首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

Relative suitability of different extraction procedures for estimating available zinc (Zn) and copper (Cu) in soils was assessed using DTPA, 0.1 N HCl, ammonium acetate+EDTA, and double acid (HCl+ H2SO4) as extractants and rice as a test crop in Neubauer experiment. The relationships between Zn concentration and uptake of Zn by rice plants and Zn extracted by the different methods showed that DTPA‐TEA, pH 7.3, could very suitably be used to assess Zn availability in soils. However, 0.1 N HCl was better for assessing the Cu availability in soils to the rice plants. Water‐soluble and exchangeable fractions of Zn and Cu had significant positive correlations with Zn and Cu concentrations, respectively obtained by all the four extractants tested. The results also showed that DTPA and ammonium acetate+EDTA extracted organically bound Zn, whereas DTPA, 0.1 N HCl and ammonium acetate+EDTA extracted organically bound Cu. Water‐soluble, exchangeable and organic matter bound fractions exhibited significant relationships with Zn and Cu concentrations, their uptake and rice dry matter yield.  相似文献   

2.
Abstract

Rice farmers apply organic matter and phosphatic fertilizer before or at the time of puddling (an operation involving tilling of puddled soil before transplanting of rice seedlings) as a part of their soil management program for growing wet land rice. This brings about changes in chemical environment which modifies micronutrient redistribution among soil fractions and thus, their availability to rice crops. An experiment was conducted to understand the effect of organic matter and phosphorus (P) on transformation of copper (Cu) in Alfisols under submergence. Soils were incubated for 75 days in the laboratory under submerged condition and were analyzed for different fractions of Cu content at periodic intervals. Copper was mobilized from water soluble plus exchangeable (WSEX), organically complexed (OC), and crystalline iron (Fe) oxides (CRYOX) bound fractions to amorphous iron oxides (AMOX) and residual (RESID) fractions, the rate of mobilization being maximum from CRYOX and to RESID fraction during initial 15‐day period. Organic matter application retarded Cu transformation from OC and into RESID fraction and increased its content in AMOX fractions. It also decreased WSEX Cu markedly. Copper transformation was not significantly influenced by P application.  相似文献   

3.
Laboratory and greenhouse investigations were carried out with 65Zn-labeled sources to study the kinetics of desorption, transformation, and availability of Zn applied to soil as zinc-enriched biosludge from distillery molasses (ZEMB) or as zinc sulfate heptahydrate (ZSH). Desorption (0.5 to 72 h) of added Zn by the column method followed a biphasic kinetics with an initial (up to 12 h) faster phase followed by a slower desorption phase. The desorption rate coefficient (K) of the latter phase and the amount of Zn desorbed during 12 to 72 h were significantly higher with ZEMB than with ZSH. Sequential extraction of Zn added as ZEMB and ZSH showed that Zn added as ZEMB was present in higher proportion as water soluble + exchangeable, carbonate bound, organically bound, and reducible fractions than Zn applied as ZSH, which showed a higher proportion of residual fraction. Under greenhouse conditions, dry matter yield (35 days) and total Zn uptake by rice fertilized with ZSH applied at 5 kg Zn ha−1 were statistically similar to those of rice treated with 2.5 kg Zn ha−1 supplied as ZEMB. The highest Zn uptake (167.08 μg pot−1) by rice was recorded in the treatment with 5 kg Zn ha−1 as ZEMB. For wheat plants grown after the harvest of rice, significantly higher dry matter yield over control was recorded in the treatment with ZEMB applied at 5 kg Zn ha−1 to rice. Total Zn uptake by wheat was statistically similar for both ZEMB and ZSH treatments at 5 kg Zn ha−1 dose. Both zinc derived from fertilizer and the percent utilization of fertilizer Zn by rice and by the subsequent wheat crop were significantly higher with ZEMB than with ZSH. Patent filed No. 757/MUM/2007 dated 19.04.2007  相似文献   

4.
The suitability of two composted solid urban wastes for crop production was evaluated in a pot experiment with sorghum (Sorghum bicolor) that focused on the geochemical fractions, bioavailability, and phytotoxicity of copper (Cu), manganese (Mn), and zinc (Zn). Total concentrations of Cu, Mn, and Zn in soil increased with increasing waste application, ranging from 1.6 to 48.2 mg kg?1 for Cu, 84 to 474 mg kg?1 for Mn, and 13.8 to 597 mg kg?1 for Zn. Waste application significantly increased pH and electrical conductivity (EC) of the soil. Copper, Mn, and Zn in the waste-amended soil were speciated into mobile (F1), easily mobilizable (F2), occluded in Mn oxides (F3), organically bound (F4), occluded in amorphous Fe oxides (F5), occluded in crystalline Fe oxides (F6), and residual (F7) fractions to assess the lability of the metals. On the average, the F4 was the most dominant Cu and Zn fraction, accounting for between 37 and 60% of total Cu and from 14 to 40% of total Zn concentrations, whereas F3 was the dominant Mn fraction closely followed by F4. The concentrations of Cu, Mn, and Zn in sorghum dry matter (DM) decreased with increasing waste application, probably induced by osmotic stress and ionic toxicity. Tissue Zn (Y-Zn) and Mn (Y-Mn) correlated significantly with the F1 and F2 fractions, but pH was an overriding factor in predicting Cu and Zn bioconcentration. Used as soil amendments, the application rate for these Zaria urban wastes should be limited to ≤10% (w/w basis), as Zn in the sorghum tissue reached the toxic limit just from one application of the waste to soil.  相似文献   

5.
Long term effects of lantana (Lantana camera L.) residue and fertilizer application were studied on copper (Cu) fractions in a Typic Hapludalf under rice-wheat cropping at Palampur, India (32°6′N, 76°3′E). A partitioning of soil Cu revealed residual Cu and organically bound Cu as the most dominant fractions followed by Cu occluded by free oxides, specifically exchangeable Cu and soil solution and exchangeable Cu. Continuous incorporation of lantana after 12 years resulted in redistribution of Cu from non-available forms to readily and potentially available forms in soil. All the Cu fractions were positively interrelated amongst themselves and with grain yield and Cu uptake in rice and wheat crops. Specifically exchangeable Cu followed by organically bound Cu were the most important Cu fraction contributing towards grain yield and Cu uptake in rice and wheat crops.  相似文献   

6.
In a small‐plot trial different doses of sewage sludge (equivalent 82‐330 tons of dry matter per hectare) were incorporated in 0—25 cm depth (1982—1985). The aim of the investigations was to study the fate of the heavy metals Zn, Cd, Cu, Ni, Pb, and Cr, to determine their concentration in different soil fractions using a sequential extraction method and to ascertain their uptake by Zea mays L. plants. Eleven years after the last application the metals supplied with the sludge had moved as far as 50 cm in depth. The concentrations of Zn, Cd, Cu, Ni, and Cr in the saturation extract of the sampled soil layers were closely correlated with the concentrations of dissolved organic carbon (DOC). This result suggests that the heavy metal displacement was partly connected with the DOC movement in the soil. Considerable amounts of Zn and Cd coming from sewage sludge were found in the mobile fractions of the soil. Cu, Ni, and Pb were located especially in organic particles, and Cr was obviously bound by Fe‐oxides. Nine years after the last application the binding species of heavy metals were still different compared with those in the untreated soil. The whole withdrawal of heavy metals by plants yielded <1 % of the applied amounts. In the case of Zn the uptake from the sludge amended soil decreased during the experimental period. No similar tendency was observed for the other elements. In any case their annual variations of uptake exceeded the effect of sludge application.  相似文献   

7.
水稻子实对不同形态重金属的累积差异及其影响因素分析   总被引:3,自引:0,他引:3  
在分析成都平原核心区土壤重金属(Cd、Cr、Pb、Cu、Zn)全量、各形态含量及相应点位种植的水稻子实重金属含量的基础上,通过统计分析、空间插值及线性回归方程的模拟,研究了土壤Cd、Cr、Pb、Cu、Zn全量的空间分布状况、各形态重金属含量统计特征,以及水稻子实对重金属各形态的累积差异及其影响因素。结果表明,成都平原水稻土重金属污染较轻,除Cd外,均低于国家土壤环境质量二级标准。土壤中重金属的可交换态含量均较低,Cd主要以铁锰氧化态存在,Cr、Cu、Zn、Pb主要以残渣态存在。水稻子实对5种重金属的累积效应顺序为:Cd>Zn>Cu>Pb>Cr。与水稻重金属累积关系密切的重金属活性形态(可交换态、碳酸盐结合态、铁锰氧化物结合态和有机物结合态)主要有:Cd的碳酸盐结合态、Cr的可交换态、Pb的有机物结合态和Cu的碳酸盐结合态含量;Zn各活性形态对水稻子实含量的影响不明显。土壤理化性质对不同活性形态重金属元素的影响效应各不相同。活性态Cd主要受有机质、pH和容重的影响;活性态Cr与pH、有机质、CEC和容重密切相关;活性态Pb与有机质、容重、中细粉粒、砂粒等均有密切的关系;Cu的活性主要受粘粒、有机质含量的影响;Zn的有效性主要受pH、有机质、砂粒、容重的影响。总的看来,对土壤Cd、Cr、Pb、Cu、Zn各活性形态含量影响效应较强的是有机质、pH、容重,而与土壤吸附性能密切相关的颗粒组成、CEC的影响不甚明显。  相似文献   

8.
The effect of different levels of K application on the transformation of native as well as applied Zn fractions in a rice-growing soil was studied under two moisture regimes viz. waterlogged and alternate waterlogged and saturation. Application of K caused an increase in the water-soluble plus exchangeable, organically complexed and carbonates, and other acid-soluble mineral fractions of native soil Zn. Application of K also caused an increase in the transformation of applied Zn into all the above three fractions of the element in soil. The above effects of K were more pronounced in soil under waterlogged than under alternate waterlogged and non-waterlogged moisture regimes. The results of a greenhouse experiment showed that K application caused an increase in Zn uptake and per cent utilization of both native and added Zn by rice. This was attributed to the increase in the water-soluble plus exchangeable and organically complexed forms of Zn in soil due to K application.  相似文献   

9.
Urban waste disposal occurred on fenland to the west of Manchester, England, between 1900 and 1964. The reclaimed fenland, Chat Moss, is now used for mixed arable farming. A total of 1.92 Mt of waste including privy midden, street sweepings, clinkers and slaughterhouse refuse was incorporated into the moss resulting in a modified topsoil with raised pH and reduced organic matter content compared with the subsoil. Elevated levels of potentially toxic elements (PTEs) are observed in the topsoil beyond the typical depth of atmospheric contamination; Cd and As concentrations exceed soil guideline values (SGVs) at 1.8 and 43 mg/kg, respectively. Sequential extraction indicates that waste‐derived Pb, Zn and Ni remain predominantly in the residual fraction, whereas Cu was mainly organically bound. Arsenic was predominately found in oxide and organic matter fractions with Cd in carbonate, oxide, organic matter and residual fractions. Pot trials indicated limited uptake of PTEs by vegetables grown on the waste‐amended soil, with the exception of Cd uptake by lettuce (0.22 mg/kg FW) and Pb uptake by radish (0.16 mg/kg FW), which exceeded current EU limits of 0.2 and 0.1 mg/kg FW, respectively. Hazard quotients (HQs) identified no risks to adults from consumption of vegetables grown in these soils with the exception of lettuce consumption with a HQ of 1.4. Risks to children were slightly greater with HQs >1 for Cd in lettuce, spinach, carrots and onion, As in lettuce, parsley and onion and for Zn in spinach.  相似文献   

10.
Zinc (Zn) deficiency is widespread in alkaline and calcareous soils. Limited information is available on the effect of preceding crops on the distribution of Zn in soil solid phase. This field study was conducted to investigate the changes in Zn chemical forms in soil solid phase as affected by four preceding crops [Sunflower (Heilianthus annuus L. cv. Allstar), Sorghum (Sorghum bicolor L. cv. Speed Feed), Clover (Trifolium pratense L.) and Safflower (Carthamus tinctorius L. cv. Koseh-e-Isfahan)] in a calcareous soil. A control treatment with no preceding crop (fallow) was also used. Our results showed that the preceding crops increased Zn concentration in exchangeable fraction (EXCH-Zn), the organically bound zinc form (ORG-Zn) and zinc bound to iron and manganese oxides (FeMnOX-Zn) while decreased carbonates bound-zinc (CAR-Zn) and residual zinc forms (RES-Zn). However, the changes in Zn fractions were dependent on the preceding crop type. The EXCH-Zn and ORG-Zn pools can be considered labile pools that play significant roles in supplying Zn for plants. Among the preceding crops used in this experiment, clover (Clo) had the highest effect on transforming CAR-Zn form to EXCH-Zn and ORG-Zn labile forms and thus resulted in the highest Zn accumulation in tissues of the target wheat (Triticumaestivum L. cv. Back Cross). Although the changes in chemical forms of Zn in the soil solid phase are complex and dependent on various factors, our findings showed that the preceding crops significantly increased the concentration of Zn in exchangeable and organic matter pools and in turn resulted in higher uptake of Zn by the target wheat.  相似文献   

11.
Abstract

Soil submergence for growing wet land rice creates typical chemical environment which is likely to affect availability of applied fertilizer copper (Cu) to the crop by transforming it into various soil fractions. An experiment was undertaken to study the effect of organic matter (as starch) application on the transformation of applied Cu in Alfisols under submergence. Copper was applied either at the beginning or after 15 days of submergence (presubmergence). Results show that more than 85% of the applied Cu was distributed in water soluble plus exchangeable (WSEX), organically complexed (OC), and amorphous iron oxides bound (AMOX) fractions at the beginning of incubation. Submergence caused decrease in WSEX, and OC [in Purulia district (S,) soil only] fractions and increase in AMOX and residual Cu fractions of applied Cu. About 15% of the applied Cu was transformed into inactive residual fraction at the end of 60 days of submergence. Copper applied in 15 days presubmerged soils transformed to a lesser extent into residual fraction than that applied in 0 day presubmerged (i.e., no presubmergence) soils. Application of organic matter in S, soil mobilized applied Cu from OC to AMOX fraction and reduced net transformation into residual fraction. Lower net transformation into residual fraction suggests that Cu may be applied in 15 days presubmerged soil for its higher use efficiency in rice crop grown in Cu deficient Alfisol.  相似文献   

12.
施用碱稳定固体的酸性土壤的Cu和Zn的形态分布   总被引:2,自引:1,他引:2  
LUO Yong-Ming 《土壤圈》2002,12(2):165-170
Fractionation of metals in a granite-derived acid sandy loam soil amended with alkaline-stabilised sewagesIudge biosolids was conducted in order to assess metal bioavailability and environmental mobility soil solution was extracted by a centrifugation and filtration technique. Metal speciation in the soil solution wasdetermined by a cation exchange resin method. Acetic acid and EDTA extracting solutions were used forextraction of metals in soil solid surfaces. Metal distribution in different fractions of soil solid phase was determined using a three-step sequential extraction scheme. The results show that the metals in the soilsolution existed in different fractions with variable lability and metals in the soil solid phase were also presentin various chemical forms with potentially different bioavail ability and environmental mobility Alkaline-stabilised biosolids could elevate solubility of Cu and proportion of Cu in organically complexed fractionsboth in soil liquid and solid phases, and may therefore increase Cu mobility. In contrast, the biosolids lowered the concentrations of water-soluble Zn (labile fraction) and exchangeable Zn and may hence decrease bioavailability and mobility of Zn. However, Fe and Mn oxides bound and organic matter bound fractions are likely to be Zn pools in the sludge-amended soil. These consequences possibly result from the liming effect and metal speciation of the sludge product and the difference in the chemistry between the metals in soil.  相似文献   

13.
The movement and availability of Zn from six organic Zn sources in a Typic Xerorthent (calcareous) soil were compared by incubation, column assay, and in a greenhouse study with maize (Zea mays L.). Zinc soil behavior was studied by sequential, diethylenetriaminepentaacetate, and Mehlich-3 extractions. In the incubation experiment, the differences in Zn concentration observed in the water soluble plus exchangeable fraction strongly correlated with Zn uptake by plants in the greenhouse experiment. Zinc applied to the surface of soil columns scarcely moved into deeper layers except for Zn-ethylenediaminetetraacetate (EDTA) that showed the greatest distribution of labile Zn throughout the soil and the highest proportion of leaching of the applied Zn. In the upper part of the column, changes in the chemical forms of all treatments occurred and an increase in organically complexed and amorphous Fe oxide-bound fractions was detected. However, the water soluble plus exchangeable fraction was not detected. The same results were obtained at the end of the greenhouse experiment. Significant increases were found in plant dry matter yield and Zn concentration as compared with the control treatment without Zn addition. Increasing Zn rate in the soil increased dry matter yield in all cases but Zn concentration in the plant increased only with Zn-EDTA and Zn-ethylenediaminedi-o-hydroxyphenyl-acetate (EDDHA) fertilizers. Higher Zn concentration in plants (50.9 mg kg(-)(1)) occurred when 20 mg Zn kg(-)(1) was added to the soil as Zn-EDTA. The relative effectiveness of the different Zn carriers in increasing Zn uptake was in the order: Zn-EDTA > Zn-EDDHA > Zn-heptagluconate >/= Zn-phenolate approximately Zn-polyflavonoid approximately Zn-lignosulfonate.  相似文献   

14.
The effects of copper (Cu) application on the Cu distribution in various pools were investigated in laboratory and pot culture experiments with two Alfisols. The total soil Cu was fractionated into water‐soluble plus exchangeable (CA‐Cu), inorganically‐bound (AAC‐Cu), organically‐bound (PYR‐Cu), oxide‐bound (OX‐Cu), and residual (RES‐Cu) forms. The relative contribution of these fractions to Cu uptake by wheat was calculated through path coefficient analysis, a statistical technique that differentiates between correlation and causation. Copper fertilizer was applied at rates of 0, 5, and 10 mg (kg soil)—1 and FYM at rates of 0 and 10 t ha—1. Results indicated that the amounts of Cu present in CA‐Cu were very small. The CA‐Cu, AAC‐Cu, PYR‐Cu, and OX‐Cu fractions were increased and RES‐Cu was not significantly affected by the Cu application. No significant variation (P ≤ 0.01) was observed between Cu application with and without FYM on the distribution of different fractions of soil Cu except PYR‐Cu in Patancheru soil. Among the levels, application of 10 mg Cu (kg soil)—1 showed the maximum increase in different fractions of soil Cu. The per cent increase in Cu concentration in different fractions followed the order CA‐Cu > AAC‐Cu > PYR‐Cu > OX‐Cu > RES‐Cu. The path analysis showed that the PYR‐Cu and AAC‐Cu are the most important fractions for maintaining the available Cu pool in soils.  相似文献   

15.
Chemical speciation and bioaccumulation factor of iron (Fe), manganese (Mn), and zinc (Zn) were investigated in the fractionated rhizosphere soils and tissues of sunflower plants grown in a humic Andosol. The experiment was conducted for a period of 35 days in the greenhouse, and at harvest the soil system was differentiated into bulk, rhizosphere, and rhizoplane soils based on the collection of root-attaching soil aggregates. The chemical speciations of heavy metals in the soil samples were determined after extraction sequentially into fractions classified as exchangeable, carbonate bound, metal–organic complex bound, easily reducible metal oxide bound, hydrogen peroxide (H2O2)–extractable organically bound, amorphous mineral colloid bound, and crystalline Fe oxide bound. Iron and Zn were predominantly crystalline Fe oxide bound in the initial bulk soils whereas Mn was mainly organically bound. Heavy metals in the exchangeable form accumulated in the rhizosphere and rhizoplane soils, comprising <4% of the total content, suggesting their relatively low availability in humic Andosol. Concentrations of organically bound Fe and Mn in soils decreased with the proximity to roots, suggesting that organic fraction is the main source for plant uptake. Concentrations of Mn and Zn in the metal–organic complex also decreased, indicating a greater ability of sunflower to access Mn from more soil pools. Sunflower showed bioaccumulation factors for Zn, Fe, and Mn as large as 0.39, 0.05, and 0.04 respectively, defining the plant as a metal excluder species. This result suggests that access to multiple metal pools in soil is not necessarily a major factor that governs metal accumulation in the plant.  相似文献   

16.
Abstract

Speciation study of microelements in soils is useful to assess their retention and release by the soil to the plant. Laboratory and greenhouse investigations were conducted for five soils of different agro‐ecological zones (viz., Bhuna, Delhi, Cooch‐Behar, Gurgaon, and Pabra) with diverse physicochemical properties to study the distribution of zinc (Zn) among the soil fractions with respect to the availability of Zn species for uptake by rice plant. A sequential extraction procedure was used that fractionated total soil Zn into water‐soluble (WS), exchangeable (EX), specifically adsorbed (SA), acid‐soluble (AS), manganese (Mn)‐oxide‐occluded (Mn‐OX), organic‐matter‐occluded (OM), amorphous iron (Fe)‐oxide‐bound (AFe‐OX), crystalline Fe‐oxide‐bound (CFe‐OX), and residual (RES) forms. There was a wide variation in the magnitude of these fractions among the soils. The studies revealed that more than 90% of the total Zn content occurred in the relatively inactive clay lattice and other mineral‐bound form (RES) and that only a small fraction occurred in the forms of WS, EX, OM, AFe‐OX, and CFe‐OX. Rice (Oryza sativa L.) cultivars differ widely in their sensitivity to Zn deficiency. Results suggested that Zn in water‐soluble, organic complexes, exchange positions, and amorphous sesquioxides were the fractions (pools) that played a key role in the uptake of Zn by the rice varieties (viz., Pusa‐933‐87‐1‐11‐88‐1‐2‐1, Pusa‐44, Pusa‐834, Jaya, and Pusa‐677). Isotopic ally exchangeable Zn (labile Zn) was recorded higher in Typic Ustrochrept of Pabra soil, and uptake of Zn by rice cultivars was also higher in this soil. The kinetic parameters such as maximum influx at high concentrations (Imax) and nutrient concentration in solution where influx is one half of Imax (Km) behaved differentially with respect to varieties. The highest Imax value recorded was 9.2×10?7 µmol cm?2 s?1 at the 5 mg kg?1 Zn rate for Pusa‐933‐87‐1‐11‐88‐1‐2‐1, and the same was lowest for Pusa‐44, being 4.6×10?7 µmol cm?2 s?1 at the 5 mg kg?1 Zn rate. The Km value was highest for Pusa‐44 (2.1×10?4µmol cm?2 s?1) and lowest for Pusa‐933‐87‐1‐11‐88‐1‐2‐1 (1.20×10?4µmol cm?2 s?1). The availability of Zn to rice cultivars in Typic Ustrochrepts of Bhuna and Delhi soils, which are characterized by higher activation energy and entropy factor, was accompanied by breakage of bonds or by significant structural changes.  相似文献   

17.
Abstract

The Zn content in 8 soil chemical fractions was determined for 21 greenhouse soils and for 8 reference (open field) soils from Kochi Prefecture, Japan to investigate the forms of spontaneously accumulated Zn in the greenhouse soils associated with heavy application of fertilizers and manures. Sequential extraction method was applied to every soil and each Zn fraction was designated as exchangeable (Ex-Zn), Pb-displaceable (Pb-Zn), acid soluble (Aci-Zn), Mn oxide-occluded (MnO-Zn), organically bound (OM-Zn), amorphous Fe oxide-occluded (AFeO-Zn), crystalline Fe oxide-occluded (CFeO-Zn), and residual (Res-Zn) fractions. The Zn content of the greenhouse soils was significantly higher than that of the reference soils in every fraction, except for the CFeO-Zn, and Res-Zn fractions. The Pb-Zn, Aci-Zn, and MnO-Zn fractions showed a difference of more than 60% in the total Zn content between the two soil groups. The amounts of Zn extracted in the Pb-Zn, Aci-Zn, MnO-Zn, AFeO-Zn, and CFeO-Zn fractions of the greenhouse soils increased con-comitantly with the accumulation of applied macro-nutrients. These results indicated that the accumulation of Zn in greenhouse soils caused by intensive fertilization had proceeded through specific adsorption onto or occlusion by the oxides and hydroxides of Fe and Mn in soils.  相似文献   

18.
Abstract

Information on the redistribution of applied micronutrients into different fractions as a result of lime application is important to predict plant accumulation of nutrients and to select appropriate chemical extraction procedures for evaluation of micronutrient availability. The present work was carried out to study the influence of liming on the availability and redistribution of zinc (Zn) and copper (Cu) among soil fractions. Additionally, the effect of liming was evaluated on the recovery of these micronutrients by different chemical extractants (Mehlich‐1, Mehlich‐3, and diethylenetriaminepentaacetate (DTPA), which were correlated with Zn and Cu concentrations in corn (Zea mays L.) plants and soil fractions (exchangeable, organic matter, amorphous iron oxides, and crystalline iron oxides). The results showed that Zn added to soil samples that did not receive lime was retained mainly in the exchangeable and organic matter fractions. The liming resulted in distribution of Zn into iron oxides and as a result decreased the plant accumulation of Zn. Mehlich‐3 was the most efficient extractant to predict the plant accumulation of Zn in the acid soils, whereas DTPA was the most efficient in the limed soils. The oxide crystalline fraction was the major fraction responsible for retaining Cu in the soils. However, Cu added to soil was distributed mainly into organic matter. Mehlich‐3 was the most suitable extractant for predicting the bioavailability of Cu in limed or unlimed soils.  相似文献   

19.
The modified Tessier’s sequential extraction procedure and rhizobox cultivation were employed to investigate the distribution of aluminum (Al) fractions in the acidic rhizosphere soil of Masson pine (Pinus massoniana lamb) seedlings. The results showed that the Al in soils was fractionated into five operationally defined fractions. Three sets of soil samples used in the rhizoboxes were collected from the three forest sites in the southeast of China: Sichuan, Zhejian, and Jiangsu. At the end of 100-day cultivation, the rhizosphere Al fractions for the original or bulk soils were in the order of residual > iron-manganese (Fe-Mn) oxides > organic > carbonate > exchangeable. However, in rhizosphere soil, the Al fraction follows the order of residual > organic > Fe-Mn oxides > carbonate > exchangeable. On average, the rhizosphere experienced significant increase in organically bound Al and slight decrease in exchangeable Al contents, but had decreases in contents for the other three Al fractions compared to the nonrhizosphere. The correlation analysis indicated that the Al contents accumulated in roots were significantly and positively correlated with exchangeable Al contents in the rhizosphere, and also characterized by the major portion of organically bound Al, which exhibited a bioavailable transformation of Al fractions. Results indicated that decreases in both redox potential and soil pH, as well as increase in dissolved organic carbon (DOC), were observed in the rhizosphere. Exchangeable Al and organic Al fractions were dependent mainly on soil pH (hydrogen ion concentration) and DOC, accordingly. Decreasing rhizosphere pH from 5.93 to 3.42 accelerated the secretion of organic carbon. These data are helpful for understanding the mobility and bioavailability of Al fractions in the acidic rhizosphere soils of Masson pine.  相似文献   

20.
Total concentration of lead and its individual partitioning, i.e. exchangeable, adsorbed, organically bound, carbonate, sulfide and residual have been assayed in the bottom sediment of Rybnik reservoir applying AAS. The contribution of particular fractions to the total lead concentration was as follows: carbonates (37%) > sulfides (28%) > residual (14%) > adsorbed (10%) > exchangeable (8%) > organic bonds (3%). The multiple regression analysis applied led to the conclusion that the increase in lead content in the bottom sediment resulted from an increase in poorly mobile forms, notably carbonates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号