首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Soil P availability has been identified as one of the key factors controlling wetland productivity, structure, and function. Soil P fractions at different depths in newly formed wetlands along a salinity gradient in Yellow River Delta (China) were studied using a modified Hedley fraction method. The total P (Pt) content ranged from 471.1 to 694.9 mg kg–1, and diluted HCl‐extractable inorganic P (Dil‐HCl‐Pi) ranged from 324 to 524.2 mg kg–1. The Dil‐HCl‐Pi is the predominant P form in all profiles, with on average 70% of the Pt extracted as Pi. Organic P (Po) comprised (4.2 ± 2.0)% (mean ± SD) of the Pt, due to low organic‐matter content in coastal salt marsh ecosystems. The labile P (resin‐P, NaHCO3‐Pi, and NaHCO3‐Po) and moderately labile P (NaOH‐Pi and NaOH‐Po) concentrations were both low, ranged from 11.6 to 38.1 and 2.8 to 21.3 mg kg–1, respectively, constituting (3.7 ± 1.1)% and (2.0 ± 0.7)%, respectively, of Pt, suggesting low availability of P to plants in these soils. Our results suggested that vegetation cover significantly influenced soil P dynamics and availability. In particular, the labile P content under Tamarix chinensis increased significantly by 23.2%–145.5% compared with adjacent soils. These findings have important implications for wetland conservation or restoration and long‐term sustainable management of newly formed wetland ecosystems in the Yellow River Delta.  相似文献   

2.
Phosphorus (P) forms were sequentially extracted from peat derived soils (Eutric Histosols and Gleysols) at eight sites in Saxony‐Anhalt (Germany) to disclose general differences in P pools between mineral and organic soils and to investigate effects of peat humification and oxidation in conjunction with land use and soil management on the P status of soils. Overall 29 samples providing a wide variety of basic chemical properties were subjected to the Hedley fractionation. The Histosol topsoils contained more total P (Pt) (1345 ± 666 mg kg—1) than the Gleysol topsoils (648 ± 237 mg kg—1). The predominant extractable fractions were H2SO4‐P (36—63 % of Pt) in calcareous and NaOH‐Po (0—46 % of Pt) in non‐calcareous Histosols. These soils had large pools of residual P (13—93 % of Pt). Larger contents and proportions of Po and of labile P fractions generally distinguished organic from mineral soils. Regression analyses indicated that poorly crystalline pedogenic oxides and organic matter were binding partners for extractable and non‐extractable P. Intensive management that promotes peat humification and oxidation results in disproportional enrichments of labile P fractions (resin‐P, NaHCO3‐Pi, and NaHCO3‐Po). These changes in P chemistry must be considered for a sustainable management of landscapes with Histosols and associated peat derived soils.  相似文献   

3.
31P nuclear magnetic resonance (NMR) spectroscopy, P fractionation, and a P sorption experiment were used to follow the changes in P in the A horizons (0–10 cm) of acid savanna soils, Colombia, after little P fertilization and 15 years' continuous growth of a grass (Brachiaria decumbens) and a grass/legume (B. decumbens+Pueraria phaseoloides) pasture. Ready P supply as analyzed by Bray P was low under native savanna (1.3 mg kg-1 soil) and responded moderately on pasture establishment. Concurrently, the affinity of the soil for inorganic P declined slightly after pasture establishment. 31P NMR spectroscopy revealed that P associated with humic acids was dominated by monoester P followed by diester P. Smaller proportions were observed for phosphonates, teichoic acid P, orthophosphate, and pyrophosphate. P associated with fulvic acids had lower proportions of diester P and higher contents of orthophosphate. Under native savanna the reserves of labile organic P species (phosphonates and diester P including teichoic acid P) associated with humic and fulvic acids were 12.4 and 1.1 kg ha-1, respectively, and increased to 18.1 and 1.8 kg ha-1 under grass pasture, and to 19.5 and 2.3 kg ha-1 under grass/legume pasture. These data emphasize the importance of labile organic P species in the P supply for plants in improved tropical pastures, and further indicate that humic acid P in particular responds to land-use changes within a relatively short time-scale. Earthworm casts were highly abundant in the B. decumbens+P. phaseoloides plot and were enriched in labile organic P species. We conclude that earthworm activity improves the P supply in soil under tropical pastures by creating an easily available organic P pool.Dedicated to Professor J.C.G. Ottow on the occasion of his 60th birthday  相似文献   

4.
Soil sulfur (S) partitioning among the various pools and changes in tropical pasture ecosystems remain poorly understood. Our study aimed to investigate the dynamics and distribution of soil S fractions in an 8‐year‐old signal grass (Brachiaria decumbens Stapf.) pasture fertilized with nitrogen (N) and S. A factorial combination of two N rates (0 and 600 kg N ha–1 y–1, as NH4NO3) and two S rates (0 and 60 kg S ha–1 y–1, as gypsum) were applied to signal grass pastures during 2 y. Cattle grazing was controlled during the experimental period. Organic S was the major S pool found in the tropical pasture soil, and represented 97% to 99% of total S content. Among the organic S fractions, residual S was the most abundant (42% to 67% of total S), followed by ester‐bonded S (19% to 42%), and C‐bonded S (11% to 19%). Plant‐available inorganic SO4‐S concentrations were very low, even for the treatments receiving S fertilizers. Low inorganic SO4‐S stocks suggest that S losses may play a major role in S dynamics of sandy tropical soils. Nitrogen and S additions affected forage yield, S plant uptake, and organic S fractions in the soil. Among the various soil fractions, residual S showed the greatest changes in response to N and S fertilization. Soil organic S increased in plots fertilized with S following the residual S fraction increment (16.6% to 34.8%). Soils cultivated without N and S fertilization showed a decrease in all soil organic S fractions.  相似文献   

5.
With the emphasis on sustainable agriculture, attention has been increasingly turning to recycling of crop residues as a component of fertility management strategies for tropical soils. We assessed the effects of soybean residue (SR) and wheat residue (WR) applied either alone or in combination with fertilizer P (FP) on dynamics of labile P, distribution of P fractions, and P sorption in a semiarid tropical Alfisol by conducting a 16 w long incubation experiment. The amount of P added through crop residues, FP or their combinations was kept constant at 10 mg P (kg soil)–1. Addition of SR or WR resulted in net increase of labile inorganic (Pi) and organic P (Po) and microbial P throughout the incubation period, except that the WR decreased labile Pi during first 2 w due to Pi immobilization. The P immobilization associated with WR addition was, however, offset when fertilizer P was combined with WR. Generally, the increases in labile‐P fractions were larger with the SR and SR+FP than with the WR and WR+FP. The sequential fractionation of soil P at the end of 16 w indicated that a major part of added fertilizer P transformed into moderately labile and stable P fractions as evident from the increased NaOH‐Pi and HCl‐P in the FP treatment. In contrast, the addition of SR and WR alone or in combination with FP favored a build‐up in NaHCO3‐Pi and ‐Po and NaOH‐Po fractions while causing a decrease in NaOH‐Pi and HCl‐P fractions. The addition of these crop residues also effectively decreased the P‐sorption capacity and hence reduced the standard P requirement of the soil (i.e., the amount of P required to maintain optimum solution P concentration of 0.2 mg P l–1) by 24%–43%. Results of the study, thus, imply that soybean and wheat crop residues have the potential to improve P fertility of Alfisols by decreasing P‐sorption capacity and by redistributing soil P in favor of labile‐P fractions and promoting accretion of organic P.  相似文献   

6.
Repeated application of phosphorus (P) as superphosphate either alone or in conjunction with cattle manure and fertilizer N may affect the P balance and the forms and distribution of P in soil. During 7 years, we monitored 0.5 M NaHCO3 extractable P (Olsen‐P) and determined the changes in soil inorganic P (Pi) and organic P (Po) caused by a yearly dose of 52 kg P ha—1 as superphosphate and different levels of cattle manure and fertilizer N application in a soybean‐wheat system on Vertisol. In general, the contents of Olsen‐P increased with conjunctive use of cattle manure. However, increasing rate of fertilizer nitrogen (N) reduced the Olsen‐P due to larger P exploitation by crops. The average amount of fertilizer P required to increase Olsen‐P by 1 mg kg—1 was 10.5 kg ha—1 without manure and application of 8 t manure reduced it to 8.3 kg ha—1. Fertilizer P in excess of crop removal accumulated in labile (NaHCO3‐Pi and Po) and moderately labile (NaOH‐Pi and Po) fractions linearly and manure application enhanced accumulation of Po. The P recovered as sum of different fractions varied from 91.5 to 98.7% of total P (acid digested, Pt). Excess fertilizer P application in presence of manure led to increased levels of Olsen‐P in both topsoil and subsoil. In accordance, the recovery of Pt from the 0—15 cm layer was slightly less than the theoretical P (P added + change in soil P — P removed by crops) confirming that some of the topsoil P may have migrated to the subsoil. The P fractions were significantly correlated with apparent P balance and acted as sink for fertilizer P.  相似文献   

7.
Degradation of sown pastures in the neotropics is a well known but poorly documented phenomenon. The paper reports the results of a survey conducted in the eastern savannahs of Colombia to quantify farmers' reactions to perceived pasture degradation. The survey was conducted in an area of 23 644 km2. The sample consisted of 46 farms, which had 19 012 ha of Brachiaria decumbens pastures distributed in 374 paddocks. Of these paddocks, 196 had been sown with vegetative seed, and 281 had received modest rates of P fertilization at planting. Pastures sown on flat lands had younger modal ages (three years) and were renovated more frequently than those sown on hilly or dissected savannahs (10 years). These differences were probably a result of variations in infrastructure and relative stage of development of the two topographies, but slight differences in inherent soil fertility may also have played a role. We found no relationship between grazing management and frequency of pasture renovation. Implications for future research on pasture reclamation are discussed. © 1998 John Wiley & Sons, Ltd.  相似文献   

8.
Soil phosphorus dynamics in a long-term field experiment at Askov   总被引:2,自引:0,他引:2  
Inorganic and organic soil P (Pi, Po) fractions were followed monthly for 15 months in a 100-year-old, fertilization and crop-rotation experiment with the Rubaek-Sibbesen, macroporous resin method, the Olsen method, and the Hedley fractionation method. Resin P, and Olsen P had similar levels and variation patterns. They increased in spring after fertilization, decreased during summer and autumn, and increased again in winter after repeated slurry applications. Resin Po decreased in spring and peaked in summer. The variation in time of the Hedley Pi and Po fractions was relatively smaller and was neither related to season nor to fertilization. Unmanured soil contained much less total P than NPK and slurry-treated soils, but the differences in total Pi were greater than those in total Po. Neither total Pi nor total Po concentrations differed between NPK and slurry treatments, indicating that Po in animal manure is quickly mineralized. All Pi and Po fractions were smaller in unmanured than in fertilized treatments. These differences were relatively largest for resin Pi and resin Po, i.e., the most labile fractions, and decreased for the medium and less labile Pi and Po fractions. The reactions by resin Pi, Olsen P, and resin Po to seasons and treatments indicate that these fractions are estimates of the most labile pools of Pi and Po in soil, which make them relevant for shortterm studies. The medium and less labile Pi and Po fractions of the Hedley fractionation method seem more relevant for long-term studies.  相似文献   

9.
The objectives of the present study were to evaluate the effect of four eucalyptus species on (i) selected surface soil properties and (ii) the distribution of inorganic and organic phosphorus (Pi and Po) fractions. Soil samples were collected from soil 0–20 cm deep beneath and between trees. The Pi forms were determined by sequential extraction with sodium bicarbonate (NaHCO3‐P), ammonium acetate (NH4OAc) (OAc‐P), ammonium fluoride (NH4F‐P), sodium hydroxide (NaOH)–sodium carbonate (Na2CO3) (HC‐P), citrate dithionite (CD‐P), and sulfuric acid (H2SO4) (H2SO4‐P). The Po forms were sequentially extracted with NaHCO3 (NaHCO3‐Po), NaOH (NaOH‐Po), and H2SO4 (H2SO4‐Po). The NaOH‐Po was subdivided into moderately stable (NaOH‐Pom) and highly stable Po (NaOH‐Pos). Organic matter, clay and silt contents, total nitrogen, and available potassium of the soil beneath the trees increased. The OAc‐P and HC‐P forms beneath the trees were less than of that between them, which shows that these fractions probably are labile inorganic P pools. The NaHCO3‐Po and NaOH‐Pos forms were greater beneath the trees than those of interspaces, whereas NaOH‐Pom and H2SO4‐Po were not affected by plantation.  相似文献   

10.
Declining global P reserves require a better understanding of P cycling in soil and related plant uptake. On managed grasslands, application of lime and fertilizer affects not only soil nutrient status, but also plant‐species composition of the sward. We examined the P fractionation in the Rengen Grassland Experiment (RGE) on a naturally acid Stagnic Cambisol in the Eifel Mts. (Germany) 69 y after the setup of the experiment. A modified sequential Hedley fractionation was carried out for samples from 30 plots at 0–10 cm depth. Application of inorganic phosphorus fertilizer had diverse effects on inorganic (Pi) and organic P (Po) fractions. Resin‐Pi, NaHCO3‐Pi, NaHCO3‐Po, NaOH‐Pi, HCldil‐Pi, HClconc‐Pi, and HClconc‐Po contents increased, while NaOH‐Po significantly decreased and residual‐P remained unaffected. Strongest enrichment occurred in the HCldil‐Pi fraction, probably due to the chemical nature of the basic Thomas slag applied as P fertilizer. Without P fertilization, all fractions except residual‐P were more or less depleted. Strong P limitation of the vegetation in the limed treatments without P led to lowered contents also for NaOH‐Pi and NaOH‐Po. However, NaOH‐Po was largest in the Control and even exceeded the respective content in the treatments with P. It remained unclear why species adapted to a low soil P status did not access this P fraction though being P‐limited. Published theory on the availability of Hedley P fractions does neither match P exploitation nor P nutritional status of the vegetation in the RGE. Regarding NaOH‐Po as stable and HCldil‐Pi as moderately labile led to a more realistic evaluation of plant P uptake. Evaluation of P availability on the basis of chemical extractions alone is questionable for conditions like in the RGE. On long‐term grassland, plant‐species composition has to be taken into account to estimate access of plants to soil P.  相似文献   

11.
Extensive and semi-extensive pastures are the basis of Brazilian livestock production. However, much of it is degraded or in degradation process, with low stocking rate per area. Even with this problem, this management type is 60% and 50% of Australia’s and the United States’ production costs, respectively. In order to research alternatives for Urochloa decumbens degraded pasture recovery in an Oxisol, Stylosanthes (Stylosanthes spp.) “Campo Grande” cultivar was introduced and phosphate fertilization was applied. The experimental design was of randomized blocks, 7 × 2 × 2 factorial design, with four replicates, involving seven systems to introduction (U. decumbens control; partial desiccation with 1.5 L ha?1 glyphosate, total desiccation with 3.0 L ha?1 glyphosate; direct planting; scarification, harrowing, and plowing + harrowing), phosphate fertilizer presence or absence, and two evaluation periods. “Campo Grande” Stylosanthes legume introduction increased shoot dry weight (SDW) yield, except in direct planting. Phosphorus fertilization increased SDW yield only in the first period, and Stylosanthes introduction in the pasture has not changed soil chemical properties. Phosphorus (P) fertilization also provided available P and exchangeable calcium (Ca2+) content in the soil increase, in addition to sum of bases and cation exchange capacity increase.  相似文献   

12.
 The amount, quality and turnover of soil P is heavily influenced by changes in soil management. The objective of this study was to investigate the effects of deforestation and pasture establishment on the concentrations, forms and turnover rate of soil P in mountain soils of the Alay Range, Khyrgyzia. A sequential extraction was applied to distinguish soil P pools. We used particle-size fractionation to follow the dynamics of different P pools in soils under forest and pasture and 31P-NMR spectroscopy to investigate the structure of alkali-soluble P forms. In the A horizons of the forest soils, total soil P concentration was 1093 mg kg–1, organic P (Po) representing 46% of the total P. Deforestation followed by pasture establishment not only increased significantly (P<0.01) the total P concentration (1560 mg kg–1) but also the contribution of Po to total P was increased by 17%. Pasture soils had significantly higher P pools than forest soils except highly labile inorganic P (Pi NaHCO3) and primary Pi (Pi HCldil). Both in forest and pasture soils stable P increased with decreasing particle size (coarse sand 50%, clay 80% of total P) and primary P decreased with decreasing particle size. Phosphate monoesters and diesters represented 80% of P identified by 31P NMR. Low monoester to diester ratios in the alkali extracts of forest and pasture soils indicate low microbial activity. This is consistent with high C/Po ratios and high stable Po concentrations in the fine earth of forest and pasture. Received: 10 March 1999  相似文献   

13.
 Differently managed oxisols from Central Brazil were studied using a sequential P fractionation procedure because the effects of land use on the distribution of P forms in these soils are barely known. Therefore levels of labile and recalcitrant P forms in the natural Cerrado savanna were compared with those of crop, pasture and reforestation sites on differently textured oxisols. Under natural conditions of strong P deficiency, >60% of labile P was organic P (Po), reflecting the high contribution of Po to plant nutrition. Fertilisation after land-use change only increased levels of inorganic P (Pi) forms, the increase being most accentuated in the labile Pi fraction. At the crop and the pasture sites P tended to accumulate as recalcitrant P forms in the clayey soils, while in the loamy soils there was only a minor enrichment, probably due to the lower amounts of Fe- and Al-(hydr)oxides. In the reforestation sites, labile P was maintained at high levels, most likely through efficient recycling of the litter. The P fractionation procedure was also applied to particle-size fractions which reflected P transformations along an organic and mineralogical gradient. The clay fraction corresponded to 69–87% of total P and appeared to be both a sink for highly recalcitrant P and a source for labile P, especially labile Po. The sequential P fractionation procedure was also an effective method with which to detect the presence of fertiliser-P residues in the coarse-silt fraction. Received: 18 June 1999  相似文献   

14.
We investigated the effects of land uses on P distribution and availability in selected calcareous soils under different management practices. KCl‐P (labile P), NaOH‐P (Fe‐Al‐bound P), HCl‐P (Ca‐bound P), and residual P (Res‐P) fractions at 0–30 cm depth were determined for soils planted to garlic, orchard, pasture, potato, leafy vegetables, and wheat. Trends in P distribution between chemical fractions were similar between land uses. Ca‐bound P was the most abundant P fraction in the soils, constituting between 61% and 78% of the total P, whereas P associated with labile was less abundant (< 2%). Soils under leafy vegetables and wheat along with pasture presented the highest and lowest values in all fractions of P, respectively. Labile P generally was highest for leafy vegetables and potato. Labile P and Fe‐Al‐bound P comprised < 1.4% and 8% of total P, respectively. Residual P ranged from ≈ 14% (potato and garlic) to 31% (pasture). Long‐term fertilization increased P allocation to inorganic fractions, as Ca‐bound P contained 78% of total P for potato and garlic and 74% for leafy vegetables but 61% for pasture. A strong positive correlation between labile P and Fe‐Al‐bound P (r = 0.534, p < 0.01), labile P and Ca‐bound P (r = 0.574, p < 0.01), Ca‐bound P and Fe‐Al‐bound P (r = 0.504, p < 0.01), Olsen‐P and CaCl2‐P (r = 0.821, p < 0.01) was found. Principal‐component analysis showed that the first four components accounted for most of the variation, 32.5%, 16.9%, 12.9%, and 7.9% of total variation, respectively.  相似文献   

15.
A major challenge in sustainable crop management is to ensure adequate P supply for crops, while minimizing losses of P that could negatively impact water quality. The objective of the present study was to investigate the effects of long‐term applications of different levels of mineral fertilizers and farmyard manure on (1) the availability of P, (2) the relationship between soil C, N, and P, and (3) the distribution of inorganic and organic P in size fractions obtained by wet sieving. Soil samples were taken from the top 20 cm of a long‐term (29 y) fertilization trial on a sandy Cambisol near Darmstadt, SW Germany. Plant‐available P, determined with the CAL method, was little affected by fertilization treatment (p < 0.05) and was low to optimal. The concentration of inorganic and organic P extracted with a NaOH‐EDTA solution (PNaOH‐EDTA) averaged about 350 mg (kg dry soil)–1, with 42% being in the organic form (Po). Manure application tended to increase soil C, N, and Po concentrations by 8%, 9%, and 5.6%, respectively. Across all treatments, the C : N : Po ratio was 100 : 9.5 : 2 and was not significantly affected by the fertilization treatments. Aggregate formation was weak due to the low clay and organic‐matter content of the soil, and the fractions > 53 μm consisted predominantly of sand grains. The different fertilization treatments had little effect on the distribution of size fractions and their C, N, and P contents. In the fractions > 53 μm, PNaOH‐EDTA ranged between 200 and 300 mg kg–1, while it reached 1260 mg kg–1 in the fraction < 53 μm. Less than one third of PNaOH‐EDTA was present as Po in the fractions > 53 μm, while Po accounted for 70% of PNaOH‐EDTA in the smallest fraction (< 53 μm). Therefore, 16% and 28% of PNaOH‐EDTA and Po, respectively, were associated with the smallest fraction, even though this fraction accounted for < 5% of the soil mass. Therefore, runoff may cause higher P losses than the soil P content suggests in this sandy soil with a weak aggregate formation. Overall, the results indicate that manure and mineral fertilizer had similar effects on soil P fractions.  相似文献   

16.
Abstract

An agronomic evaluation of phosphate rock and slag on the acid soils of Upata, Bolivar State was conducted to measure their effect on the chemical properties of the soil and growth of Brachiaria decumbens. A field experiment was established using a split plot design with three replications. The treatments were, i) three sources of phosphate rock (Riecito and Lizardo of Falcon State and Monte Fresco of Tachira State) at four rates of P2O5/ha (0, 50, 100, and 200), ii) one source of high‐solubility P [triple superphosphate (TSP) at the same rates], and iii) three levels of calcium applied as basic slag from the Orinoco Steel Company (0, 300, and 600 kg Ca/ha). A basic fertilization was applied to all plots (217 kg/ha Urea, 50 kg/ha KCl, and 78 kg/ha magnesium sulphate). The pasture species used was Brachiaria decumbens. Pasture and soil samples were taken at 2, 3, 5, 7, 12, 14, 16, 17, 24, 27, and 31 months after planting. The pasture samples were analyzed for dry matter production (DM), and percentage content of nitrogen (N), phosphorus (P), potassium (K), calcium (Ca), and magnesium (Mg). Soil samples were analyzed for pH, cation exchange capacity (CEC), and available calcium (Ca) and phosphorus (P). The relative agronomic effectiveness (RAE), calculated using the formula: RAE (%) = DM of the rock ‐ DM of the check plot/DM of TSP ‐ DM of check plot × 100 was applied for each harvest time. The best RAE values at each sampling time were obtained with the Monte Fresco phosphate rock at the rate of 200 kg P2O5/ha and 600 kg Ca/ha as slag. There was a tendency for the RAE value to improve with each sampling apparently due to the slow release of phosphorus from the phosphate rock and its residual effect. There are also values of RAE that show better dry matter production than the high soluble source of TSP.

Soil available P and Ca increased with phosphate rock and slag application from 5 and 200 mg/kg to 25 and 400 mg/kg, respectively, after 2.5 years of the experiment. Phosphorus uptake changed from 0.1% in the check plot, which is insufficent to supply the P requirement of grazing cattle in the tropics to a value higher than 0.2%, depending on the sampling time. Soil pH increased slightly from 5.2 to 5.6 with phosphate rock, and to 6.2 when basic slags were applied.  相似文献   

17.
18.
The extractability and slow reactions of copper (Cu) and zinc (Zn) in a weathered savanna soil under Brachiaria decumbens, Digitaria smutsii, and Stylosanthes guianensis pastures were determined in a laboratory incubation study using a sequential extraction to remove operationally defined fractions of the metals, consisting of exchangeable, organically bound, precipitate [occluded in aluminum (Al) and iron (Fe) oxides], and residual metal fractions. The soils from the pasture fields were spiked with 100 mg Cu kg–1 soil and 200 mg Zn kg–1 soil for 24 weeks. Copper and Zn extractable with 1 N potassium nitrate (KNO3) solution decreased exponentially with time but reached a steady state after 2–3 weeks. The concentrations of Cu and Zn exchangeable with potassium (K) were greater in the Digitaria smutsii field soil than Brachiaria decumbens and Stylosanthes guianensis field soils. The exchangeability of added Cu and Zn (indexed Mn+ (exch)) with time was described by a simple exponential decay equation: Mn+ (exch) = αeβt, where α is a constant, β is a coefficient that defines the rate of transformation of added Cu and Zn from the exchangeable to nonexchangeable pools, and t is time. The β values for Cu (0.040–0.076 mg kg–1 d–1) were almost 10 times greater than those of Zn (0.005–0.007 mg kg–1 d–1). Sequential extraction of added Cu and Zn indicated that between 26 and 30% of the total Cu and between 19 and 30% of the total Zn were associated with organic matter. Similarly, between 35 and 38% of total Cu and between 47 and 60% of total Zn were associated with Fe, Al, and manganese (Mn) oxides. The differential capacity of the pasture fields to transform added Cu and Zn from exchangeable and labile form to nonlabile and nonexchangeable form appears to be governed by organic matter (OM), pH, and active Fe ratio in the pasture field soils.  相似文献   

19.
This study was conducted to investigate changes in P-fractions, bio-available P (CAL-P), citric acid extractable P, acid phosphatase activity and microbial biomass C and N during incubation of mature biogenic compost (MBC), immature biogenic compost (IBC) or immature sheep manure compost (ISC) not amended with P or amended with rock phosphate (RP, 7.6% P) or triple-superphosphate (TSP, 19.5% P). Incubation was performed at 20?°C in darkness under aerobic conditions. Samples were collected for laboratory analysis at the start of incubation (D-0) and after one, six and 26?days during incubation (D-1, D-6, D-26). Addition of soluble P fertilizer (TSP) led to a threefold increase in all P fractions in comparison to compost without TSP; even a “priming effect” could be observed, promoting conversion of non-labile to labile P. Moreover, addition of TSP lowered biological activity, especially acid phosphatase activity (P-ase), due to already high concentrations of readily available P. In general, P fractions (bicarbonate extractable Pi (NaHCO3-Pi) and bicarbonate extractable Po (NaHCO3-Po) and sodium hydroxide extractable Po (NaOH-Po)) increased during incubation until day 6 at the expense of NaOH-Pi fraction, which decreased. Generally, RP-derived P showed little or no effect on P fractions during the entire incubation period and only led to slightly increased CAL-P and Citric-acid-P levels. Fertilizer effects on labile P fractions were most enhanced with ISC. IBC enhanced microbial growth and P-ase, thereby enhancing conversion of labile into moderate labile NaOH-Po.  相似文献   

20.
Differences in soil P among silvopasture, grassland, and arable lands have been well established. Nevertheless, most of the reports compare soil properties under long‐term sites. Thus, there exists little information on the effect of the conversion of silvopasture to arable or grassland use on soil P pools. The objective of the study was to determine the impact of converting silvopasture system (SP) into arable cropping and grassland system on the distribution of P pools and potential P bioavailability. We compared the following systems: SP system, SP converted to arable cropland (SP‐AL), SP converted to grassland (SP‐GL), and for comparative purposes, a long‐term arable cropland (AL). The P fractionation was performed by a sequential extraction scheme, using acid and alkaline extractants on samples collected from the 0–10 and 10–20 cm soil layers. It was assumed that the large variations in soil‐P fractionations are caused by the different management practices associated with land conversion. The results of P fractionation showed a dominance of calcium‐bound P, HCl‐extractable Pi constituted up to 36% of the soil total P (TP). However, the type of land use did not affect this P fraction. On the other hand, the reduction in labile‐Pi and NaOH‐Pi fractions observed at the SP‐AL site may have led to the decline in readily available P. The soil total organic P (TPo) content was 8% and 17% lower at SP‐AL compared to SP and SP‐GL site, respectively. Labile organic‐P (labile‐Po) content was markedly higher at SP site compared to arable soils, and was ≈ 10% of TPo. The NaOH‐Po constituted the highest fraction of the organic‐P pool (55%–79% of TPo) across all the study systems, and was positively correlated with TPo (p < 0.01). The study indicates that conversion of SP system in temperate regions to arable cropping with conventional tillage seems to result in the reduction of P availability compared to SP, indicating SP as an important land‐use practice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号