首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
丛枝菌根真菌调控土壤氧化亚氮排放的机制   总被引:1,自引:1,他引:1  
氮素是陆地生态系统初级生产力的主要限制因子,自Haber-Bosch反应以来,氮肥的生产和施用极大地提高了粮食产量.然而过量施用氮肥导致氮肥利用率低,并造成了严重的环境污染,包括氮沉降、硝态氮淋洗以及N2O排放等.微生物直接参与土壤氮素循环,固氮微生物、氨氧化和反硝化微生物分别在土壤固氮、铵态氮转化和硝态氮转化过程中起...  相似文献   

2.
为揭示亚热带森林土壤N2O排放对林分类型和氮添加的响应特征,选取位于福建省三明市的中亚热带米槠次生林、杉木人工林和马尾松人工林土壤为研究对象,分别设置无氮添加(N0 mg/kg)、低氮添加(N10 mg/kg)、中氮添加(N25 mg/kg)和高氮添加(N50 mg/kg)4个氮添加水平,进行微宇宙培养试验,测定土壤N2O排放。结果表明:与无氮添加处理相比,氮添加整体上降低3种林分土壤pH,增加土壤NH4+-N和NO3--N含量。无氮添加处理中杉木人工林和马尾松人工林土壤N2O累积排放量分别为9.67和9.62 mg/kg,显著高于米槠次生林土壤N2O累积排放量6.81 mg/kg。低氮添加处理中杉木人工林和马尾松人工林土壤N2O累积排放量显著高于米槠次生林。但在中氮和高氮添加处理中,3种林分土壤N2O累积排放量均无显著性差异。不同氮添加处理均促进3种林分土壤N  相似文献   

3.
The superiority of mixing and deep placement of prilled urea (PU) or urea supergranules (USG) over surface‐broadcast application for reducing nitrogen (N) loss from lowland rice is well established. In upland agricultural systems, rainfall and/or the application and loss of irrigation water from soil systems may regulate urea N transformations and gaseous losses, depending on the method of fertilizer application and the particle size. To develop further insights into these processes, experiments were carried out in a silt loam soil mixed with PU or amended with point‐placed USG at a depth of 7.5 cm. Two soil water regimes were used: around field capacity (AFC) with low evaporative conditions (depletion: 77 to 69% water‐filled pore space, WFPS) and below field capacity (BFC) with high evaporative conditions following two irrigations (depletion: 70 to 55% WFPS). The nitrous oxide (N2O) emission was greater at AFC than at BFC, where nitrification was more rapid. The N2O peaks appeared mostly after the disappearance of nitrite (NO2 ?), presumably dominated by nitrifier and/or chemodenitrification and the degree of emissions probably depended on the stability period and the reduction of NO2 ? induced by the soil water regimes. The relative N2O losses from the added N were small (?0.20%) for all treatments after 21 days. The point at which 50% of its emissions (t½) occurred was delayed up to 6 days longer than found from the application of PU. The differences between PU and USG application were likely linked with the concentrations of ammonium (NH4 +), NO2 ?, and pH. These high concentrations continued longer at AFC than at BFC and were limited to a distance of <5.0 cm from the application zone. Similarly, the relative losses of the added N ranged from 0.19 to 0.56% at AFC and 0.08 to 0.37% at BFC, the highest being with USG application. Based on the areas receiving equal N, the N2O and ammonia (NH3) emissions from USG differed marginally with PU. Carbon dioxide (CO2) release was higher at AFC than BFC, in which the USG application probably limited microbial respiration preferentially to methane oxidation. A correlation study showed that the N2O flux was best explained together with CO2, nitrate (NO3 ?), NO2 ?, and WFPS (R 2 = 0.67***). This indicates the influence of both auto‐ and heterotrophic microbial activities toward N2O emission, with soil water being an important regulatory factor.  相似文献   

4.
Irrigation and fertilization affect soil microbial communities in relation to nitrogen transformation and consequently impact nitrous oxide (N2O) emissions from paddy fields. The objective of this study was to investigate the response of N2O emissions from paddy fields to different irrigation and nitrogen treatments and evaluate how the changes in soil microbial population influence N2O emissions from paddy fields in South China under different irrigation and nitrogen management. Field experiments of late rice and early rice were conducted with three irrigation methods, i.e. conventional irrigation (CIR), “thin-shallow-wet-dry” irrigation (TIR) and alternate wetting and drying irrigation (DIR), and two nitrogen treatments, including 100% urea-N (FM1) and 50% urea-N and 50% pig manure-N (FM2). Results show that total N2O emissions of both seasons in DIR were 3.2–3.5 times higher than those in CIR, and the total N2O emissions of both seasons in FM2 were 1.7 times higher than those in FM1 under DIR. Compared to CIR, TIR augmented the population of nitrifying bacteria (NB) but decreased the population of denitrifying bacteria (DNB) at the milky stage, and DIR enhanced the communities of ammonia-oxidizing bacteria and NB but reduced the DNB. Correlation analysis shows that N2O emission flux had a significantly positive correlation with soil NB (r= 0.541** and 0.542** for late and early rice fields). Thus, CRI had lower cumulative N2O emission under FM1, and the changes in the nitrifying bacteria community greatly influenced N2O emissions from paddy fields under different irrigation and nitrogen strategies.  相似文献   

5.
The objectives of this 2-year field study were to assess the effects of irrigation and nitrogen (N) application on nitrous oxide (N2O). Soil N2O flux was determined using open-bottomed chambers. Nitrous oxide concentrations were determined with gas chromatography. The results showed that in 2008, N2O emission rates ranged from 2.0 to 50.0 g N ha?1 d?1 in the alternating furrow irrigation and N application treatments (AFINA) and from 2.4 to 68.4 g N ha?1 d?1 in the conventional every-furrow irrigation and fertilization treatment (CIF). In 2009, cumulative N2O-N loss in the optimal combination with greater yields and lower N2O emission in AFINA was 1277 g N ha?1 compared to 1695 g N ha?1 with CIF. The study indicated that AFINA practices combined with optimum N fertilizer and irrigation rates could reduce soil N2O emission and water input compared to CIF practices without causing a decline in corn yield.  相似文献   

6.
作为一种重要的土壤调节剂,生物质炭在固碳减排,尤其在氧化亚氮(N2O)减排方面的作用日益突出。本研究通过田间定位试验,分析稻麦轮作体系新鲜和田间不同时间老化生物质炭对N2O排放的影响,旨在明确生物质炭对田间N2O排放的持续效应及其作用机理。试验共设置5个处理,分别为CK(不施氮肥和生物质炭)、N(施氮肥)、NB0y(氮肥+新鲜生物质炭)、NB2y(氮肥+2年老化生物质炭)和NB5y (氮肥+5年老化生物质炭),动态监测稻麦轮作周期N2O排放,测定水稻和小麦收获后土壤理化性质和氮循环功能基因丰度。结果表明,生物质炭显著降低土壤N2O累积排放量32.4% ~ 54.0%,且表现为NB0y> NB2y> NB5y。与N处理相比,NB0y, NB2y 和NB5y处理显著提高土壤pH值0.6 ~ 1.2个单位、土壤有机碳(SOC)含量21.4 % ~ 58.6%、硝态氮(NO3--N)含量1.7% ~ 31.3%,对土壤pH改善能力随着生物质炭老化而下降。生物质炭处理显著提高nosZ基因丰度54.9% ~ 249.4%,土壤 (nirS+nirK)/nosZ比值随着生物质炭老化而增加。相关性分析表明,土壤N2O累积排放量与pH值呈显著负相关,与NO3--N含量和amoA-AOB(氨氧化细菌)丰度呈显著正相关。因此,新鲜和田间不同时间老化生物质炭均能显著改善土壤理化特性,降低土壤 N2O排放且新鲜生物质炭的作用效果优于老化生物质炭。土壤NO3--N 含量及(nirS+nirK)/nosZ比值的增加,是导致老化生物质炭减排N2O能力降低的主要原因。  相似文献   

7.
不同施肥处理稻田甲烷和氧化亚氮排放特征   总被引:48,自引:14,他引:48  
采用静态箱-气相色谱法对长期不同施肥处理(NPKS、CK、NPK和NKM)的稻田CH4和N2O排放进行了观测。结果表明,稻田CH4和N2O排放季节变化规律明显不同,二者排放通量季节变化呈显著负相关(p<0.01)。与单施化肥和CK相比,施用有机肥显著促进CH4排放,排放量最高的NPKS处理早晚稻田排放量分别是:526.68 kg/hm2和1072.92 kg/hm2。对于N2O排放,早稻田各处理间差异不显著,NPK处理排放量最大,为1.48 kg/hm2;晚稻田各处理差异极显著(p<0.01),NPKS处理排放量最大,为1.40 kg/hm2。晚稻田CH4排放通量和10 cm土层温度及土壤pH值相关极显著(p<0.01),并与二者存在显著的指数关系。没发现N2O排放通量与温度及pH值间存在显著相关。稻田CH4和N2O排放受多种因素影响,但对全球变暖的贡献率CH4远大于N2O。NPKS处理的增温潜势最大,NPK处理的最小。  相似文献   

8.
The effects of nitrification inhibitors (NIs) on soil nitrous oxide (N2O) emission, soil ammonium (NH4+) and nitrate (NO3?), and cassava (Manihot esculenta Crantz) yields were investigated in a loamy sand soil in eastern Thailand. Treatments were chemical fertilizer (CF) and CF plus dicyandiamide (DCD) or neem (Azadirachta indica) oil at two rates of 5% and 10%. DCD had a greater reduction of soil N2O flux than the neem oil (P<0.10). DCD and neem oil retained NH4+-N in the soil by 79% and 63% (P ≤ 0.10), respectively. The NI effect on soil NO3?-N was small due to a low N fertilizer rate. The cassava root yield and N uptake were increased 4–11% and 2–18%, respectively, by use of NIs, but they were only significant for DCD (P ≤ 0.10). These findings suggest that NIs application may be a promising method for minimizing nitrogen loss and enhancing crop yields in a tropical cassava field.  相似文献   

9.
温慧洋  焦燕  杨铭德  谷鹏  白曙光  杨洁 《土壤》2019,51(4):724-731
为揭示盐碱土壤中参与氨氧化过程和硝酸盐还原过程的amoA和narG基因丰度与N_2O排放的响应规律,本研究选取内蒙古河套灌区3种不同盐碱程度土壤(轻度盐土SA、强度盐土SB和盐土SC),通过控制室内温度和土壤质量含水量进行室内培养试验,并运用荧光定量PCR(real-time PCR)技术研究了盐碱土壤中N_2O排放速率、氨氧化细菌和narG(膜结合型硝酸还原酶)型反硝化细菌丰度与土壤环境因子之间的偶联关系。结果表明:SA、SB和SC3种盐碱土壤中,N_2O平均排放速率随着土壤盐碱程度的升高而升高,值分别为16.9、30.8、69.6μg/(kg·d);氨氧化细菌和narG型反硝化细菌丰度分别为0.415×10~4、6.91×10~4、9.44×10~4 copies和2.61×10~4、5.36×10~4、13.5×10~4 copies,表明在一定盐分条件下,土壤中的盐分能够促进氨氧化细菌和narG型反硝化细菌丰度。RDA分析结果显示,N2O平均排放速率与氨氧化细菌和narG型反硝化细菌丰度具有显著的正相关(r=0.863、0.975,P0.01);土壤pH、EC、速效钾和有机碳是盐碱土壤中影响N2O排放速率的主要环境因子,其中,土壤pH、EC、速效钾和N_2O排放速率存在显著正相关(r=0.968、0.983、0.987,P0.01),土壤有机碳和N_2O排放速率存在负相关(r=–0.800,P0.05),土壤有效磷和总氮与N_2O排放速率的相关性未达到显著水平(P0.05)。  相似文献   

10.
氧化亚氮(N2O)是一种在大气存留时间长且破坏臭氧层的重要温室气体。农业土壤源N2O是其重要来源,具有产生路径广、影响因素多、调控复杂等特点。减少农业土壤N2O排放一直是研究的热点。含有N2O还原酶的N2O还原细菌能将N2O还原为氮气(N2),这是目前已知的微生物还原N2O唯一的汇。直接应用微生物减少农业土壤N2O排放是一种新兴的减排技术。本文详细阐述了农业土壤N2O的生物源与汇,重点论述了N2O减排微生物的筛选及应用策略。综述了微生物介导的农业土壤N2O减排的两种微生物生态学机制:一种是利用含有nos Z基因的N2O还原细菌直接减少N2O排放,另一种是利用能改变N2O还原细菌群落组成和丰度及其活性的植物根际促生菌间接减少N2O排放。最后,讨论了影响微生物介导的...  相似文献   

11.
农田过量施肥会增加N2O排放,使农田土壤成为重要的温室气体排放源。为减少农田N2O排放,利用自动观测系统研究了春玉米农田中不同肥料对N2O排放的影响,并结合作物产量及N2O的排放量探索减少温室气体排放的施肥措施。采用田间试验方法设定了不施肥(CK)、尿素(U)、尿素加磷肥(NP)和硝酸磷肥(NOP)4个处理进行研究。结果表明,各处理下N2O排放总量分别为:CK0.21kgN·hm-2、U1.19kgN·hm-2、NP0.93kgN·hm-2、NOP0.69kgN·hm-2;N2O排放主要受施肥、灌溉,降雨和土壤温度的影响;在作物生长后期土壤含氮量小于7mgN·kg-1的情况下,观测到土壤吸收N2O的情况;各处理下排放因子均小于政府间气候变化委员会(IPCC)的缺省值1%,表明IPCC推荐的排放因子不适用于估算中国北方的春玉米农田N2O排放。施加磷肥有助于减少农田N2O排放并提高产量,硝态磷肥较尿素可以显著减少N2O排放。综合考虑产量和N2O排放,相对于施用尿素和尿素加磷肥处理,硝酸磷肥处理不仅可节约15%和30%的肥料投入,而且分别减少42%和26%的N2O排放,具有减排不减产的良好效果。  相似文献   

12.
通过田间静态箱监测和DNDC模型模拟的方法,对比研究了崇明岛东滩蔬菜田在常规肥水管理和精确滴灌施肥方式下N2O的排放情况,从排放特征、全年通量、单位氮肥N2O损失率以及单位作物产量排放量等方面分析了不同肥水管理方式对旱田土壤N2O排放的影响。 结果表明,基于土壤和作物养分平衡管理的精确滴灌施肥技术,由于减少了氮肥施用量并改进了肥水分配方式,提高了肥料的利用效率,在保持农作物产量的基础上减少了N2O的排放。与常规肥水管理方式相比,滴灌施肥区2006年和2007年的N2O排放通量分别减少6.2和6.8 kg N·hm^-2·a^-1,单位氮肥N2O损失率明显降低,2006年和2007年单位产量排放量分别削减53.2%和58.9%。  相似文献   

13.
王强盛  刘欣  许国春  余坤龙  张慧 《土壤》2023,55(6):1279-1288
稻田是大气温室气体甲烷(CH4)和氧化亚氮(N2O)的重要排放源, 稻田温室气体减排一直是生态农业研究的热点。目前, 采用水稻品种选择利用、水分控制管理、肥料运筹管理、耕作制度调整以及种养结合模式等方法来减少稻田温室气体排放有较好实践效应, 但不同稻田栽培环境(露地、网室)基础上的稻鸭共作对麦秸全量还田的稻田温室气体排放特征及相关土壤理化特性关联性的影响尚为少见。本研究采用裂区设计, 在两种栽培环境条件下, 以无鸭子放养的常规稻作和麦秸不还田为对照, 在等养分条件下分析麦秸全量还田与稻鸭共作模式对稻田土壤氧化还原电位、CH4排放量、产CH4潜力及CH4氧化能力、N2O排放量及N2O排放高峰期土壤反硝化酶活性、全球增温潜势、水稻产量的影响, 为稻田可持续生产和温室气体减排提供参考。结果表明, 麦秆还田增加了稻田产CH4潜力、提高了CH4排放量, 降低了稻田土壤反硝化酶活性、土壤氧化还原电位和N2O排放量, 整体上导致全球增温潜势上升96.89%~123.02%; 稻鸭共作模式, 由于鸭子的不间断活动提高了稻田土壤氧化还原电位, 降低了稻田产CH4潜力, 增强了稻田CH4氧化能力, 从而降低稻田CH4排放量, N2O排放量虽有提高, 整体上稻鸭共作模式的全球增温潜势较无鸭常规稻田下降8.72%~14.18%; 网室栽培模式显著提高了稻田土壤氧化还原电位, 降低稻田产CH4潜力、CH4氧化能力和土壤反硝化酶活性, 减少了稻田CH4和N2O排放量, 全球增温潜势降低6.35%~13.14%。本试验条件下, 稻田土壤的CH4氧化能力是产CH4潜力的2.21~3.81倍; 相同环境条件下, 稻鸭共作和麦秸还田均能增加水稻实际产量, 网室栽培的所有处理较相应的露地栽培减少了水稻实际产量1.19%~5.48%。本试验表明, 稻鸭共作和网室栽培可减缓全球增温潜势, 稻鸭共作和麦秸还田能够增加水稻实际产量。  相似文献   

14.
An incubation study investigated the effects of nitrification inhibitors (NIs), dicyandiamide (DCD), and neem oil on the nitrification process in loamy sand soil under different temperatures and fertilizer rates. Results showed that NIs decreased soil nitrification by slowing the conversion of soil ammonium (NH4+)-nitrogen (N) and maintaining soil NH4+-N and nitrate (NO3?)-N throughout the incubation time. DCD and neem oil decreased soil nitrous oxide (N2O) emission by up to 30.9 and 18.8%, respectively. The effectiveness of DCD on reducing cumulative soil N2O emission and retaining soil NH4+-N was inconsistently greater than that of neem oil, but the NI rate was less obvious than temperature. Fertilizer rate had a stronger positive effect on soil nitrification than temperature, indicating that adding N into low-fertility soil had a greater influence on soil nitrification. DCD and neem oil would be a potential tool for slowing N fertilizer loss in a low-fertility soil under warm to hot climatic conditions.  相似文献   

15.
A simple method for characterizing soil microbial community composition relevant to N2O production and consumption was proposed. Ten-fold series soil dilution was prepared. Nitrate or N2O was provided as the sole electron acceptor. Nitrous oxide concentration in the headspace gas across the serially diluted soil suspensions was measured against controls. Results showed that the patterns of N2O production and consumption across the soil suspensions provided useful information on the microbial community composition relevant to N2O production and consumption in these soils. An independent method, to that proposed here, was also employed to characterize denitrifier community compositions of the same soils. Data indicated that information on the soil microbial community composition characterized by both methods were compatible or mutually supporting and apparently related to in situ N2O emissions. Soil samples from manure (applied with animal manure plus chemical fertilizer) plots had higher denitrification rates than the samples from normal fertilizer (applied with chemical fertilizer only) plots. It was concluded that functional characteristics of soil microbial communities relevant to N2O production and consumption could be characterized at ecological levels and may potentially affect N2O emissions.  相似文献   

16.
间隙灌溉和控释肥施用对稻田土壤产甲烷微生物的影响   总被引:1,自引:0,他引:1  
纪洋  于海洋  Conrad Ralf  徐华 《土壤》2017,49(6):1132-1139
间隙灌溉和控释肥施用影响稻田CH_4的产生和排放,然而其微生物机理尚不清楚。本研究通过采集稻季田间原位试验新鲜土样,采用核酸定量技术(qPCR)和末端限制性片段长度多态性(T-RFLP)技术,研究间隙灌溉和控释肥施用对稻田土壤产甲烷微生物群落丰度和结构的影响。结果表明,稻季CH_4排放量与古菌、产甲烷菌(mcr A基因)和甲烷氧化菌(pmo A基因)数量均呈极显著正相关关系(P0.01),而与细菌数量无显著相关性。间隙灌溉显著影响产甲烷菌和甲烷氧化菌数量的季节变化,其中烤田抑制产甲烷菌生长,而对甲烷氧化菌数量没有显著影响。与尿素相比,施用控释肥增加了稻田土壤细菌、古菌和产甲烷菌数量,降低了甲烷氧化菌数量。土壤古菌群落的优势T-RFs片段为184bp和391bp,其中184bp片段的相对丰度随着间隙灌溉的进行由45%~55%降低到23%~30%;而391bp片段则相反,其相对丰度由12%~18%增加到23%~26%。典型相关性分析(CCA)表明间隙灌溉显著影响土壤古菌群落结构(P0.001),而控释肥施用对土壤古菌群落结构没有明显影响。  相似文献   

17.
ABSTRACT

Emission of methane (CH4), a major greenhouse gas, from submerged paddy soils is generally reduced by introducing intermittent drainage in summer, which is a common water management in Japan. However, such a practice is not widely conducted in Hokkaido, a northern region in Japan, to prevent a possible reduction in rice grain yield caused by cold weather. Therefore, the effects of intermittent drainage on CH4 emission and rice grain yield have not been investigated comprehensively in Hokkaido. In this study, we conducted a three-year field experiment in Hokkaido and measured CH4 and nitrous oxide (N2O) fluxes and rice grain yield to elucidate whether the reduction in CH4 emission can be achieved in Hokkaido as well as other regions in Japan. Four experimental treatments, namely, two soil types [soils of light clay (LiC) and heavy clay (HC) textures] and two water management [continuous flood irrigation (CF), and intermittent drainage (ID)], were used, and CH4 and N2O fluxes were measured throughout the rice cultivation periods from 2016 to 2018. Cumulative CH4 emissions in 2016 were markedly low, suggesting an initially low population of methanogens in the soils presumably due to no soil submergence or crop cultivation in the preceding years, which indicates a possible reduction in CH4 emission by introducing paddy-upland crop rotation. Cumulative CH4 emissions in the ID-LiC and ID-HC plots were 21–91% lower than those in the CF-LiC and CF-HC plots, respectively, whereas the cumulative N2O emissions did not significantly differ between the different water managements. The amount of CH4 emission reduction by the intermittent drainage was largest in 2018, with a comparatively long period of the first drainage for 12 days in summer. Rice grain yields did not significantly differ between the different water managements for the entire 3 years, although the percentage of well-formed rice grains was reduced by the intermittent drainage in 2018. These results suggest that CH4 emission from paddy fields can be reduced with no decrease in rice grain yield by the intermittent drainage in Hokkaido. In particular, the first drainage for a long period in summer is expected to reduce CH4 emission markedly.  相似文献   

18.
Agricultural soils are a primary source of anthropogenic trace gas emissions, and the subtropics contribute greatly, particularly since 51% of world soils are in these climate zones. A field experiment was carried out in an ephemeral wetland in central Zimbabwe in order to determine the effect of cattle manure (1.36% N) and mineral N fertilizer (ammonium nitrate, 34.5% N) application on N2O fluxes from soil. Combined applications of 0 kg N fertilizer + 0 Mg cattle manure ha?1 (control), 100 kg N fertilizer + 15 Mg manure ha?1 and 200 kg N fertilizer + 30 Mg manure ha?1 constituted the three treatments arranged in a randomized complete block design with four replications. Tomato and rape crops were grown in rotation over a period of two seasons. Emissions of N2O were sampled using the static chamber technique. Increasing N fertilizer and manure application rates from low to high rates increased the N2O fluxes by 37–106%. When low and high rates were applied to the tomato and rape crops, 0.51%, 0.40%, and 0.93%, 0.64% of applied N was lost as N2O, respectively. This implies that rape production has a greater N2O emitting potential than the production of tomatoes in wetlands.  相似文献   

19.
The nitrification inhibitors (NIs) effects on soil nitrogen (N) fates and maize yields were investigated in a loamy-sand soil in Thailand. The treatments were chemical fertilizer (CF) and CF with dicyandiamide (DCD) or neem oil at two rates of 5% and 10%. Compared to the CF plot, DCD and neem oil reduced the cumulative nitrous oxide (N2O) emission by the equivalent of 26% and 10%, respectively (P < 0.05). DCD and neem oil had a positive effect in slowing ammonium (NH4+)-conversion and prolonging NH4+-N in the soil with a maximum efficiency of 45% and 30%, respectively. NO3N was higher in the NI plots (P < 0.05), but the effect was less pronounced later in the growing season. Adding the NIs increased maize yields and N uptake, but was only significant (P < 0.10) for neem oil. Results indicate that applying NIs is an effective method to mitigate soil N losses and enhancing N use efficiency in a tropical, agricultural field.  相似文献   

20.
不同灌溉模式下寒地稻田CH_4和N_2O排放及温室效应研究   总被引:3,自引:0,他引:3  
为了研究寒地稻田CH4和N2O排放特征,选取黑龙江省寒地稻田为研究对象,采用静态箱—气相色谱法对控制灌溉、间歇灌溉、浅湿灌溉及淹灌四种水分管理模式等4个处理的CH4和N2O排放通量进行观测。结果表明,不同灌溉模式下的CH4和N2O排放高峰均出现在水稻生长旺季,而休闲期内排放较少。相对于淹灌,浅湿灌溉稻田CH4累积排放量降低了27.2%,控制灌溉处理的降低了34%,间歇灌溉处理的降低了48.2%。长期淹灌稻田N2O排放量比间歇灌溉稻田减少0.41kg/hm2,比控制灌溉稻田增加0.38kg/hm2,比浅湿灌溉稻田增加0.37kg/hm2。总体温室效应分析,节水灌溉模式能有效抑制温室气体的排放并显著地降低CH4和N2O的总温室效应。水稻生育期内,CH4排放量减少时期,N2O排放量有增加趋势,综合考虑CH4和N2O排放的消长关系,才能有效减缓稻田温室气体的排放。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号