首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Field experiments were conducted at two locations in order to formulate phosphorus and potassium fertilizer recommendations of groundnut (Arachis hypogea) based on Mitscherlich–Bray equation. The treatments comprised four levels of phosphorus (0, 30, 60, and 90 kg phosphorus pentoxide (P2O5) ha?1) and three levels of potassium (0, 30, and 60 kg potassium oxide (K2O) ha?1) in all possible combinations. Theoretical maximum yield of groundnut was calculated by plotting log y (pod yield) versus 1/x (amount of nutrients applied). Fertilizer recommendation for various soil fertility levels and yield target were developed, and their validities were tested by conducting two field verification trials on the same soil. The results showed that although general recommended fertilizer dose resulted in highest yield of groundnut at both the locations, but value cost ratio and rate of increase in income were lowest with this fertilizer treatment, and 90% of maximum yield treatment was superior in terms of economics of fertilizer and risk factor.  相似文献   

2.
The aim of the study was to appraise various types of phosphate fertilizers (bone meal, superphosphate, triple superphosphate, and potassium orthophosphate) for immobilizing metals and metalloids in mining-impacted soils from Broken Hill, Australia. Soils were rich in metals (Pb, Zn, Cu, and Cd) and metalloids (As and Sb) which were mainly contained in minor to trace amounts of coronadite [PbMn8O16], kintoreite [PbFe3(PO4)2(OH,H2O)6], Pb, and Zn sulfides and sulfates (possibly sphalerite, galena, and anglesite) as well as in unidentified soluble metal-bearing phases. Phosphate stabilization experiments were conducted as kinetic column leaching experiments, and chemical and mineralogical changes were assessed using elemental, sulfur isotope, and XRD analyses as well as electron microprobe phase mapping. The application of phosphate fertilizer to the metal-contaminated topsoils led to mineralogical changes, including the formation of secondary metal-bearing phosphates. The elemental concentrations of leachates were used as a criterion to assess the performance of phosphate treatments. Potassium orthophosphate fertilizer was the most effective amendment for Cd stabilization; superphosphate and triple superphosphate fertilizers were the most effective amendments for Pb stabilization. By contrast, the release of As, Cu, Mn, Sb, and Zn were not significantly suppressed, and in several cases, increased, using bone meal, superphosphate, triple superphosphate, and potassium orthophosphate amendments. This study indicates that in situ phosphate stabilization of mining-impacted soils at Broken Hill would most likely be a complex and impractical undertaking in residential areas due to the risk of substantial metal, metalloid, phosphate, and sulfate release.  相似文献   

3.
The fate of urea-and ammonium bicarbonate(ABC)-nitrogen (N) applied by prevailing traditional techniques to winter wheat (Triticum aestivum L.)or maize (Zea mays L.)grown in the fields of Fluvo-aquic soil was investigated using ^15N tracer-micro-plot technique.Results show that:(1) at maturity of wheat,N recovery in plants and N losses of urea and ABC applied at seeding in autumn were 31-39%,and 34-46%,respextively,while the corresponding figures for side-banding at 10 cm depth in early spring were 51-57%,and 5-12%;surface-broadcast of urea followed by irrigation at early spring was as efficient as the side-banding in improving N recovery in plants and reducing N loss,however,such techuique was found less satisfactory with ABC.(2)At the maturity of maize,N recovery in the plants and N loss of urea and ABC sidebanded at seedling stage or prior to tasseling ranged from 23% to 57%,and 9% to 26%,respectively.(3) Either in Wheat or in maize experiment,the majority of residual fertilizer N in soil profile (0-60cm) was in the form of biologically immobilized organic N,however,the contribution of ammonium fixation by clay minerals increased markedly nwith depth in soil profile.(4) Though the proportion of residual fertilizer N was generally highest in the top 20 cm soil layer,considerable reaidual N (nostly 6-11% of the N applied)was found in 60-100 cm soil layers.  相似文献   

4.
Abstract

A field experiment was conducted at Star City (legal location SW6‐45‐16‐W2); Saskatchewan, Canada from May 2000 to June 2000, to measure nitrogen (N) and phosphorus (P) supply rates from fertilizer bands to the seed‐row of canola crop. Ion exchange resin membrane probes (PRSTM) were used to measure N and P supply rates in four treatments [80 kg N ha?1 of urea as side‐row band, 80 kg N ha?1 of urea as mid‐row band, check/no N (side‐row)/P side‐row, check/no N (mid‐row)/seed placed P]. The treatments were arranged in a randomized complete block design with four replications. Two anion and cation exchange resin probes (PRSTM) were placed in each plot in the seed‐row immediately after seeding and fertilizing. The probes were allowed to remain in the field for 2 days and replaced with another set of probes every 4 days for a total of 14 days until canola emerged. Ammonium‐N, nitrate‐N and P supply rates were calculated based on the ion accumulated on the probes. Urea side‐row band treatments (fertilizer N 2.5 cm to side of every seed‐row) had significantly higher cumulative available N supply rates than mid‐row band placement in which fertilizer N was placed 10 cm from the seed‐row in between every second seed‐row. No significant differences were observed in P supply rates. The higher N rates (120 kg N ha?1) resulted in lower grain yield in side‐row banding than mid‐row banding possibly due to seedling damage. However, the earlier fluxes of N into the seed‐row observed with side‐row banding may be an advantage at lower N rates in N deficient soils.  相似文献   

5.
Abstract

Phosphorus (P) fertilization is quite important for crop production grown on Andosols. Fertilizer P‐use efficiency was 17% in a long‐term wheat experiment on a low‐humic Andosol. Residual effects of P fertilization were investigated using field soils in pot experiments. Topsoil was collected from the plots with or without annual P fertilizer at the rate of 65 kg‐P ha?1 for 23 years (nitrogen phosphorous potassium (NPK) soil and nitrogen potassium (NK) soil, respectively). There was no significant difference in dry matter of wheat and P uptake between NPK and NK soils. However, dry matter of rice and P uptake were higher in NPK soil than in NK soil. Inorganic aluminum P (Al‐Pi) and iron P (Fe‐Pi) increased in NPK soil. Increase in Al‐Pi and Fe‐Pi during 23 years contributed little to P uptake by wheat, and repeated P fertilization is indispensable to obtain acceptable grain yield.  相似文献   

6.
2007-2009年度在海门市进行了油菜3414肥料效应试验.结果表明:海门市油菜产量与氮、磷、钾肥用量之间呈三元二次回归效应关系,2007-2008年度和2008-2009年度试验点综合肥料效应方程分别为:y2007-2008=98.220+ 4.876N -0.23 1N2+ 13.399P - 1.748P2+ 6.346K - 0.621K2+ 0.377NP+ 0.126NK+ 0.090PK和y2008-2009=110.352+ 7.636N - 0.311N2+ 7.178P -0.929P2+ 3.923K - 0.550K2+ 0.152NP+ 0.175NK+ 0.173PK.平均每千克养分增产油菜籽分别为:N 5.36kg,P2O57.78kg,K2O4.14kg; N+P2O53.74kg,N+K2O2.83kg,P2O5+K2O2.18kg,N+P2O5+K2O3.85kg.  相似文献   

7.
Abstract

In this article, the responses of three important crops (rice, wheat, and soybeans) to applied phosphorous (P) were examined and economically optimum P fertilizer recommendations using the Mitscherlich–Bray model were derived for the three crops at four locations in India. Crop‐yield responses were related to extractable P concentrations estimated by the Olsen method, employing a modification of Mitscherlich's equation. The parameters were considered reliable enough to use for the estimation of fertilizer recommendations at different fertilizer cost–price ratios (p) and marginal rate of return (R). The b parameter value explains how much soil P can substitute for fertilizer P. Thus, for each incremental unit of extractable P, fertilizer P could be reduced by 2.0, 2.9, 1.5, and 1.5 kg P/ha for rice (Periyar), rice (Bhubaneswar), wheat (Hisar), and soybean (Raipur), respectively. Optimum fertilizer rates for rice, wheat, and soybean were generated for different soil P fertility levels. There is also need for such information for other soils and crops.  相似文献   

8.
Bypass flow, the vertical flow of free water along the walls of macropores or preferential flow paths in the soil, can lead to movement of fertilizer nutrients beyond the reach of plants. Fertilizer type and the rate of application, as well as the amount, frequency, and intensity of rainfall, can influence the amount of fertilizer nitrogen (N) loss in leaching or bypass flow. The effect of fertilizer N form and rate of application on N recovery in bypass flow in a Kenyan Vertisol was determined. Calcium nitrate and ammonium sulfate, used to supply nitrate (NO3 ?)‐N and ammonium (NH4 +)‐N, respectively, were surface‐broadcast to 40‐cm‐long undisturbed soil columns at equivalent rates of 50, 100, and 200 kg N ha?1. Using a rainfall simulator, two rainfall events (30 mm of water applied in 1 h) were applied to the soil columns, one before and the other after fertilizer application. Total N, NO3 ?‐N, and NH4 +‐N concentrations in the bypass flow were determined after the second rainfall event. The application of NH4 +‐N, regardless of the rate, had no effect on N recovery in the bypass flow. When nitrate N was applied, the amount of fertilizer N recovered in the bypass flow significantly increased with the rate of NO3 ?‐N application. Of the total N in the bypass flow, 24 to 48% was derived from the soil, the bulk of which was organic N. It is concluded that following the application of NO3 ?‐N, bypass flow is an important avenue of loss of both fertilizer and soil N from Vertisols.  相似文献   

9.
Considerable amounts of phosphorus (P) fertilizer will be required on soils in the proposed Ord Stage II area of northwestern Australia if a sustainable dry‐season cotton production system is to be established, because in their virgin state the soils are known to be inherently low in P. This study aimed to determine P fertilizer requirements on these soils to optimize cotton yield as well as nutrient uptake. Five rates of P fertilizer were applied to soil recently cleared of trees and prepared for irrigation. In the second year, these same rates were imposed over the trial. We conclude that the application of 60 kg ha?1 of P was sufficient to allow maximum yield and quality for dry‐season cotton grown in the first season on virgin soils in the Ord River Irrigation Area, whereas a total of 80 kg ha?1 of P was required when cotton was grown over two seasons.  相似文献   

10.
Application of nitrification inhibitor has potential to increase soil nitrogen (N) retention throughout the growing season and finally increase corn (Zea mays L.) yield. During the 2012–2014 growing seasons, on-farm field trials were conducted to determine the effects of nitrapyrin (Instinct) with two N sources, urea and urea ammonium nitrate, at two rates, 85% and 100% of recommended N, and side-dress on grain yield and soil inorganic N availability in the Red River Valley of the North Dakota. Preplant urea N at 100% recorded the greatest yield in 2 out of 3 years. At late sampling, the greatest soil inorganic N was observed with side-dress urea ammonium nitrate at 100% within 0–30 cm (last 2 years). For spring fertilizer N management, addition of nitrapyrin had no effect on yield and inconsistent effect on soil N availability. Our results suggest that fertilizer N management should be evaluated on a local scale and consider annual variability in weather.  相似文献   

11.
Abstract

Considerable amounts of phosphorus (P) fertilizer will be required on soils in the proposed Ord Stage II area of northwestern Australia if a sustainable dry‐season, cotton‐production system is to be established, because in their virgin state, the soils are known to be inherently low in P. This study aimed to determine P‐fertilizer requirements on these soils to optimize cotton yield as well as nutrient uptake. Five rates of P fertilizer were applied to soil recently cleared of trees and prepared for irrigation. In the second year, these same rates were imposed over the trial. It was concluded that the application of 60 kg ha?1 of P was sufficient to allow maximum yield and quality for dry‐season cotton grown in the first season on virgin soils in the Ord River Irrigation Area (ORIA), and a total of 80 kg ha?1 of P was required when cotton was grown over two seasons.  相似文献   

12.
A long‐term (61 years) experimental field was used to examine the effect of acidification on the chemical composition of an allophanic Andisol in northeastern Japan. The pH values of the 1:10 water extract of the plow layer soils were 4.1, 4.7, and 6.2 for three fertilizer application treatments: chemical fertilizers only (CF), CF and compost (CFC), and CFC with liming, respectively. Three batch dissolution analyses were conducted to determine water‐soluble and exchangeable (D1), D1 plus, inorganically bound elements to noncrystalline clays and organically bound elements (D2), and total concentration of elements (TCE, 45 elements). The D1 fraction of 20 elements increased, and that of eight decreased with acidification. The D2 fraction of lithium increased, and that of eight elements decreased with acidification. Because the D2 fraction of many other elements and TCE were not strongly altered, present acidification of this soil can be restored with liming and other necessary amendments.  相似文献   

13.
Knowing actual nutrient requirements for rice plants is crucial in supplying the correct amount of fertilizer, especially nitrogen since nitrogen is one of the most key limiting nutrients in rice cultivation. A preliminary study of variable rate application (VRA) on System of Rice Intensification (SRI) planting by using organic foliar fertilizer was carried out to determine the effectiveness of precision fertilization. Foliar fertilizer was formulated based on actual nitrogen needed by rice plants using Soil-Plant Analyses Development (SPAD) chlorophyll meter measurements. The experiment was laid out in a randomized complete block design (RCBD) with four treatments (50% fixed rate, 100% fixed rate, 150% fixed rate and VRA) and four replications for each treatment. Plant growth performances (plant heights, number of tillers, number of panicle and flower) and yield performances (grain yield, number of grain, 1000-grain weight and number of spikelets) were recorded during the study. The results showed that foliar application of VRA resulted in significantly higher yield performances; grain yield (13.65 g), number of grain (807.50), 1000-grain weight (16.79 g), and number of spikelets (7.50) compared to uniform fertilizer applications. VRA treatments had the highest SPAD readings at every planting stage during the experiment; however, a high nitrogen supply was needed during the mid-tillering stages (35 DAT) compared to other fertilizer rates. Besides, VRA application shows the most savings in term of total nitrogen supply (415 µg) compared to uniform rates application; 50% fixed rate (400 µg), 100% fixed rate (810 µg), and 150% fixed rate (1210 µg).  相似文献   

14.
Most soils in Florida are very sandy, and water-soluble fertilizers (WSF) are subjected to leaching loss. Alternate fertilization is a promising practice to reduce such loss. Dolomite phosphate rock (DPR), which contains calcium, magnesium, and phosphorus, is potentially useful for agricultural production and landscaping plants. In this study, DPR fertilizers were developed from mixing of DPR material and N-viro soil. A typical agricultural soil (Alfisol) in Florida was used for greenhouse studies, and ryegrass and citrus seedlings were tested. The DPR fertilizers appeared superior to WSF for the growth of ryegrass based on dry-matter yield and nutrient concentrations in plant; however, it was not evident in citrus seedlings. DPR fertilizers were effective in raising pH (by 3 units) and electrical conductivity of acidic sandy soils and increasing soil organic matter, total nutrients, and available nutrients. The concentrations of copper, lead, and zinc in the plant tissues were less than toxicity limits.  相似文献   

15.
Abstract

Field experiment was conducted for 7 years continuously to evaluate the influence of combined application of organic and inorganic fertilizer on soil fertility buildup and nutrient uptake in mint (Mentha arvensis) and mustard (Brassica juncea) cropping sequence. Maximum organic carbon was observed under full supply of organic manure (T2; FYM at 20 t ha?1) averaged across all the Stages of cropping sequence. It was increased by 38, 50, and 51% in T2 in Stages I (after mint harvest/presowing of dhaincha), II (after incorporation of dhaincha (Sesbania aculeata)/presowing of mustard), and III (after harvest of mustard/preplanting of mint), respectively, over their respective controls. In general, magnitude of organic carbon was recorded higher in Stage II after green manuring of Sesbania compared with Stages I and III. Nitrogen availability in treated plots was increased by 26.0–89.9, 15.2–64.5, and 4.9–52.0% in Stages I (after mint harvest/presowing of Sesbania), II (after incorporation of dhaincha/presowing of mustard), and III (after harvest of mustard/preplanting of mint), respectively, over their respective control. Average across all the three Stages showed a positive balance of nitrogen (N), phosphorus (P), and potassium (K) in soil under different treatments. Mean of the three Stages indicated that maximum available N, P, and K were increased by 36.1, 129.0, and 65.20% in T4 (N:P:K: 133:40:40 and FYM at 6.7 t ha?1), T4 (N:P:K::133:40:40 and FYM at 6.7 t ha?1), and T3 (N:P:K::100:30:30 and FYM at 10 t ha?1), respectively, over their initial status. Supply of organic and inorganic fertilizer (T4; N:P:K::133:40:40 and FYM at 6.7 t ha?1) was found most suitable combination with respect to N, P availability in soil, and productivity of mint and mustard crop.  相似文献   

16.
Phosphorus is essential for agriculture, but soil interactions antagonize uptake. An organic acid P fertilizer, Carbond® P (CBP), increases P solubility. One maize (Zea mays L.) glasshouse study on three soils and two field studies were conducted comparing CBP and ammonium polyphosphate (APP) on early season growth. In comparison to maize fertilized with APP, CBP fertilization produced significantly more biomass (in two glasshouse soils and one field study), stem thickness (one glasshouse soil and both field studies), plant height (one field study), and P concentration/uptake (one glasshouse soil and one field study). Although not always resulting in significant increases, CBP never resulted in decreases compared to APP. Increases occurred more commonly in highly calcareous soil (6–12%) low in bicarbonate extractable P (7 mg kg?1). Improvements in early and late season growth parameters using CBP compared to APP warrant its use and further investigation to understand its benefits and limitations.  相似文献   

17.
The Fengqiu long-term field experiment was established to examine effects of organic manure and mineral fertilizers on soil total nitrogen (N) and natural 15N abundance. Fertilizer regimes include organic manure (OM), one-half N from organic manure plus one-half N from mineral N fertilizer (1/2OMN), mineral fertilizers [N–phosphorus (P)–potassium (K), NP, NK, PK], and a control. Organic manure (OM and 1/2OMN) significantly increased soil total N and δ15N, which was expected as a great amount of the N applied remained in soils. Mineral NPK fertilizer and mineral NP fertilizer significantly increased total N and slightly increaed δ15N. Phosphorus-deficient fertilization (NK) and N-deficient fertilization (PK) had no effect on soil total N. Significantly greater δ15N was observed in the NK treatment as compared to the control, suggesting that considerable N was lost by ammonia (NH3) voltalization and denitrification in this P-deficiency fertilization regime.  相似文献   

18.
Abstract

Nickel (Ni) contamination occurred near a Ni refinery at Port Colborne, Ontario, on soils susceptible to Mn deficiency. Previous studies showed that adding limestone to remediate these soils induced Mn deficiency in plants. This greenhouse pot experiment was conducted with Welland loam and Quarry muck soils to learn the application of MnSO4 needed when these soils were limed. Limestone application, along with Mn fertilizer, allowed normal growth of oat and red beet known as sensitive to Ni phytotoxicity and Mn deficiency. Strontium (Sr)‐nitrate extractable Ni was a smooth function of slurry pH with much higher Ni extractable from the Welland loam than Quarry muck. Ni phytotoxicity was severe at low pH for the Welland loam but it was generally prevented by liming. No severe Mn deficiency was observed in this experiment when nitrogen was applied as combination of urea, ammonia, and nitrates. Manganese fertilization greatly improved Mn uptake by both crops in both soils.  相似文献   

19.
Phosphorus fertilizer is critical to crop production but inefficiently absorbed and consequently linked to surface water pollution. Phosphorus mobility was measured on three soils using 0.18 m soil columns treated with Carbond® P (CBP, 7-24-0), ammonium polyphosphate (APP, 10-34-0) and monoammonium phosphate (MAP, 11-52-0) applied either by mixing thoroughly or in concentrated bands at rates of 20 and 30 kg P ha?1. Mobility of P was measured in leachate collected 24, 48, 110 and 365 d after fertilization (daf). Carbond® P produced the highest total P leachate values over 365 d study period compared to MAP or APP for both mixed and band applications. On individual days, CBP generally allowed more soluble P leachate than MAP or APP up until 110 daf (one exception) but not at 365 daf. Higher solubility of P with CBP explains higher P uptake by plants from soils and could reduce total P applications to crops.  相似文献   

20.
Zhao  G. R.  Fan  Z. W.  An  T. X.  Kai  L.  Zhou  F.  Wu  K. X.  Wu  B. Z.  Fullen  M. A. 《Eurasian Soil Science》2022,55(8):1116-1125
Eurasian Soil Science - Despite the general consensus that fertilizer is the most important driver of the evolution of soil microbial communities, the specific effects of long-term fertilizer use...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号