共查询到20条相似文献,搜索用时 0 毫秒
1.
Two japonica rice (Oryza sativa L.) cultivars, Xiushui 48 and S. Andrea, differing in their ability to accumulate Se in the grain (as high as a three-fold difference), were compared for selenium (Se) accumulation in their shoots when their growth media was supplied with different forms of Se. Results indicated that when treated with 0.25μmol L^-1 Na2SeO3, Xiushui 48 accumulation of Se in the shoots was significantly more rapid (P〈0.05) than S. Andrea, probably because of greater Se uptake and transport in Xiushui 48. Xiushui 48 rice seedlings had a higher shoot-Se accumulation rate and absorbed selenocysteine (Se-Cys) more rapidly than S. Andrea seedlings. However, when treated with Se as 0.25μmol L^-1 selenomethionine (Se-Met), the S. Andrea seedlings' accumulation rate was significantly greater (P〈0.05) than that of Xiushui 48. Possibly, the high Se accumulation rate of Xiushui 48 seedling shoots compared to S. Andrea shoots was the result of a higher capacity of Xiushui 48 to transform selenite to organic Se compounds and a higher selenite uptake rate. 相似文献
2.
《Communications in Soil Science and Plant Analysis》2012,43(1-2):231-240
Abstract Different chemical reagents are used to assess plant‐available nutrients from soils with similar properties. The use of different extractants is a serious limitation when comparing results between different soil‐testing laboratories, often leading to large differences in fertilizer recommendations for similar crops. In this study, 80 samples from acid soils from Galicia (Spain) were used to compare several soil nutrient extractants. Traditional and tested extractants for acid soil such as Bray 2 and ammonium acetate were used to evaluate multielement extractants such as ethylenediaminetetraacetic acid–ammonium acetate (EDTA‐aa), ammonium bicarbonate–diethylenetriaminepentaacetic acid (AB‐DTPA), and Mehlich 3. Linear regression analyses were performed to relate the amount of each nutrient obtained by traditional soil extractants to the amount obtained by multielement extractants. Strong correlation was found between extractable Bray 2 P and Mehlich 3 P (r2=0.97, slope=0.87, and intercept=?0.48). The slope of the regression line between EDTA‐aa‐extractable calcium (Ca) and that from ammonium acetate (Aa) approached 1∶1 (r2=0.86). Similar results were obtained for magnesium (Mg) (r2=0.99). Soil zinc (Zn) concentrations extracted by Mehlich 3 and EDTA‐aa were similar; slope of the regression line was 0.95 (r2=0.88). With regard to copper (Cu), Mehlich 3 extracted approximately 20% more Cu than EDTA‐aa. The results showed that Mehlich 3 and EDTA‐aa are suitable for assessment of plant available phosphorus (P), potassium (K), Ca, Mg, Cu, Zn, and iron (Fe) in acid soils. 相似文献
3.
《Communications in Soil Science and Plant Analysis》2012,43(5-6):885-894
Abstract Although limited amount of water is the primary constraint to agricultural productivity in the rainfed area of West Asia and North Africa (WANA), yields are also low because of the poor mineral nutrient status of soils. Yields can, therefore, be considerably increased by judicious fertilizer use. Laboratories for soil and plant analysis are essential for identifying nutrient constraints and providing a basis for efficient fertilizer use, through correlation studies to establish suitable soil testing extractants and calibration studies with crop responses. The Soils Laboratory at the International Center for Agricultural Research in the Dry Areas (ICARDA) has initiated a quality control program among the national agricultural research systems (NARS) in the countries of the WANA region. The efforts include linkages with the Wageningen International Soil Analytical Exchange Program, in‐country training courses, and a laboratory analysis manual. Continued improvement in laboratory performance is dependent upon knowledge of the capabilities of such laboratories and identification of their constraints. This presentation reports a fact‐finding survey of laboratories from 16 countries of the WANA region—mainly public, from universities and ministries of agriculture, and some private or commercial ones—based on a questionnaire about analyses, facilities, methodologies, quality assurance, personnel training, and management. Future efforts to improve the quantity and quality output from of these laboratories will address such deficiencies. 相似文献
4.
On the basis of the study on iodine behaviour in soil-plant system and other related informations. Tensho and Yeh(1,2,5) have suggested and demonstrated that the iodine toxicity is responsible for the “Reclamation Akagare” disease of lowland rice. Some additional evidences for this view will be presented. which were obtained particularly in connection with field studies on local problem. 相似文献
5.
A pot experiment was conducted to investigate differences in antioxidative defence and carbon–nitrogen metabolism between acid-tolerant (YJSM) and acid-sensitive (YHSM) rice cultivars under acid stress. Acid-tolerant and acid-sensitive rice were planted in both acidic soil (pH 4.21) and normal soil (pH 6.13). Forty-eight days after sowing, rice shoots and roots from four treatments were collected, and the other four replicates were harvested at seed maturity. The results revealed that the grain yield of acid-tolerant YJSM was significantly higher than that of acid-sensitive YHSM under acid stress. The activities of antioxidant enzymes (superoxide dismutase and catalase) and contents of non-enzymatic antioxidants (ascorbate and reduced glutathione) of acid-tolerant YJSM were both higher than those of acid-sensitive YHSM under acid stress. Moreover, the enzyme activities (nitrate reductase, glutamine synthetase, glutamate synthase and glutamate dehydrogenase) and product contents (soluble sugar and soluble protein) of carbon–nitrogen metabolism of acid-tolerant YJSM were higher than those of acid-sensitive YHSM under acid stress. The NO3–N and carbon (C) contents in leaves of acid-tolerant YJSM were both significantly higher than those of acid-sensitive YHSM under acid stress. This study suggests that the acid-tolerant rice cultivar has better antioxidative defence and carbon–nitrogen metabolism systems than the acid-sensitive rice cultivar and is more effective in resisting acid stress. 相似文献
6.
Manoj K. Bhatt Kiran P. Raverkar Ramesh Chandra Navneet Pareek Rini Labanya Vineet Kumar Shikhar Kaushik Dhananjay K. Singh 《Soil Use and Management》2020,36(2):261-273
The imbalanced use of chemical fertilizers under intensive cultivation practices over a period of years leads to various soil-associated problems particularly nutrient availability. Thus, to examine the effect of long-term application of balanced and imbalanced inorganic fertilizer and farm yard manure (FYM) application on the chemical fraction of DTPA-extractable micronutrients under rice–wheat cropping system after 29 years, the observations were recorded from the ongoing field experiment at Govind Ballabh Pant University of Agriculture and Technology, Pantnagar, India. An application of balanced inorganic fertilizer with FYM in rice, while without FYM in wheat significantly improved the DTPA-extractable Zn, Fe, Mn and Cu after rice and wheat crops in both the surface and sub-surface soil layers. Lowest DTPA-extractable Zn, Fe, Mn and Cu were recorded, in surface and sub-surface soil under rice and wheat crops in control. The highest DTPA-extractable Zn, in both surface and sub-surface layers of rice (3.31, 1.62 mg kg−1, respectively) and wheat (2.96, 0.99 mg kg−1, respectively) was recorded because of application of N180+P80+K40+Zn(F) + FYM in rice and N180+P80+K40+Zn(F) in wheat. However, the DTPA-extractable Fe, Mn and Cu were highest in rice and wheat because of N120+P40+K40+FYM and N120+P40+K40 application, respectively. The balanced use of inorganic fertilizer with FYM (N180+P80+K40+Zn(F) + FYM) in rice and without FYM [N180+P80+K40+Zn(F)] in wheat supported the highest rice (6.74 t ha−1) and wheat (3.50 t ha−1) grain yields, while lowest in control. Based on the study results, long-term application of FYM at 5 tonnes ha−1 in rice crop sustained the availability of DTPA-extractable cationic micronutrients to rice and wheat in Mollisols. 相似文献
7.
《Communications in Soil Science and Plant Analysis》2012,43(19-20):2894-2919
The relatively low solubility and availability of phosphorus (P) from indigenous phosphate rock could be enhanced by legumes in the acid soils of humid forest agroecosystems. Crotalaria micans L. was grown in a screenhouse without P or with P from triple superphosphate (TSP) and Malian Tilemsi Rock P. The P response of 20 cover crops was field‐evaluated using TSP and Rock P. In both experiments, the fertilized cover crops were followed by upland rice without mineral N or P application. Mean rice grain yield and agronomic residual P‐use efficiency were similar for both P sources. In the field, 1‐year fallow treatment of Canavalia ensiformis (velvet bean) supplied with Mali Rock P gave the highest rice grain yield of 3.1 Mg ha?1, more than 180% that of 2‐year continuous unfertilized rice (cv. ‘WAB 56‐50’). Among continuous rice plots, ‘NERICA 2’ (interspecific rice) supplied with Rock P produced the highest yield (2.0 Mg ha?1), suggesting that ‘NERICA 2’ might have greater potential to solubilize rock P. Results indicate that when combined with an appropriate legume, indigenous rock‐P can release sufficient P to meet the P requirement of the legume and a following upland rice crop in rotation. 相似文献
8.
Unilateral application of calcium (Ca) or aluminum (Al) in agar to the primary roots of watermelon [Citrullus lanatus (Thunb.) Matsum. and Nakai] cultivars ‘Dixielee’ and ‘Mirage’ induced root curvature. Root curvature induced by Al was greater than that induced by Ca in both cultivars. PCMBS inhibited Al‐induced root curvature in both cultivars, but had no effect on Ca‐induced curvature. The inhibition of curvature indicated that PCMBS reduced Al uptake. ‘Dixielee’ was more responsive to PCMBS than was ‘Mirage’. 相似文献
9.
Corn field experiments with two treatments, NP and NPK, where N in the form of urea, P in the form of calcium phosphate, and K in the form of KCl were applied at rates of 187.5, 33.3, and 125 kg ha^-1, respectively, on soils derived from Quaternary red clay were conducted in the hilly red soil region of Zhejiang Province, China. Plant grains and stalks were collected for determination of K content. Seven equations were used to describe the kinetics of K release from surface soil samples taken before the corn experiments under electric field strengths of 44.4 and 88.8 V cm^-1 by means of electro-ultrafiltration (EUF) and to determine if their parameters had a practical application. The second-order and Elovich equations excellently described K release; the first-order, power function, and parabolic diffusion equations also described K release well; but the zero-order and exponential equations were not so good at reflecting K release. Five reference standards from the field experiments, including relative grain yield (yield of the NP treatment/yield of the NPK treatment), relative dry matter yield (dry matter of the NP treatment/dry matter of the NPK treatment), quantity of K uptake in the NP treatment (no K application), soil exchangeable K, and soil HNO3-soluble K, were used to test the effectiveness of equation parameters obtained from the slope or intercept of these equations. Correlations of the ymax (the maximum desorbable quantity of K) in the second-order equation and the constant b in the first-order and Elovich equations to all five reference standards were highly significant (P ≤ 0.01). The constant a in the power function equation was highly significant (P 〈 0.01) for four of the five reference standards with the fifth being significant (P ≤ 0.05). The constant b in the parabolic equation was also significantly correlated (P ≤ 0.05) to the relative grain yield and soil HNO3-soluble K. These suggested that all of these parameters could be used to estimate the soil K supplying capacity and the crop response to K fertilizer. 相似文献
10.
《Communications in Soil Science and Plant Analysis》2012,43(19-20):2905-2916
Abstract A field experiment was conducted on an Aerie Haplaquept soil to study the effect of phosphorus (P) deficiency in soil on the P nutrition and yield of five modern varieties of rice, viz., Purbachi, BR1, BR3, BR14, and BR29, popular with the rice farmers of Bangladesh. Soil‐available P in the different plots of the experimental field varied widely, from 2.8 to 16.4 ppm. This plot to plot variation in soil‐available P content resulted from differences in the total amounts (0 to 480 kg ha‐1) of P the plots had received over a period of 8 years in a long‐term P fertilizer trial conducted previously in the same field. Phosphorus deficiency in soil drastically reduced the grain yield of all the rice varieties. In severely P deficient plots, where soil‐available P was around 3 ppm, the yield was less than 1 ton ha‐1 while in plots containing an adequate P level, i.e., >6 ppm, the yield was more than 41 ha‐1. Rice yield increased linearly with an increase in soil P content up to 6 ppm, and the highest grain yield for any variety, obtained at 6–7 ppm of soil‐available P leveled off at this point. Soil P deficiency not only decreased rice yield severely but also decreased P content in straw and grain drastically. However, differences among rice varieties were noted in P nutrition, particularly at low soil P levels. The rice varieties differed markedly also in respect of internal P efficiency. The BR29 showed the highest internal P efficiency both at low and high soil P levels. In all the rice varieties, internal P efficiency decreased with an increase in soil P levels. 相似文献
11.
《Communications in Soil Science and Plant Analysis》2012,43(15-20):2185-2198
Abstract The networks of 15 international research centers around the globe that are sponsored by the Consultative Group for International Agricultural Research (CGIAR) seeks to alleviate poverty in the developing world through enhanced production, while maintaining biodiversity and the sustainability of natural resources. The mandate of the International Center for Agricultural Research in the Dry Areas (ICARDA) is to focus on improving semi‐arid cropping systems in the drought‐prone West Asia and North Africa region. Since its inception in 1997, ICARDA's soil laboratory played a pivotal role in backstopping the institution's on‐station and on‐farm research in Syria and its collaborative research with the region's national programs. This article gives an overview of the evolution of soil and plant analysis in serving the center's mission. A major effort was the regional soil test calibration program, which set the basis for rational use of fertilizers and the identification of related nutrient constraints. Such analyses were extensively employed in all the long‐term dryland cropping system trials and later in irrigated agriculture and the interface between plant nutrition and crop breeding. Major emphasis was given to improving and upgrading analytical services in the region's laboratories. Despite advances made in analytical methodology, the challenge is to apply to solving real problems in the service of humanity. 相似文献
12.
Most of the research comparing the effect of different row spacing on seed yield in soybeans [Glycine max (L.) Merr.] has been focused on row spacing effects on aboveground crop characteristics such as leaf area, right interception, pod number, or biomass accumulation and their relationships with seed yield. Little work has been done on the effects of narrow‐row spacing on root distribution. Plant distribution may also affect root distribution and interroot competition, and therefore, exploration and use of soil resources. A field experiment was carried out on the Pampas (Argentina) to determine the effect of narrow‐row spacing on root distribution within the topsoil in soybean, and whether different root distributions affect phosphorus uptake. In December 1993, soybeans were planted at two row spacings, narrow rows (0.35 m) and wide rows (0.70 m). Root density was measured during seed filling (92 days after planting) at several points within the inter‐row space down to a soil depth of 30 cm. Aboveground biomass was harvested at maturity and phosphorus (P) uptake was measured. Below the row line, narrow‐row soybeans showed a greater root density than the wide row treatment at 5–10 cm depth, while roots of the wide‐row soybeans had more lateral growth. Root density at both sides of the row down to a depth of 5 cm was greater for the wide‐row treatment. Average root density for each depth for a section of 70 cm wide across the row line indicated there was no significant difference between treatments at any depth. The fewer number of rows for the wide‐row spacing was compensated by a greater lateral extension of roots within the interrow space. This compensation resulted in a similar root density at each depth for both planting patterns, narrow and wide rows. Aboveground biomass and phosphorus concentration in plant tissue at maturity were not affected by row spacing. A similar phosphorus uptake for both treatments was consistent with the lack of effect of the different plant distribution on soil exploration by roots and on aboveground biomass accumulation. 相似文献
13.
LU Sheng-Gao 《土壤圈》2001,11(2):185-188
The role of organic matter in the formaiton and stability of soil aggregates in mulberry plantation in the Hang-Jia-Hu Plain,northern Zhejiang Province,was evaluated in this study,A positive correlation was found between water-stable aggregate contents and organic matter contents in the ulberry plantation soils,which supported the hypothesis that organic matter was the main eenting agent in formation of aggregates.A close correlation was also foud between statility ofaggregate ad organic matter contents.Regression analysis showed that total nitrogen content was also an idicator of water-stable aggregate content and stability.The aggregate size distribution indicated that the water-stable aggregats 1-0.25mm in diaeter with the decreast of aggregate sizes,and the aggregates 1-0.25mm in diameter had the maximum organic matter content. 相似文献
14.
15.
《Communications in Soil Science and Plant Analysis》2012,43(5-6):858-872
Abstract Most ethnic populations worldwide consume poultry products. Whereas poultry litter (PL) is a traditionally inexpensive and effective fertilizer to improve soil quality and agricultural productivity, overapplication to soils has raised concerns because excess nutrients in runoff could accelerate the eutrophication of fresh bodies of water. A long‐term field experiment of land application of PL to soils used for pasture growth has been maintained for nearly two decades in the Sand Mountain region of north Alabama, USA. In this work, several soil parameters impacted by the long‐term applied litter were characterized. The findings clearly support previous general observations that long‐term applied litter on pasture soils altered soil properties and macrocation levels. Unlike other studies, however, the effects of applied litter at multiple rates and years were examined, thus revealing the dynamic impacts on soil properties. Hay yields increased with the increase of years of PL application, regardless of the applied rate. This observation was consistent with previous observations that the labile phosphorus (P) portion in these soils increases with application years whereas total P increases with the cumulative applied PL amounts. Poultry litter application did not markedly affect soil electric conductivity, bulk density, or sodium (Na) or potassium (K) levels, especially at the soil surface (0–20 cm). Soil pH, carbon (C), C/nitrogen (N) ratio, calcium (Ca), and magnesium (Mg) were profoundly affected at all three soil depths (0–20, 20–40, and 40–60 cm). Most soil parameters analyzed in this study reached peak values with 10–15 years of applied litter. This observation suggests that there was a turning point of impact for applied litter around 10 years: prior to that the soil macrocations were altered positively as a result of accumulative functions. Continuous litter application may negatively alter a soil's capacity to retain macrocations, leading to less impact observed in this study. In other words, pasture soils with more than 10 years of applied litter would have higher potential for leaching and runoff. Our observation suggested that best management practices for land application of PL should take into consideration the different effects of PL application history. 相似文献
16.
《Communications in Soil Science and Plant Analysis》2012,43(11-12):1611-1626
Abstract The chemical characterization of soil phosphorus (P) desorbed by anion and cation exchange membranes is of major importance to better understand which P forms are available to plants in short‐ and long‐term time periods. Two distinct soils, one acidic and one calcareous, were analyzed for P using two extraction procedures with mixed anion and cation exchange membranes. The short‐term (ST) experiment evaluated the effect of increasing the extraction periods up to 24 h, whereas the long‐term (LT) experiment consisted of a sequential extraction procedure using up to seven successive 24‐h extractions. In both experiments, the Chang and Jackson inorganic P fractionation methodology was carried out after each extraction treatment, and each treatment consisted of three replicates. Data were statistically analyzed by ANOVA and nonlinear regressions. In the ST experiment, increasing the extraction time increased the extracted P according to an asymptotic relationship (y=c?ab x ). Extracted P proceeded from the most labile fractions in the acidic soil. In calcareous soils, calcium phosphates may also contribute for extractable P. The LT experiment revealed that a single extraction, regardless of that extraction method, cannot predict the long‐term capacity of soils to supply P to the plants. An exponential relationship (P=a×n b ) was found between extracted P and the extraction number. Desorbed P proceeded from the most labile fractions in the acidic soil. However, in calcareous soils, some precaution is needed when considering the biological meaning of the results, because the occluded Fe phosphates also revealed significant decreases, probably due to the redox conditions in which these long extractions are performed. 相似文献
17.
The paddy field is being recognised as a biodiversity hotspot fostering a variety of organisms. However, there are few studies on the ecology of paddy field nematodes. We characterised nematode communities in rice paddy fields by comparing them with upland fields of rice or soybean. We examined nematode communities of the top (0-15 mm) and second (15-50 mm) soil layers before flooding (March or April), during flooding (June or July) and during the draining period (October) 2007-2009. We found that the nematode community in the paddy was different than that in the upland fields during all periods. Rhabdolaimus, Tobrilus, Mesodorylaims and Monhysteridae characterised the top of the paddy and Hirschmanniella characterised the second layer of the paddy. Total nematode density was generally lower in the paddy than in the upland field. However, the density in the paddy top layer increased with time from the flooding period to the draining period, during which time it was about the same as (or even greater than) the peak density in the upland fields. The density in the second layer of the paddy remained lower than that in the top layer of the paddy throughout the time course. Community diversity values were generally greater in the paddy top layer than in the paddy second layer across the six sampling periods, but periodic differences between the paddy and upland fields or between soil layers were not significant. During the flooding period, the F/(F + B) (13-37) and Enrichment Index (17-38) values were lower in the paddy than in the upland fields (32-47, 37-74, respectively) to reflect that bacteria dominate over fungi with slow decomposition due to anaerobic conditions in the flooded paddy field. In addition, particularly in the top layer, the Maturity (2.0-2.4) and Structure Index (23-72) values were greater in the paddy than in the upland fields (1.7-2.1, 9-15, respectively), indicating a well-developed ecosystem under water. These unique nematode communities persisted during the draining period, but there was a rapid increase in opportunistic bacterivores, which increased the EI values. We suggest that bactivorous nematodes in the families Cephalobidae and Chronogasteridae, herbivores in the genus Hirschmanniella, and fungivores in the genus Filenchus may be specific to paddy field soil rather than to pond and lake sediments. 相似文献
18.
Virmantas Povilaitis Sigitas Lazauskas Šarūnas Antanaitis Dalia Feizienė Virginijus Feiza Vita Tilvikienė 《Acta Agriculturae Scandinavica, Section B - Plant Soil Science》2018,68(1):86-95
Purpose: The current study was aimed to analyse the occurrence of water and nitrogen stress in spring barley and estimate their effects on the crop performance under low-input and conventional management.Materials and methods: Field experiments were conducted during 2007–2009 at the Institute of Agriculture, Lithuanian Research Centre for Agriculture and Forestry on a sandy-loam soil. The management systems were: (a) conventional, with the application of fertilizers and pesticides adjusted to target 5 t ha?1 grain yield; and (b) low-input, without fertilizers and pesticides. Biomass and nitrogen concentration, leaf area index, soil moisture, drainage water runoff and ground water table were measured periodically during the growing season.Results: In all three experimental years, the annual precipitation was close or above the climate normal, but a large part of the rainfall (up to 310 mm) was lost through drainage contributing to the occurrence of temporary moisture deficit in late spring or summer. Water stress resulted in a lower spring barley biomass accumulation rate and lower biomass yield in the years characterized by sub-optimal rainfall distribution. Direct measurements of water retention in the soil and DSSAT model simulations gave relatively good indication of water stress occurrence. Under the low-input management, nitrogen nutrition level was a major constraint for spring barley biomass and grain yield formation.Conclusions: Under Central Lithuania’s conditions, spring barley frequently experiences temporary water stress, because a relatively high proportion of annual precipitation is lost during the non-growing period. This crop can benefit from anticipated increased precipitation and carbon dioxide levels if adequately provided with nitrogen. 相似文献
19.
Edwin A. Hernández-Caraballo Wendy C. Bencomo-Fernández Jesús Aular Orlando Rodríguez-Rodríguez 《Communications in Soil Science and Plant Analysis》2018,49(15):1943-1952
The present study was aimed at developing preliminary reference values for foliar tissue for nitrogen (N), phosphorus (P), potassium (K), calcium (Ca), magnesium (Mg), copper (Cu), iron (Fe), manganese (Mn), and zinc (Zn) for `Valencia´ orange in Venezuela, using the Compositional Nutrient Diagnosis system (CND). References values were derived from a database comprising the nutrients concentrations and the yields of `Valencia´ orange trees (Citrus sinensis L. Osbeck) grafted on two different rootstocks, viz., Volkamer lemon (Citrus volkameriana Pasq.), and Cleopatra tangerine (Citrus reshni, Hort. ex. Tan). Cutoff values separating high- and low-yield sub-samples were estimated through modeling the cumulative variance ratio function versus yield relationships with the Boltzmann equation. For macronutrients, the norms developed were dependent upon the inclusion of the micronutrients concentrations in the calculations, and on the rootstocks. Care must thus be exercised, since nutrient indexes, and thus nutritional diagnosis, are based upon proper selection of such values. 相似文献
20.
《Communications in Soil Science and Plant Analysis》2012,43(15-20):2659-2672
Abstract In countries with suitable conditions for growing winter wheat, there are millions of tons of poor‐baking‐quality wheat harvested every year. In this investigation, representative samples of low‐quality‐wheat lots were analyzed. The baking quality properties, protein, ash, and macro‐ and microelement concentrations were determined for different particle‐size fractions of flour. Flour fractions of different particle sizes sieved from the same flour samples yielded significantly different analyses for protein, ash, and macro‐ and microelements. It was determined that the particle fraction of 125–63 µm had better baking parameters than the original flour sample, and it constituted 32.5% of the total mass of the original amount of flour. In addition, the mineral‐element concentration was also found to be much higher than that of the original flour, which means that besides its better baking quality, it also had a higher nutritional value. The single, unmixed utilization of the 125‐ to 63‐µm flour fraction would mean more economic production for the baking industry and a higher value end product for the consumer. Based on our findings, we also recommend that in the chapters on materials and methods of the articles dealing with different kinds of flour, the authors should indicate the particle sizes of the flour samples analyzed because these may result in more objective evaluations of the readings. 相似文献