首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
Abstract

A semi‐micro modification of perchloric acid digestion method for the determination of total P in soils, sediments, and organic materials is described. Samples are digested for 30 minutes with nitric acid at 115 °C and then for 2 hours with perchloric acid at 170 °C in an aluminum heating block. After dilution, samples are hydrolyzed at 100 °C for 1 hour in order to decompose pyrophosphate, and the liberated orthophosphate is determined without a neutralization step by the phosphomolybdate blue method of Murphy and Riley (1962). Comparability with the method of Sommers and Nelson (1972) is demonstrated using nine samples of different types. The same reaction conditions of digestion and color development as in the determination of total P in waters (Kopá?ek and Hejzlar, 1993) enable a comparable estimate of total P in solid and water samples in complex environmental studies.  相似文献   

2.
Abstract

Measurement of total soil cadmium (Cd) is difficult due to calcium (Ca) and other chemicals which cause high background absorbance when trace levels of Cd are to be determined. When soil Cd is low, even use of deuterium background correction with flame atomic absorption spectroscopy (AAS) cannot provide accurate Cd results. Use of furnace atomic absorption with method of standard additions can circumvent these interferences, but the cost and time required are substantial. We desired a more rapid, convenient, and reliable alternative to extraction using dithizone and back‐extraction into acid, or to ammonium pyrollidinedithiocarbamate (APDC) which does not require close pH adjustment nor have many sources of potantial contamination. We evaluated analysis of these complex soil extracts with the method of Viets (1978) which extracts metals from 1N acid solutions using Aliquat‐336 in methylisobutyl‐ketone (MIBK). We tested the use of the less toxic and less water soluble 3‐heptanone as an organic solvent alternative to MIBK which can be directly analyzed by flame atomic absorption. A series of extraction experiments were conducted to determine if Cd was extracted from standard solutions and from total metal digests of calcareous soils into an Aliquat‐336/3‐heptanone solution, and under what conditions extraction was optimum. In the optimum method, Cd was extracted from aqua regia soil digests by 10% Aliquat‐336 in 3‐heptanone without addition of ascorbic acid or potassium iodide (KI) used by Viets. Excellent recovery of Cd was obtained for both standard reference soils and low Cd highly calcareous soils from North Dakota and Minnesota. Addition of ascorbic acid and KI did not increase the efficiency of extraction indicating that the extraction system used was free of ferric‐iron [Fe(III)] interference. The ion‐association complex of Cd remained stable for at least 24 hr after extraction, providing a very convenient method to analyze low levels of total Cd in soils and other geologic materials.  相似文献   

3.
Abstract

An analytical procedure for the ultraviolet spectrophoto‐metric determination of nitrate‐N in plant material over the range 8–15 000 mg kg‐1 is described. Plant material is extracted with 0.025 M Al2(SO4)3 and oxidised activated charcoal and after filtering, the extract is treated with the same amount of oxidised activated charcoal. Correction for interfering organic ions which remain after treatment, is made by adjusting the absorbance at 225 nm by an estimate of the background interference determined from the absorbance value at 255 nm. The net absorbance at 225 nm is used to determine nitrate‐N concentration.  相似文献   

4.
Abstract

The determination of soil organic matter by wet digestion techniques is a slow and laborious analysis. Loss‐on‐ignition (LOI) provides a simple alternative technique for the estimation of soil organic carbon in non‐calcareous A horizon soils of the Natal midlands and Zululand forestry regions. Using multiple regressional techniques, the relationships between loss‐on‐ignition, Walkley organic carbon and soil texture for 55 soils were determined over a range of ignition temperatures. The relationships hold best for soil samples with relatively low organic carbon contents (< 5%). The optimum temperature for ignition was found to occur at 450°C and resulted in the relationship: Soil organic carbon = 0.284*LOI percent. No advantage is gained through ignition at higher temperatures due to the loss of clay mineral structural water, even if the soil texture is accurately known.  相似文献   

5.
Abstract

A procedure for the simultaneous extraction of phosphorus, potassium, calcium and magnesium from soils, by an ion‐exchange resin procedure applicable to large‐scale advisory soil testing, is described. The important steps are the disaggregation of soil by shaking in water during 15 minutes with a glass marble, the transference of the elements from the soil to a sodium bicarbonate treated mixture of anion and cation exchange resins during a 16‐hour shaking period, the separation of the resin from the soil by sieving and extraction of the elements from the resin.

The results of resin extractable calcium, magnesium and potassium were comparable to the results of these elements extracted with 1M NH4OAc, to calcium and magnesium extracted with 1M KCl, and to potassium extracted with 0.025M H2SO4.

For phosphorus the resin extractable values were not comparable to the results obtained by the former routine method, based on the extraction with 0.025M H2SO4. The results of resin extractable P presented closer correlation with cotton response to phosphorus application in 28 field experiments (r = 0.85**) as compared with 0.025M H2SO4 extractable P (r = 0.68**), and also with P uptake by flooded rice in a pot experiment with eight lowland soil samples (r = 0.98**), as compared with extraction with 0.0125M H2SO4 in 0.050M HCl, for which the correlation was not significant. The reasons for the superiority of the extraction of P with the described procedure are discussed.  相似文献   

6.
Abstract

A simple and rapid procedure for the determination of organic matter content in mineral soils by loss‐on‐ignition without pretreatment was studied. Attention was given to the possible effect of inorganic compounds abundant in mineral soils on the estimation of organic matter content by this method. Both fast heating (DTA‐TGA type) studies and prolonged heating procedures were employed on natural and “synthetic”; soils. The results were compared to those obtained by the dichromate wet‐oxidation method widely used in soil laboratories for organic matter determination. In a group of 91 soils collected from various mineral soils in Israel, and having OM contents between 0.09 and 13.23%, a correlation coefficient of 0.972 was obtained for the linear regression between organic matter content measured by the proposed method and organic carbon measured by the dichromate wet‐oxidation method.  相似文献   

7.
Abstract

A method is proposed for determination of hot‐water‐soluble boron in acid soils from western Oregon. The soil sample is boiled in 0.02 M CaCl2, filtered, and B determined using azomethine‐H. Soils extracted in this way yielded extracts with little color in them and the predicted error due to this color was 0.00–0.07 ppm B. The use of charcoal as a decolorizing agent resulted in comparatively high predicted errors.

Inductively‐coupled plasma emission spectroscopic (ICP) analysis of distilled water and 0.02 M CaCl2 extracts indicated that the extractable B level was not affected by the presence of CaCl2. Azomethine‐H yielded comparable values to ICP but the curcumin method tended to give high values for hot‐water‐soluble B.  相似文献   

8.
Abstract

Total sulphur and extractable sulphate were determined in plant materials by inductively‐coupled plasma emission spectrometry. For total sulphur, plant material was digested in concentrated nitric acid only. For the sulphate determination, the plant material was extracted with water, sulphate was precipitated as barium sulphate, washed, and redissolved in (NH4)4‐EDTA. In the determination of sulphur no spectral interferences were observed, when using the 182.04 nm emission line. The data for total sulphur compared well with a set of certified reference plant samples. For extractable sulphate no such certified plant material is available, but it was established that the proposed procedure did not lead to losses nor interferences.  相似文献   

9.
Abstract

Inductively coupled plasma spectrometry (ICPS) was used for the simultaneous determination of P, K, S, Ca, Mg, Na, Al, Cu, Zn, Mn, Fe, Co, Mo and B in the nitric acid soluble portion of a variety of plant materials. Conditions for pre‐digestion, digestion and the requirement to grind cereal grain were investigated.

Digestion with nitric and perchloric acids caused loss of K (due to the low solubility of potassium perchlorate) and B (due to volatilization). The accuracy of Fe and Na determinations using nitric acid digestion was dependent upon the type of plant material.

The accuracy and precision of the proposed digestion and analytical procedure was confirmed by co‐operation in an interlaboratory quality assurance program using a variety of standard reference plant materials, and the analysis of National Bureau of Standards, Standard Reference Material 1571 (orchard leaves).  相似文献   

10.
Abstract

A method was developed for the simultaneous analysis of P, K, Cu, Cd, Zn, Fe, Mn and Pb in soils and sediments by inductively coupled plasma spectrometry (ICP) after digestion in nitric acid. The procedure extracted 82 to 94% of the totals of the heavy metals, 78% of total P and 34% of total K. Inter‐element interference correction data are given for the ICP method. The method gave results similar to those obtained by other analytical procedures. The precision of the method was satisfactory but was lowest for Cd which had the lowest concentrations (<2.7 mg/kg) of the elements determined.  相似文献   

11.
Abstract

Forest floor and mineral soils were collected from 169 conifer and hardwood forested plots across Minnesota, Wisconsin, and Michigan. Regression equations were developed between LOI and organic C for 20% of the samples (n=337), and LOI was then used to predict organic C on all of the samples. Results indicated that LOI is a good estimator of organic C in these soils, but that separate equations were needed for different soil strata. Percent organic C in forest floors was greater in conifer stands compared to hardwood (means of 35.1 and 30.1%, respectively)  相似文献   

12.
Abstract

Insoluble siliceous residues remaining after HNO3/HClO4 decomposition of the plant tissues National Bureau of Standards, standard reference materials spinach (Spinacea oleracea), orchard leaves and tomato leaves (Lycopersicon escuientum), contained varying quantities of the macro and micro elements Na, K, Mg, Ca, Mn, Fe, Cu and Zn. For the different samples with total element concentrations ranging from 11 μg/g (Cu in orchard leaves) to 45,000 μg/g (K in tomato leaves), residues contained element concentrations ranging from 0.05 to 88 times the respective concentrations in the samples. Contributions of residues to element concentrations in the plant tissues varied from 0.04 to 42% of the total concentrations. Overall, these constituted negligible (ca 0.1% for Mg and Ca), small (0.5% for Zn, Mn, K and 1% for Cu), and large (6% for Fe, 28% for Na) contributions depending on sample and analyte. Residue contributions to total element concentrations of plant tissues must be considered for reliable estimations of macro and micro elements.  相似文献   

13.
Abstract

Nitrogen (N) in forest soil extracts and surface waters may be dominantly in organic compounds as dissolved organic nitrogen (DON). Due to various difficulties associated with measuring total N (as TKN) by the Rjeldahl digest, this important vehicle for nutrient movement is rarely monitored. By coupling two relatively new methods and optimizing them for use in soil studies, we developed an alternative method for measuring DON. Analysis of pure compounds and field samples shows that persulfate oxidation combined with conductimetric quantification of nitrate (NO3) provides a highly accurate measure of dissolved N content. With relatively inexpensive equipment and reagents, a single technician can digest and assay over a hundred samples a day. This rapid, simple, and accurate assay may make it possible to routinely monitor DON where it had previously been impractical. This in turn could substantially enhance understanding about the form and quantity of N involved in nutrient fluxes.  相似文献   

14.
Abstract

An auto‐analyser method has been developed for the simultaneous determination of NH4 + and Cl in Ca(NO3)2/KNO3 extracts of NH4Cl treated soils for cation exchange capacity measurements. The method gives satisfactory agreement with manual titration procedures.  相似文献   

15.
Abstract

Saudi Arabian soil samples from different locations have been collected and analyzed for traces of barium (Ba), cobalt (Co), nickel (Ni), titanium (Ti), vanadium (V), silver (Ag), gold (Au), copper (Cu), lithium (Li), and lead (Pb). Inductively coupled plasma mass spectrometry (ICP/MS) has been found to be useful for soil analysis. Two commonly used digestion methods, one employing nitric acid and the other aqua regia, are employed for sample pretreatment. Percentage recovery of added element quantities are found to be within the 97.4 to 101.2% range for Ba, Co, Ni, Ti, and V using aqua regia digestion and within the 95.0 to 05.0% range for Ag, Au, Cu, Li, and Pb when using the nitric acid digestion method. The percentage relative standard deviation (% RSD) for five replicate samples for the two digestion procedures is less than 5% for the analyzed elements.  相似文献   

16.
Abstract

Few reports highlight the effect of organic matter in improving the properties of saline soils. A laboratory study was conducted to determine the effect of adding farm yard manure (manure), Egyptian clover hay (clover hay), and wheat straw, at 1 and 3% of soil weight on water stability of soil aggregates (WSA), water‐holding capacity (WHC), pH, and electrical conductivity of soil extract (ECe) of a normal, saline, and saline sodic soil. After 90 and 180 days, WSA and WHC increased, while pH and ECe decreased. Soil properties improved most by adding 3% manure to all the soils. Wheat grown in these soils indicated significant differences for various growth and yield variables, especially the root growth, number and area of green leaves, and grain yield. Organic matter added to these soils increased WSA and WHC and decreased pH and Ece. The WHC had no correlation with pH, but was negatively correlated with Ece. Increased WSA caused the leaching of excess ions and reduced their toxicity, while enhanced WHC increased the availability of water to the roots and promoted growth. It is concluded that manure ameliorated salt affected soils and promoted wheat growth better than clover hay and wheat straw.  相似文献   

17.
Abstract

Soil from the Ap‐horizon of four acid sandy soils differing mainly in Corg content was adjusted to pH values between 3 and 7.5 with NaOH and HCl respectively and incubated for two weeks. Afterwards, displaced soil solution was obtained and analyzed.

The concentrations of Fe, Al, and P showed a broad minimum in the pH range from 4 to 6. The concentration of these elements strongly increased with the increase of pH to 7.5. Acidification below pH values of 4 led to a slight increase.

Separation of dissolved organic carbon by ultrafiltration before the photometric orthophosphate determination decreased measured concentrations in comparison to direct determination in two of the four soils. This decrease was more pronounced for soil solutions with higher concentrations of organic carbon. The effect of acid hydrolysis of organic phosphorus during orthophosphate determination can be explained by existence of humic‐Fe‐(Al phosphate complexes in the soil solution. These complexes can account for more than 50% of the total organic P in solution.  相似文献   

18.
Abstract

Anion‐exchange resins (AER) have been used to determine plant available phosphorus (P) since the fifties and their results have shown strong relationships with plant growth and P uptake irrespective of soil properties. However, this procedure is still not widely used by laboratories because of difficulties in handling resin beads under routine conditions. New kinds and different shapes of resins are being produced each with specific characteristics that must be evaluated before use in laboratory procedures. Thus the objective of this work was to evaluate an AER manufactured in membranes reinforced with a Modacrylic fabric. These anion‐exchange membrane (AEM) sheets are commercially available, making them suitable for soil testing. The membranes were cut in pieces (1.0×7.5 cm) identified as AEM‐strips. The AEM‐strips were soaked in 0.5M HCl for a few days and transferred, after being rinsed with deionized water (DI), to 0.5M NaHCO3 to convert them to HCO3 form. The AEM‐strips and resin beads in nylon bags recovered 98.4 and 98.0% of the P content in an aqueous P solution, respectively. Three eluent solutions were evaluated with different shaking times. The 0.1M H2SO4 and 1.0M NaCl in 0.1M HCl were equally suitable for the molybdenum blue color development without any pH adjustment, while the pH of the 0.5M HCl was too low. The elution of P from the AEM‐strips was independent of time with a 15‐min shaking being adequate for removal of all P from the strips. A comparison of soil sample preparation demonstrated that it was not necessary to vigorously grind or sieve the soil to improve the repeatability of the results. The AEM‐strips were compared with other methods (Pi impregnated filter paper, Mehlich I and Bray 1) using 32 soils from Guatemala with widely varying physico‐chemical and mineralogical properties. Phosphorus extracted by the AEM and Pi procedures (similar principle) were highly correlated and gave similar results irrespective of soil type. The acid extraction (Mehlich I and Bray 1 methods) attacked soil components (apatites) resulting in higher and inconsistent amounts of P extracted which may not be available to plants; the correlation between these methods within soils of similar properties was good, but when all soils were considered together the relationship was not significant. This demonstrated that the acid extraction method for P is not suitable for soils containing apatites, while those based on a sink for P (AEM and Pi) can be applied irrespective of the type of soil.  相似文献   

19.
Abstract

Spatial variation of bicarbonate soil test phosphorus (P) and bicarbonate soil test potassium (K) was studied by measuring soil test values for 40 individual soil samples collected from random locations within eight uniform 100 m by 100 m field sites in south‐western Australia. In addition, for five of the sites, spatial variation of the three P sorption indices (ammonium oxalate extractable iron, ammonium oxalate extractable aluminum, and the P retention index) and of organic carbon (C) was measured for 20 individual soils samples. Spatial variation was found to be large, with coefficient of variation (CV) exceeding 20% in most cases, and 50% in some cases. It is therefore essential to collect an adequate number of soil samples from uniform areas in paddocks in order to provide a representative composite sample to measure the soil properties.  相似文献   

20.
Abstract

Diffusion methods for quantitative determination and isotope‐ratio analysis of inorganic N in soil extracts were modified for use with Kjeldahl digests. The digest was diluted to 25 mL with deionized water, and an aliquot (to 6 mL) was transferred in a shell vial (17 mm dia., 60 mm long) to a 473‐mL (1‐pint) wide‐mouth Mason jar containing 15 mL of 8 M NaOH. The NH3 liberated by overturning the vial inside the sealed jar was collected for 48 h at room temperature (24 h with orbital shaking) in 3 mL of boric acid‐indicator solution in a Petri dish, or in an acidified glass‐fiber disk, suspended from the Mason‐jar lid. Determinations of N and 15N by diffusion were in close agreement with analyses using conventional steam‐distillation and concentration techniques.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号