首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Abstract

The objective of the present work was to evaluate the response of 25 rice genotypes to propionate, a compound largely produced in low‐drainage and high‐organic matter‐content soils. The work was performed in hydroponics with four doses and a random block design with three replications. The variables measured were root (RL) and shoot (SL) length, number of roots (NR), and root (RDM) and shoot (SDM) dry matter. Analyses of variance, relative performance, and regression fitting were performed, showing significance for most variables. The variable RL was the most affected by propionate, and the use of this variable for screening genotypes indicated 6 tolerant and 19 sensitive genotypes. Most tolerant genotypes belonged to irrigated japonica.  相似文献   

2.
有机物料对污染土壤上水稻重金属吸收的调控效应   总被引:6,自引:1,他引:6  
周利强  尹斌  吴龙华  骆永明 《土壤》2013,45(2):227-232
采用重金属污染水稻土开展盆栽试验,研究施用有机碳源、菜籽饼和猪粪对不同水稻(汕优63,简称“SY63”;中浙优1号,简称“ZZY1”)重金属吸收的调控效应.结果表明,在重金属污染土壤上ZZY1具有一定的耐性,相同处理时ZZY1糙米、砻糠、秸秆中重金属含量均低于SY63品种,糙米中Cd含量较SY63低57.5% ~ 83.8%,Cu含量低37.8% ~ 69.1%,Zn含量低0.88% ~ 31.7%,食物链风险较SY63品种低.3种有机物料中,施用菜籽饼使两水稻品种糙米中重金属含量明显低于其他处理;与对照相比,施用菜籽饼使SY63糙米中Cd、Cu和Zn含量降低73.5%、52.6%和32.1%,ZZY1糙米Cd含量降低30.5%.在供试重金属污染土壤上可选择具有一定重金属耐性的水稻品种ZZY1进行粮食生产,同时施用适量的菜籽饼以增强其抵御重金属毒害的能力,降低糙米中Cd、Cu和Zn含量及其食物链污染风险.  相似文献   

3.
The goal of this work was to evaluate the response of 25 rice genotypes to the toxic effect of acetate, which is commonly produced in low‐drainage and organic‐matter‐rich soils. The work was performed in hydroponics with four acetate doses. The experimental design was random blocks with three replications on a factorial scheme. The variables root (RL) and shoot (SL) length, number of roots (NR), and root (RDM) and shoot (SDM) dry matter were measured. Analyses of variance, relative performance, and regression adjustments were used. Only the dose × genotype interaction effect for SL, NR, and SDM were not significant. Among the variables analyzed, RL was influenced the most by the acetate treatments. The regressions established for this variable revealed 6 tolerant and 19 sensitive genotypes. Most of the tolerant genotypes were irrigated japonica.  相似文献   

4.
A pot experiment investigated the effects of iron (Fe) fertilization on cadmium (Cd) uptake by rice seedlings irrigated with Cd solution. Shoot dry weight was significantly affected by Fe addition, and root dry weight was affected by Cd addition. Iron supply was the dominant factor affecting the length of the longest leaf and the soil and plant analyzer development (SPAD) value. Cadmium concentrations were much greater in roots than in dithionite–citrate–bicarbonate (DCB) extracts or shoots, and a significant correlation was found between shoot Fe and Cd concentrations. Enhanced Cd uptake observed at high Fe supply implies that enhanced Fe nutrition may counteract the adverse effects of Cd on plants.  相似文献   

5.
干旱逆境下不同品种水稻叶片有机渗透调节物质变化研究   总被引:23,自引:0,他引:23  
通过聚乙二醇 (PEG)模拟水稻短期干旱胁迫研究表明 ,干旱胁迫条件下 4个水、陆稻品种叶片中可溶性有机渗透调节物质如游离氨基酸总量 (TFA)、脯氨酸 (Pro)和可溶性糖 (SS)含量及Pro/TFA比值变化上具有种间一致性 ,均呈显著上升趋势 ,且巴西陆稻的变化较为明显 ;可溶性渗透调节物质适宜作为水稻抗旱能力筛选的参考指标。  相似文献   

6.
Rice is the staple food crop for about 50% of the world's population. It is grown mainly under two ecosystems, known as upland and lowland. Lowland rice contributes about 76% of the global rice production. The anaerobic soil environment created by flood irrigation of lowland rice brings several chemical changes in the rice rhizosphere that may influence growth and development and consequently yield. The main changes that occur in flooded or waterlogged rice soils are decreases in oxidation–reduction or redox potential and increases in iron (Fe2+) and manganese (Mn2+) concentrations because of the reductions of Fe3+ to Fe2+ and Mn4+ to Mn2+. The pH of acidic soils increased and alkaline soils decreased because of flooding. Other results are the reduction of nitrate (NO3 ?) and nitrogen dioxide (NO2 ?) to dinitrogen (N2) and nitrous oxide (N2O); reduction of sulfate (SO4 2?) to sulfide (S2?); reduction of carbon dioxide (CO2) to methane (CH4); improvement in the concentration and availability of phosphorus (P), calcium (Ca), magnesium (Mg), Fe, Mn, molybdenum (Mo), and silicon (Si); and decrease in concentration and availability of zinc (Zn), copper (Cu), and sulfur (S). Uptake of nitrogen (N) may increase if properly managed or applied in the reduced soil layer. The chemical changes occur because of physical reactions between the soil and water and also because of biological activities of anaerobic microorganisms. The magnitude of these chemical changes is determined by soil type, soil organic-matter content, soil fertility, cultivars, and microbial activities. The exclusion of oxygen (O2) from the flooded soils is accompanied by an increase of other gases (CO2, CH4, and H2), produced largely through processes of microbial respiration. The knowledge of the chemistry of lowland rice soils is important for fertility management and maximizing rice yield. This review discusses physical, biological, and chemical changes in flooded or lowland rice soils.  相似文献   

7.
采集浙江杭州郊区富春江沿岸镉(Cd)污染水稻土,选择前期试验筛选的对土壤Cd钝化效果良好、可显著降低稻米Cd的4种调理剂,开展室内培养试验和温室盆栽试验,探讨不同调理剂种类(袁梦YM、祝天峰ZTF、天象一号TX1、永清YQ)、用量(推荐用量、3倍推荐用量)和调理剂与生石灰配施对污染水稻土Cd的稳定效果及对水稻生长和糙米Cd含量的影响。室内培养试验结果发现,添加调理剂能使土壤pH显著升高,落干条件下土壤pH增幅较淹水条件下更为明显;施用推荐用量调理剂,土壤硝酸铵提取态Cd显著下降,调理剂推荐用量+生石灰处理较调理剂推荐用量处理下降更为显著;总体上,同一调理剂3倍推荐用量处理下硝酸铵提取态Cd降幅更大,表明硝酸铵提取态Cd受土壤pH影响显著,且YM、TX1调理剂对硝酸铵提取态Cd的降低效果较好。盆栽试验结果显示,施用石灰和商品调理剂均可实现水稻稳产或增产,并显著降低水稻糙米Cd含量,与调理剂施用后土壤Cd有效性降低相一致。含钙、能调节土壤pH并辅以有机质和养分的复合调理剂因兼具养分作用,对水稻稳产增产、糙米Cd含量降低更为有效。  相似文献   

8.
Upland rice is an important crop in South America, including Brazil. Nitrogen (N) is one of the most yield-limiting nutrients in upland rice production in Brazil. A greenhouse experiment was conducted to evaluate N uptake and use efficiency as influenced by N sources. The soil used in the experiment was an Oxisol. The N sources were ammonium sulfate and urea, and N rates were 0, 50, 100, 150, 300, and 400 mg kg?1 of soil. Nitrogen concentrations in the root, shoot, and grain were significantly influenced by N sources. The N rate and N source significantly influenced the N uptake in root, shoot, and grain. Similarly, nitrogen rate by N source interaction was also significant for N uptake in the root, shoot, and grain, indicating N source has a significant influence on uptake of N. Overall, concentration (content per unit dry weight) of N was greater in the grain, followed by root and shoot. Agronomical efficiency, apparent recovery efficiency, and utilization efficiency of N were significantly influenced by N rate and varied with N sources. However, physiological and agrophysiological efficiencies were only influenced significantly by N sources. Overall, N recovery efficiency was 33% for ammonium sulfate and 37% for urea. Hence, the large amount of N lost from soil–plant system may be by denitrification or voltilization.  相似文献   

9.
不同肥料结构对水稻群体干物质生产及养分吸收分配的影响   总被引:19,自引:0,他引:19  
大田试验研究结果表明:单施化肥的水稻植株干物质积累和养分吸收主要集中于生长中前期。而有机无机肥配施,特别是化肥与厩肥配合施用有利于水稻植株在中后期,尤其是灌浆期对养分吸收和干物质的积累,其中以植株对磷的吸收比例在各肥料结构间差异最大(p<0.01)。有机无机肥配施还可促进水稻植株养分向籽粒中转移和分配。从而明显增加了水稻结实率和千粒重,进而大大提高了水稻籽粒产量(p<0.05或p<0.01)。  相似文献   

10.
ABSTRACT

Nitrogen is one of the most yield–limiting nutrients in lowland rice in Brazil. A field experiment was conducted for two consecutive years to evaluate nitrogen (N) uptake by five lowland rice genotypes and its association with grain yield. The nitrogen rate used was 0, 50, 100, 150, and 200 kg ha?1. The genotypes evaluated were CNAi 8886, CNAi 8569, BRSGO Guará, BRS Jaburu, and BRS Biguá. Grain yield and dry matter yield of shoot were significantly influenced by N rate. However, response varied from genotypes to genotypes. Genotype BRSGO Guará, BRS Bigua, and BRS Jaburu were having linear response, whereas genotypes CNAi 8886 and CNAi 8569 were having quadratic response with the N application rate in the range of 0 to 200 kg ha?1. Overall, genotypes BRSGO Guará and CNAi 8886 were the best because they produced higher yield at low as well as at higher N rates. Nitrogen uptake in shoot was having quadratic relationship with grain yield, whereas nitrogen uptake in the grain was linearly associated with grain yield.  相似文献   

11.
田间施用石灰和有机肥对水稻吸收镉的影响   总被引:4,自引:2,他引:2  
通过大田试验探究不同用量的有机肥与石灰对土壤pH、有机质和Cd有效态含量以及不同生育期水稻各器官中积累Cd的动态变化。结果表明:成熟期水稻各器官Cd含量规律为根>茎>叶片>稻壳>糙米。石灰的施用能显著提高土壤pH,在分蘖期时,低用量石灰与高用量石灰处理下土壤pH分别提高1.35,1.84个单位;有机肥的施用可以增加有机质含量,与对照相比,高用量有机肥处理在分蘖期时有机质含量提高6.60 g/kg,在成熟期提高2.72 g/kg。灌浆期是水稻吸收积累Cd的重要时期,石灰和有机肥的施用均能降低灌浆期土壤中有效态Cd含量,高用量有机肥与高用量石灰处理下土壤有效态Cd含量显著降低,分别降低52.05%和46.87%。有机肥和石灰均能显著降低糙米Cd含量,降Cd效果为高用量有机肥>高用量石灰>低用量有机肥>低用量石灰,高用量有机肥处理的效果最好,糙米Cd含量降低68.20%。  相似文献   

12.
To assess the effects of ozone (O3) on uptake and utilization of nitrogen, phosphorus, and potassium nutrients in rice for planning rational fertilization under projected O3 elevation. Two hybrid indica cultivars were exposed to ambient and elevated O3 (E-O3) under a free-air O3 enrichment system. E-O3 differently affected the accumulation and distribution of biomass, and the absorption and distribution of nutrients between cultivars. These effects were related to rice cultivar and nutrient type. E-O3 led to significantly decreased partial factor productivity and grain production efficiency (GPE) of nitrogen in both cultivars; however, the effects of E-O3 on GPEs of phosphorus and potassium varied with cultivar. Responses of nutrients harvest indices between cultivars to E-O3 were adverse. Differences between cultivars and elements should be considered when examining E-O3 potentially affecting the nutrient dynamics for the purpose of reducing the amount of fertilizer applied in paddy systems to decrease potential environmental pollution.  相似文献   

13.
Cadmium (Cd) contamination in soils is a serious problem for crop production in the world. Zero-valent iron [Fe (0)] is a reactive material with reducing power capable of stabilizing toxic elements in a solution. In the present study, we examined the effect of zero-valent iron [Fe (0)] application on Cd accumulation in rice plants growing in Cd-contaminated paddy soils. The application of 1.0 and 0.5 mg Fe (0) per 100 g soils significantly reduced the Cd concentration in seeds and leaves by less than 10% and 20% of those without Fe (0) application, respectively. The form of Cd in soil was determined by sequential extraction. The Fe (0) application increased the free-oxides-occluded (less available) Cd content, and decreased the exchangeable and iron-manganese-oxides-bound (more available) Cd content, in Cd-contaminated soils. Thus, this study clearly showed that the application of Fe (0) is a promising approach for remediation of Cd-contaminated paddy soils.  相似文献   

14.
利用差异显示法研究水稻耐淹涝相关基因   总被引:7,自引:0,他引:7  
应用mRNA差异显示法对耐淹材料籼稻(Oryzasativassp.indica)FR13A和敏感籼稻(O.sativassp.indica)IR39595-503-2-1-2在淹涝胁迫下的基因差异表达进行了分析。结果显示,从40对引物中共扩增出1428条片段,筛选到102条在耐淹涝材料和敏感材料间差异明显的基因片段,差异率为7.1%。其中有42条差异带来自耐淹涝材料,有7个差异片段已通过Northern杂交验证在耐淹涝材料FR13A中表达。进一步克隆测序并进行数据库比对分析表明,有4个与水分胁迫产生的应答反应和生理生化变化有关,其中一个与ATP结合蛋白高度同源,另3个与异柠檬酸酶脱氢酶、NADH脱氢酶和乙醛酸转移酶部分序列高度同源,其余3个为新的cDNA片段。  相似文献   

15.
A hydroponic experiment was conducted to investigate the effect of sulfur (S) on growth inhibition and oxidative stress caused by Cd2+ toxicity, using two rice cultivars with different grain Cd2+ content. Treatments consisted of factorial arrangement of three S levels (0.2, 0.4, and 0.8 mmol), two cadmium (Cd) levels (0 and 1 μ mol), and two rice cultivars (‘Bing 97252,’ a cultivar with low grain Cd2+ content, and ‘Xiushui 63,’ a cultivar with high grain Cd2+ content). The results showed that Cd2+ addition in the medium generally increased Cd2+ and malondialdehyde (MDA) content in both roots and shoots; the increases were more pronounced in ‘Xuishui 63’ than in ‘Bing 97252.’ Dramatic reductions in growth parameters, including plant height, root and shoot weight, tillers per plant, chlorophyll content, and net photosynthetic rate were found in the plants exposed to Cd stress relative to the plants without Cd2+ treatment. ‘Xiushui 63’ showed more sensitivity than ‘Bing 97252’ under Cd2+ exposure. In comparison with the lower S level (0.2 mmol), the higher S levels (0.4 and 0.6 mmol) helped alleviate Cd toxicity, characterized by a significant increase in growth parameters, and a decrease in Cd2+ and MDA content in both roots and shoots. In addition, superoxide dismutase (SOD) activity in the plants varied among tissues, cultivars, and Cd treatments. High Cd2+ and MDA content was consistently accompanied by higher SOD activity, and higher S levels caused a marked increase in glutathione content and a reduction in SOD activity, indicating a positive effect of S in alleviating oxidative stress.  相似文献   

16.
ABSTRACT

Plant nutrients such as potassium (K), phosphorus (P), iron (Fe), manganese (Mn), zinc (Zn), and copper (Cu) mostly remain fixed in soils and their bio-availability to plant roots is diffusion-limited. Hence, superior root traits, that can enhance their dissolution and capture from the soils, can play a central role in its productivity. Root morphological (root length and root hairs) and physiological traits (root exudation of protons and phosphatase enzymes) of ten selected varieties/breeding lines of chickpea (Bari-chhola-3, Bari-chhola-4, Bari-chhola-5, Bari-chhola-6, Bari-chhola-7, Bari-chhola-8, BGM-E7, ICCV-98926, ICCV-94924, and ICCV-98916) were studied and related them to the uptake of the nutrients in a pot experiment.

There were significant (P < 0.05) genotypic differences in root length (RL) and root hair length (RHL). The RL ranged between 70 m plant? 1 and 140 m plant? 1. The variation in RHL was significant (P < 0.05) and it ranged between 0.58 ± 0.09 mm (Bari-chhola-5) and 0.26 ± 0.09 mm. The root hair density (RHD, number mm? 1root) varied between 13 ± 2 and 21 ± 3 among the genotypes. The presence of root hairs increased the effective root surface area (e.g., Bari-chhola-5) up to twelve times. The genotypes differed in their ability to acidify the rooting media in laboratory agar studies, with Bari-chhola-5 inducing most acidification followed by Bari-chhola-3. The ability of Bari-chhola-5 to acidify the rhizosphere was also confirmed by embedding in situ roots in the field in an agar-agar solution containing pH indicator dye Bromocresol purple. The genotypes did not differ for induction of acid phosphatase activity (Aptase) in the rooting media. The genotypes inducing greater acidification and possessing prolific root hairs (Bari-chhola-3 and Bari-chhola-5) absorbed significantly higher amounts of the nutrients K, P, Fe, Mn, and Zn, whose availability in soils is usually low. The results suggest that a collective effect of superior morphological and physiological root traits confers better nutrition of chickpea genotypes in low-nutrient soils.  相似文献   

17.
浅层施肥对水稻苗期养分吸收及土壤养分分布的影响   总被引:3,自引:0,他引:3  
孙浩燕  王森  李小坤  任涛  丛日环 《土壤》2015,47(6):1061-1067
采用盆栽土柱试验研究不同施肥深度对水稻秧苗生物量、养分吸收及土壤养分分布的影响,以期为水稻育秧合理施肥提供理论依据。结果表明:播种后10天,各处理水稻生物量无显著差异;播种后20天,施肥深度1 cm处理生物量与其他处理相比平均显著增加80.6%;播种后40天,施肥深度1 cm和5 cm处理与10 cm处理相比分别显著增加70.9%和30.7%。养分吸收结果与生物量表现一致,播种后20天,施肥深度1 cm处理秧苗氮、磷、钾素吸收量分别平均提高86.9%、156.9%和202.7%;播种后40天,施肥深度1 cm和5 cm处理与10 cm处理相比分别增加52.3%和24.8%、23.8%和20.4%、50.5%和43.1%。随着生育进程的推进,土壤有效养分含量均逐渐下降,且有向下迁移的趋势;其中施肥深度1 cm和5 cm处理0~10 cm土层中无机氮、速效磷、速效钾含量显著高于其他处理。适宜的浅层施肥明显促进水稻秧苗的生长发育,浅层施肥方式施入的速效养分主要集中于土壤上层,利于秧苗生长对养分的吸收,提高秧苗养分含量,增加养分吸收量,有利于提高养分资源利用效率。  相似文献   

18.
长期施用含硫化肥对水稻产量和养分吸收的影响   总被引:6,自引:0,他引:6  
1975年开始在湖南祁阳红壤站布置了含硫化肥长期定位试验。3个处理(无硫、低硫和高硫)的施硫量分别为0、112、604 kg hm-2a-1。结果表明:SO42-—S在施硫处理的土壤和植株中都有明显的累积,连续施用含硫化肥24年后,表土中SO42-—S含量增加了158~229%,施硫处理稻草中硫浓度比对照高43~57%,而稻谷中硫浓度在处理问无显著差异;施硫对水稻的短期效应(1~7年)为提高产量和品质,中期效应(8~15年)为无显著作用,而长期效应(16年后)为负面影响,长期施用含硫化肥导致水稻(特别是晚稻)对Mg、Fe、B、Mo等元素的吸收量显著减少,并使高硫处理晚稻稻谷产量显著下降(1990~1997年比1982~1989年平均下降31.6%)。  相似文献   

19.
肥料配施对杂交中稻氮素积累与分配及氮肥利用率的影响   总被引:2,自引:0,他引:2  
通过大田试验,评价有机无机肥配合施用对我国南方杂交中稻氮素积累与转移特性及氮肥利用效率影响。结果表明,叶氮积累量、茎鞘氮积累量及植株氮素积累总量在配施有机肥处理与不配施之间在抽穗期、灌浆期、成熟期均存在显著差异;有机肥的配施有利于植株各器官氮素的积累。配施有机肥对叶及茎鞘氮的表观转运率影响差异不显著。配施有机肥的氮收获指数在成熟期以尿素配施饼肥最高,比尿素+控失剂并配施有机肥高15.2%。配施有机肥与相对应不施有机肥的氮肥利用率能提高10%左右。尿素+控失剂处理的生物产量及籽粒产量均较高,分别比不施肥处理高50.6%,16.4%。品种间差异主要表现为叶氮积累量及氮素积累总量且在生育后期差异显著。因此,配施有机肥作基肥有利于叶氮、茎鞘氮及氮素积累总量的积累。氮素的表观运转率在不同的肥料处理及高产杂交水稻品种间均无显著差异。配施有机肥能显著提高氮肥利用率及氮收获指数。  相似文献   

20.
The effect of addition of roadside pond sediments on heavy metal contents of flooded rice paddies was studied to investigate the yield of rice and uptake of heavy metal by rice straw and grain. Sequential extraction of heavy metals on sediments shows that the percentage contribution of metals in the labile fraction follows the order lead (Pb, 48%) > copper (Cu, 42%) > zinc (Zn, 31%) > cadmium (Cd, 16%) > chromium (Cr, 9%) > nickel (Ni, 6%). The risk assessment code (RAC) for pond sediment revealed that Cr and Ni were found in the low-risk zone, Zn and Cd in the medium-risk zone, and Cu and Pb in the high-risk zone. However, though the heavy metal concentration in rice grain does not exceed the range acceptable for human consumption, it still represents a significant additional source of heavy metals in the diet. The addition of pond sediment significantly increased the rice yield over control. Therefore, pond sediment would be a valuable resource for agriculture if it is properly used.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号