangeable Ca, Mg, K, and Na. Large differences, however, were found among the different horizon types in the amount of exchangeable base cations present. In contrast, significant differences were found among extraction procedures for Al, Fe, Mn, and P depending on the degree of buffering and acidity of the extracting solution. Of the elements measured in this study, only P appeared to be growth limiting with the NH4OAc pH 4.8 being best correlated with P uptake by seedlings. Further work under field conditions over longer time periods is required to evaluate these methods for measuring P availability in forest soils  相似文献   

19.
Abstract

Aluminum concentrations in soil solutions are not only controlled by inorganic clay minerals but also by organically bound aluminum. The objective of this study was to determine which pools contribute to Al dissolution. Soil samples were taken at various distances from tree trunks and at various depths at the Rolling Land Laboratory (RLL), Hachioji, Tokyo. Selective dissolution techniques were used to analyze the changes in pools of solid-phase aluminum. Soil pH values around Hinoki cypresses were in the aluminum buffer range. Exchangeable aluminum contents in soils under Hinoki cypresses were 104 mmolc kg-?1 on the average. This value was similar to that of the cation exchange capacity (CEC) of Andisols at RLL at a soil pH of 4. The relationship between the soil pH and exchangeable, organically bound, and amorphous aluminum pools showed that dissolved aluminum ions in the soil solution were primarily derived from the amorphous Al pool. Dissolved aluminum ions were substituted with base cations of soils, resulting in the increase of the content of exchangeable Al and/or the formation of complexes with organic matter which increased the proportion of organically bound Al pools. Increase in the proportion of organically bound Al pools indicated the importance of complexation with soil organic matter for controlling the aluminum concentration in the soil solution.  相似文献   

20.
Abstract

Soil acidity may severely reduce crop production. Biochar (BC) may increase soil pH and cation exchange capacity (CEC) but reported effects differ substantially. In a systematic approach, using a standardized protocol on a uniquely large number set of 31 acidic soils, we quantified the effect of increasing amounts (0–30%; weight:weight) of three types of field-produced BCs (from cacao (Theobroma cacao. L.) shell, oil palm (Elaeis guineensis. Jacq.) shell and rice (Oryza sativa. L.) husk) on soil pH and CEC. Soils were sampled from croplands at Java, Sumatra and Kalimantan, Indonesia. All BCs caused a significant increase in mean soil pH with a stronger response and a greater maximum increase for the cacao shell BC addition, due to a greater acid neutralizing capacity (ANC) and larger amounts of extractable base cations. At 1% BC addition, corresponding to about 30 tons ha?1, the estimated increase in soil pH from the initial mean pH of 4.7 was about 0.5 units for the cacao shell BC, whereas this was only 0.05 and 0.04 units for the oil palm shell and rice husk BC, respectively. Besides depending on BC type, the increase in soil pH upon the addition of each of the three BCs was mainly dependent on soil CEC (low CEC resulting in stronger pH increase), and to a lesser extent on initial soil pH (higher initial pH resulting in stronger pH increase). Addition of BC also increased the amount of exchangeable base cations (cacao shell ? oil palm and rice husk) and CEC. Through this systematic screening of the effect of BC on pH and CEC of acidic soils, we show that a small addition of BC, in particular if made of cacao shell, to acidic agricultural soils increases soil pH and CEC. However, the response is highly dependent on the type, quality and amount of the added BC as well as on intrinsic soil properties, mainly CEC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号