首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
The benefits of liming acidic or calcium (Ca)-deficient soils for soil structure and fertility are well documented. However, little is known about the effect of liming nearly neutral loess soils – lacking Ca – on interactions between soil nutrients. Over a 2-year period, 62 field trials were conducted in Germany and Austria with three treatments (0, 3 and 12 t CaO ha?1) on slightly acidic loess soils. Soil samples from the top soil layer were taken 4, 8, 16 and 24 weeks after liming. In addition to the pHCaCl2, the phosphorus (P), potassium (K) and Ca contents were analysed using electro-ultrafiltration (EUF). The application of lime increased the pH in average from 6.6 up to 7.0 and 7.2, but did not decrease EUF extractable P and K below the level of untreated control. Contrary to our expectations, EUF extractable P increased 4 weeks after liming in the treatment with 3 t CaO ha?1. At the end of incubation period, 24 weeks after liming, the EUF extractable K in treatment 12 t CaO ha?1 remained still 1.3 mg K 100 g?1 soil above the untreated control.  相似文献   

2.
Lime and phosphorus (P) applications are common agricultural management practices. Our aim was to quantify the effects of long-term application practices on root growth and abundance of arbuscular mycorrhizal fungi (AMF) under field conditions. We assessed the effects of lime and P fertilizer applications on barley yield, root growth and AMF abundance in 2016. Treatments were no, low, medium and high liming rate corresponding to application of 0, 4, 8 and 12 Mg lime ha−1 every 5–9 years since 1942 combined with no or yearly application of 15.6 kg P ha−1 since 1944. At harvest, grain yield, root intensity (core-break) and AMF abundance at different soil depths were estimated. Root development was monitored during early growth with minirhizotrons in treatments receiving low, medium and high liming rates and P fertilization. A quadratic model relating grain yield to liming rate estimated yields to peak at 6.4 Mg lime ha−1 with yields of 4.2 and 3.2 Mg grain ha−1 with and without P fertilization, respectively. Low and medium liming rates resulted in greater AMF abundance, especially in the no P treatments. During early growth in P-fertilized treatments, 77% and 65% more roots developed in the soil profile when treated with medium and high liming rate, respectively, compared to low liming rate. We conclude that long-term application of lime in soils receiving yearly P fertilization improved conditions for root growth in soil layers below 30 cm, but at the high liming rate, this did not translate into higher yield.  相似文献   

3.
Abstract

Loss of soil‐water saturation may impair growth of rainfed lowland rice by restricting nutrient uptake, including the uptake of added phosphorus (P). For acidic soils, reappearance of soluble aluminum (Al) following loss of soil‐water saturation may also restrict P uptake. The aim of this study was to determine whether liming, flooding, and P additions could ameliorate the effects of loss of soil‐water saturation on P uptake and growth of rice. In the first pot experiment, two acid lowland soils from Cambodia [Kandic Plinthaqult (black clay soil) and Plinthustalf (sandy soil)] were treated with P (45 mg P kg?1 soil) either before or after flooding for 4 weeks to investigate the effect of flooding on effectiveness of P fertilizer for rice growth. After 4 weeks, soils were air dried and crushed and then wet to field capacity and upland rice was grown in them for an additional 6 weeks. Addition of P fertilizer before rather than after flooding depressed the growth of the subsequently planted upland rice. During flooding, there was an increase in both acetate‐extractable Fe and the phosphate sorption capacity of soils, and a close relationship between them (r2=0.96–0.98). When P was added before flooding, Olsen and Bray 1‐extractable P, shoot dry matter, and shoot P concentrations were depressed, indicating that flooding decreased availability of fertilizer P. A second pot experiment was conducted with three levels of lime as CaCO3 [to establish pH (CaCl2) in the oxidized soils at 4, 5, and 6] and four levels of P (0, 13, 26, and 52 mg P kg?1 soil) added to the same two acid lowland rice soils under flooded and nonflooded conditions. Under continuously flooded conditions, pH increased to over 5.6 regardless of lime treatment, and there was no response of rice dry matter to liming after 6 weeks' growth, but the addition of P increased rice dry matter substantially in both soils. In nonflooded soils, when P was not applied, shoot dry matter was depressed by up to one‐half of that in plants grown under continuously flooded conditions. Under the nonflooded conditions, rice dry matter and leaf P increased with the addition of P, but less so than in flooded soils. Leaf P concentrations and shoot dry matter responded strongly to the addition of lime. The increase in shoot dry matter of rice with lime and P application in nonflooded soil was associated with a significant decline in soluble Al in the soil and an increase in plant P uptake. The current experiments show that the loss of soil‐water saturation may be associated with the inhibition of P absorption by excess soluble Al. By contrast, flooding decreased exchangeable Al to levels below the threshold for toxicity in rice. In addition, the decreased P availability with loss of soil‐water saturation may have been associated with a greater phosphate sorption capacity of the soils during flooding and after reoxidation due to occlusion of P within ferric oxyhydroxides formed.  相似文献   

4.
An experiment was conducted to study the response of maize to magnesium (Mg) and to find out the residual effect of Mg and green manure (GM) on transplanted aman (T. aman) rice in the maize–GM–T. aman cropping pattern. There were six treatments: T1 (recommended dose of fertilizer (RDF) + 0 kg Mg + 2 t CaCO3 ha?1), T2 (RDF + 10 kg Mg + 2 t CaCO3 ha?1), T3 (RDF + 20 kg Mg +2 t CaCO3 ha?1), T4 (RDF + 30 kg Mg + 2 t CaCO3 ha?1), T5 (RDF) and T6 (2 t CaCO3 ha?1). The response of maize to Mg was quadratic and the optimum dose of Mg was found to be 19 kg ha?1, which resulted in maximum yield of 10,507 kg ha?1. The residual effect of Mg along with GM and reduced dose of chemical fertilizer resulted in significant increase of grain yield of rice. Thus, N250P60K100Mg19S40Zn5B2 kg ha?1 for maize, only 20 kg N ha?1 for GM (Sesbania) and N60P9K33S10Zn1B1 kg ha?1 for T. aman appeared as the best combination for maximizing the productivity and may be recommended for this pattern at non-calcareous light-textured soils of Bangladesh. Application of lime increased soil pH, and this together with fertilizer and GM tended to improve soil fertility and thus may be recommended for soil amelioration.  相似文献   

5.
The effects of a low-external-input soil fertility enhancement solution – hereafter termed ‘nitrolimigation’ were examined, as a preferred technique of applying nitrogen and calcium in the “Acid Sands” soils of southern Nigeria. Two types of nitrogenous fertilizer sources [urea and liquid pig manure (LPM)] and two types of lime {limestone (CaCO3) and hydrated lime [Ca(OH)2]} were used both in greenhouse and in field experiments at varying levels: Urea [CO (NH2)2] 0, 40, 50, 80, 100, 120, and 150 kg ha?1; lime 0, 0.1, 0.3, 0.5, 1.0, 5.0, and 10.0 metric tonnes per hectare (t ha?1) and LPM 0, 30, 60, 90, and 120 t ha?1. The rates were arranged factorially and laid out in randomized complete block design (RCBD). The results indicated that combining lime at 9 t ha?1 and LPM at 90 t ha?1 in irrigation water had significant (P < 0.01) positive effects on the fertility status of the “Acid Sands” soils and growth of okra- Abelmoschus esculentus, the test crop. When urea was combined with hydrated lime, it reduced acidity and provided nutrient balance in the Acid Sands of Calabar. Total nitrogen was significantly (P < 0.01) boosted from 0.05 to 0.11%, base saturation (BS) from 46 to 62%, and exchange acidity was reduced from 2.93 to 1.35 cmol kg?1. Combining urea (46-0-0) at 80 kg ha?1 with lime (CaCO3) at 5 t ha?1 raised the soil pH from 4.4 to 7.1. Exchange acidity was reduced from 0.8 cmol kg?1 to a negligible value, but electrical conductivity was improved from 170.7 to 291.9 μS cm?1. When LPM and lime were combined, organic carbon was increased from 2.75 to 2.93%, BS was increased from 46.72 to 75.19%, and pH was raised from 6.0 to 6.73. Plant height was increased from 9.5 to 16.9 cm while mean number of leaves was also increased from 5.6 to 6.3 only with lower level of lime (3 t ha?1) and LPM at 90 t ha?1. Of the nitrogen and calcium sources, LPM and limestone were better at 120 t ha?1 and 9 t ha?1, respectively, to offset soil acidity, boost nutrient availability, and provide balanced nutrition to arable crops grown on the “Acid Sands” of southern Nigeria.  相似文献   

6.
Fertilizer recommendations are needed to increase organic vegetable yields. Thus, organic lettuce growth and nutrient uptake was investigated in a randomized block pot experiment with twelve treatments from the factorial structure of three factors: (i) Gafsa phosphate [0 and 200 kg phosphorus pentoxide (P2O5) ha?1], (ii) compost from source separated municipal organic waste (0, 15, and 30 t ha?1) and (iii) limestone [0 and 8 t ha?1 calcium carbonate (CaCO3) equivalent]. Lettuce yield increased with compost application and a first order interaction between lime and phosphate was clear because lime partially replaced the need for phosphate. This was explained by the effect of liming on P availability in acid soils. Nitrogen (N), phosphorus (P), and potassium (K) accumulation increased in lettuces produced with compost or phosphate but only the accumulation of N was increased with lime. This compost is recommended to increase nutrient availability for organic lettuce whereas the need for phosphate fertilization may decrease with liming.  相似文献   

7.
An experiment was conducted to observe the phosphate sorption potential of some soils of Bangladesh. Three soil series of calcareous origin, namely Sara (Aquic Eutrochrept), Gopalpur (Aquic Eutrochrept) and Ishurdi (Aeric Haplaquept), and two soil series of non-calcareous origin, namely Tejgaon (Rhodic Paleustult) and Ghatail (Aeric Haplaquept), were selected. The soils were equilibrated with dilute solution of calcium chloride containing graded concentrations of phosphate (0, 1, 2, 5, 10, 25 and 50?μg?P?mL?1), and the amount of phosphate sorbed or desorbed was determined. Although all the soils showed potential for sorbing phosphate from applied phosphorus, their ability to sorb phosphorus differed. Increasing rates of phosphate application increased the amount of P sorption but reduced phosphate sorption percentage in all soils except Tejgaon. Phosphate was sorbed by the soils in the order: Tejgaon > Ghatail > Ishurdi > Gopalpur > Sara at 50?μg?P?mL?1 application. Soils possessing higher amounts of free iron oxide and clay sorbed more phosphate from applied phosphorus.  相似文献   

8.
The use of biochar in agriculture to achieve the dual benefits of improving soil quality whilst sequestering carbon (C) has received much attention. However, in low-intensity broadacre agricultural systems where yield is constrained by rainfall and costs associated with phosphorus (P) fertiliser, the application of biochar at rates commonly reported (>10 t ha?1) are likely to be prohibitively expensive where yield benefits cannot be guaranteed. In marginal areas where calcareous soils dominate, biochar application has no liming effect, reducing its value compared to application in acidic soils. In the present study, we use a field experiment to investigate the interaction between P fertilisation and biochar banding at low application rates (<1 t ha?1) on wheat yield and soil P fractionation (assessed by a modified Hedley method) in a highly alkaline Haplic Calcisol in a dryland broadacre cropping system. Our results demonstrate no statistically significant effect of low rate biochar banding on wheat yield in this highly P-constrained soil, but a significant effect of both biochar and fertiliser on P fractionation in both years of the study. Higher P fertiliser rates significantly increased wheat yield in all biochar treatments. The interactions between biochar, P fertiliser and P fractionation indicate shifts in potential P availability both as a result of P fertilisation and also biochar application. Further work is required in low productivity calcareous systems such as that studied here to elucidate the potential for biochar amendment to improve productivity and sequester C.  相似文献   

9.
《Journal of plant nutrition》2013,36(8):1683-1696
Abstract

Soil acidity is one of the limiting factors affecting the production and sustainability of pastures and crops in many parts of the world. An on‐farm experiment was conducted in Australia to investigate the cultivar variation in alfalfa (lucerne) (Medicago sativa L.) with respect to soil acidity and response to applied lime. The experimental site was a brown sandy clay loam with a soil pH of 4.8 (1:5 calcium chloride). Ten cultivars (Hunter River, Hunterfield, Sceptre, Aurora, Genesis, Aquarius, Venus, PL90, PL55, and breeding line Y8804) were tested at two levels of lime (0 and 2 t ha?1). Lime application significantly increased the root growth, nodulation, leaf retention, leaf to stem ratio, herbage yield, and crude protein content of alfalfa. Liming had a significant effect on elemental composition of alfalfa shoots. Aluminum (Al) concentration was reduced from 93 mg kg?1 DM in nil lime treatment to 45 mg kg?1 DM in +lime treatment. Similarly, manganese (Mn) and iron (Fe) shoot concentrations were reduced from 74 mg kg?1 DM and 92 mg kg?1 DM to 59 mg kg?1 DM and 76 mg kg?1 DM, respectively. Liming significantly improved the calcium (Ca) concentration of shoots, while there was a little effect on phosphorus (P) and zinc (Zn) concentrations of alfalfa shoots. Cultivars had differential response to lime application. Response to lime application was greater in Y8804 and Aurora alfalfa where yield increased by 32% and 31%, while yield increase was 11–22% in other cultivars. Cultivars also differed significantly in root growth, nodulation, leaf drop, leaf to stem ratio, crude protein content, and elemental composition of shoots. Cultivars with better performance in no liming treatment had comparatively lower shoot Al, Mn, and Fe concentrations compared with other cultivars.  相似文献   

10.
Abstract

Soil chemical and physical reactions involving phosphorus (P) must be understood to predict the risk of P being transported from agricultural land to streams and lakes. The kinetics of P sorption by an Ultisols from West Virginia, USA, receiving P from fertilizers were compared to soils amended with turkey litter. Addition of 6.6 and 13.2 Mg turkey litter ha?1 increased Bray 1P levels to about the same level as adding 53 and 115 kg P ha?1, respectively. Phosphorus binding capacity decreased to a greater extent when P was added as fertilizer as compared to turkey litter. For example, P binding maximum was 360 mg P kg?1 dry soil when soil was amended with 6.6 Mg turkey litter ha?1 as compared to 260 mg P kg?1 dry soil when amended with 53 kg P ha?1. This study demonstrates that the decrease in P‐binding capacity with increasing soil P is less when P is added as turkey litter.  相似文献   

11.
Abstract

Considerable amounts of phosphorus (P) fertilizer will be required on soils in the proposed Ord Stage II area of northwestern Australia if a sustainable dry‐season, cotton‐production system is to be established, because in their virgin state, the soils are known to be inherently low in P. This study aimed to determine P‐fertilizer requirements on these soils to optimize cotton yield as well as nutrient uptake. Five rates of P fertilizer were applied to soil recently cleared of trees and prepared for irrigation. In the second year, these same rates were imposed over the trial. It was concluded that the application of 60 kg ha?1 of P was sufficient to allow maximum yield and quality for dry‐season cotton grown in the first season on virgin soils in the Ord River Irrigation Area (ORIA), and a total of 80 kg ha?1 of P was required when cotton was grown over two seasons.  相似文献   

12.
Understanding the role of organic acids on phosphorus (P) sorption capacity of soils is very important for its economic and friendly management. Combining P application with low-molecular weight organic acids could result in its higher plant availability for prolonged time. Therefore, citric and oxalic acid (at the rate of 1.0 mM kg?1 soil) were evaluated for their effect on P sorption capacity and its plant availability in two different textured calcareous soils. Organic acids decreased P sorption capacity and organic carbon partition coefficient (Koc) whereas increased Gibbs free energy (ΔG) of P. Organic-acid-treated soils required lesser quantity of P fertilizer to produce soil solution P concentration optimum for plant growth (external P requirement [EPR0.2]), that is, 0.2 mg L?1. Citric acid was efficient than oxalic acid in the above effects. P sorption parameters of Freundlich model were negatively correlated with lime potential and ΔG whereas had positive correlation (< 0.05) with EPR0.2 and Koc. Incubation with oxalic acid increased available P in loamy sand and loam soil by 20% and 30%, respectively. Thus, organic acids could help reduce application rate of P fertilizer through lowering its adsorption in highly P-fixing soils without compromise on yield.  相似文献   

13.
Field experiments were conducted during summer (2013/2014) and winter (2014) in two different soil types to evaluate the effect of biochar and P fertilizer application on growth, yield, and water use efficiency of chickpea. Soil types include Rhodic Ferralsols (clay) in Thohoyandou and Leptic Cambisols (loamy sand) in Nelspruit, South Africa. Treatments consisted of a factorial combination of four biochar levels (0, 5, 10 and 20 t ha?1) and two phosphorus fertilizer levels (0 and 90 kg ha?1) arranged in a randomized complete block design and replicated three times. Biochar application at 5 t ha?1 significantly increased biomass, grain yield and water use efficiency of biomass production (WUEb) in the clay soil compared to 10 and 20 t ha?1. However, the increase was attributed to the addition of P fertilizer. Biochar application had no effect on yield components in the loamy sand soil, but P fertilizer addition increased number of seeds/pod in the loamy sand soil and number of pods/plant in the clay soil. Biochar and P fertilizer application on growth and yield of chickpea varied in soil types and seasons, as the effect was more prominent in the clay soil than the loamy sand soil during the summer sowing.  相似文献   

14.
Liming and wood ash application are measures to decrease acidification of forests soils. The assessment of lime requirement can be based on that base saturation, which indicates a low risk of acid toxicity. Because of a wide spread Mg deficiency in Central European forests, Mg containing lime is normally applied. Ash from untreated wood is applied to decrease soil acidity as well as to improve K and P nutrition. In wood ash, K is the most soluble nutrient, follwed by Ca and Mg. The overall dissolution rate of lime applied to the forest floor is about 1t ha?1 a?1. After liming, soil solution alkalinity and Mg concentrations increase markedly, while changes of Ca, H ions and Al concentrations are less pronounced. After the application of wood ash, K concentrations increase due to the high K content and the high solubility of K in wood ash. After the application of a sufficiently high dosage of lime to the forest floor, the decrease of acidity in deeper soil layers may need decades because of the low solubility of lime. Nitrification and nitrate leaching induced by lime or wood ash may reduce their acid buffering efficiency.  相似文献   

15.
A field experiment with peppermint (Mentha piperita L.) was conducted in a sandy loam (Typic ustifluvent) soil during 2007 and 2008 at Lucknow, India. Ten treatments consisting of control (no synthetic or organic nitrogen fertilization), synthetic nitrogen fertilization (SN) 75, 150 and 225 kg ha?1 alone, vermicompost (VC) 3 t + 37.5 kg SN ha?1, VC 6 t + 75 kg SN ha?1 and VC 9 t + 112.5 kg SN ha?1 and intercropping of one, two and three rows of cowpea for green manuring in combination with 50, 100 and 150 kg SN ha?1, respectively, were evaluated in a randomized block design. Integrated use of VC 9 t with 112.5 kg SN ha?1 produced maximum essential oil (94.3 kg ha?1), increased the herb and essential oil yields by 104 and 89%, respectively, over control and reduced SN use by 50%, without affecting the quality of essential oil. Application of VC and intercropping of cowpea for green manuring significantly improved the organic carbon, available N, P and K content in soil over SN alone. To get sustainable production of peppermint, application of VC 9 t ha?1 along with 112.5 kg N ha?1 through synthetic fertilizer is recommended for light textured sandy loam soils.  相似文献   

16.
Field experiments were conducted to assess the effect of nutrients management practices on yield and rainwater use efficiency of green gram (Vigna radiata), and soil fertility under moist sub-humid Alfisols at Phulbani, India, during 2005–2008. Ten treatment combinations of lime @ 10% and 20% of lime requirement (LR) @ 8.3 t ha?1, farmyard manure (FYM) @ 5 t ha?1, green leaf manure @ 5 t ha?1, and nitrogen, phosphorus, and potassium (N–P–K) (20–40–20 kg ha?1) were tested. The analysis of variance indicated that treatments differed significantly from each other in influencing yield and rainwater use efficiency. Application of lime @ 20% LR + FYM @ 5 t/ha + 40 kg P + 20 kg K ha?1 was superior with maximum mean yield of 531 kg ha?1, while lime @ 10% LR + FYM @ 5 t ha?1 + 40 kg P + 20 kg K ha?1 was the second best with 405 kg ha?1 and maintained maximum soil fertility of nutrients. The superior treatment gave maximum sustainability yield index of 67.5%, rainwater use efficiency of 0.49 kg ha?1 mm?1, improved soil pH, electrical conductivity, and soil nutrients over years.  相似文献   

17.
With regard to the low cation-exchange capacity and large saturated hydraulic conductivity of sandy soils, a field experiment was carried out in 2006–2007 to determine the impact of zeolite on nitrogen leaching and canola production. Four nitrogen (N) rates (0, 90, 180, and 270 kg ha–1) and three zeolite amounts (3, 6 and 9 t ha?1) were included as treatments. The results demonstrated that the highest growth parameters and seed yield were attained with 270 kg N ha?1 and 9 t zeolite ha?1. However, the highest and the lowest seed protein percentage and oil content were obtained with 270 kg N ha?1 accompanied by 9 t zeolite ha?1, respectively. Nitrate concentration in drained water was affected by nitrogen and zeolite. The lowest and highest leached nitrate values were found in control without N and zeolite (N0Z0) and in treatments with the highest N supply without zeolite (N270Z0), respectively. In general, nitrogen-use efficiency decreased with an increase in N supply. Application of 9 t zeolite ha?1 showed higher nitrogen use efficiency than other zeolite amounts. Also, application of more N fertilizer in soil reduced nitrogen uptake efficiency. In total, application of 270 kg N ha?1 and 9 t zeolite ha?1 could be suggested as superior treatment.  相似文献   

18.
Two acidic soils (initial pH, 4.6) with contrasting soil organic C (SOC) contents (11.5 and 40 g C kg?1) were incubated with 13C-labelled lime (Ca13CO3) at four different rates (nil, target pH 5, 5.8 and 6.5) and three application depths (0–10, 20–30 and 0–30 cm). We hypothesised that liming would stimulate SOC mineralisation by removing pH constraints on soil microbes and that the increase in mineralisation in limed soil would be greatest in the high-C soil and lowest when the lime was applied in the subsoil. While greater SOC mineralisation was observed during the first 3 days, likely due to lime-induced increases in SOC solubility, this effect was transient. In contrast, SOC mineralisation was lower in limed than in non-limed soils over the 87-day study, although only significant in the Tenosol (70 μg C g?1 soil, 9.15%). We propose that the decrease in SOC mineralisation following liming in the low-C soil was due to increased microbial C-use efficiency, as soil microbial communities used less energy maintaining intracellular pH or community composition changed. A greater reduction in SOC mineralisation in the Tenosol for low rates of lime (0.3 and 0.5 g column?1) or when the high lime rate (0.8 g column?1) was mixed through the entire soil column without changes in microbial biomass C (MBC) could indicate a more pronounced stabilising effect of Ca2+ in the Tenosol than the Chromosol with higher clay content and pH buffer capacity. Our study suggests that liming to ameliorate soil acidity constraints on crop productivity may also help to reduce soil C mineralisation in some soils.  相似文献   

19.
Negative impacts of land‐applied aluminum (Al)–rich water treatment residuals (WTRs), which have been suggested to improve soil phosphorus (P) sorption, could include excessive immobilization of plant‐available P and Al phytotoxicity. We studied the impacts of an Al‐rich WTRs on agronomic returns and plant Al concentrations in glasshouse and field studies. The glasshouse study was a 4 × 2 × 3 factorial experiment with one control in a randomized complete block design and three replicates. Four sources of P were each applied at two agronomic rate [44 kg P ha?1, P‐based rate; and 179 kg plant‐available nitrogen (PAN) ha?1, N‐based rate] to topsoil (0–15 cm) of a sandy, siliceous, hyperthermic Arenic Alaquods. Three WTR rates (0, 10, and 25 g kg?1 oven‐dry‐weight basis) were further applied, whereas the control received neither P source nor WTRs. Bahiagrass (Paspalum notatum Fluggae), ryegrass (Lolium perenne L.), and a second bahiagrass crop were continuously grown in succession for 18 months. Applied WTRs increased soil Al but not plant Al concentrations (22–80 mg Al kg?1), which fell within the normal concentration range for pasture plants. In the glasshouse, when WTRs were incorporated with the soil, bahiagrass dry matter (DM) accumulation was reduced, but ryegrass DM was not affected even at 25 g kg?1 WTR. A 2‐year field study, with same treatments but two rates of WTRs (0 and 10 g kg?1 WTR) surface applied to established bahiagrass on the same soil type (Spodosols) showed neither reduced yields nor increased plant Al phytoavailability in the WTR treatments. The studies show no increase in plant Al is associated with Al‐WTRs applied to reduce excess soil‐soluble P and P losses but plant DM accumulation may be reduced.  相似文献   

20.
The effects of cultivating and incorporating residues of previous tropical kudzu (Pueraria phaseoloides) and soybean (Glycine max) with application of NPK fertilizer on yam performance were evaluated at the teaching and research farm, LAUTECH, Nigeria. There were nine treatments: incorporation of legume residues (5 t DM ha?1), application of recommended fertilizer rate for yam (90–50–75 kg NPK ha?1) in the zone or 50% of recommended rate (45–25–37.5 kg NPK ha?1), alone and in combination with residues and a control without residues or fertilizer in a randomized complete block design. Cultivation of previous legumes reduced soil nematode population (>200%) compared with no legumes. For both years, application of Pueraria residues improved tuber yield by an average of 15.8% compared with control. Fertilizer application enhanced arbuscular mycorrhizal (AM) colonization of yam roots but AM colonization was lower (~50%) in plots where Pueraria residues were incorporated compared with other plots. Combined application of plant residues with fertilizer improved soil organic carbon, total N, exchangeable Ca and Mg compared with application of NPK fertilizer. From these results, it is concluded that half of the recommended NPK rate may be adequate and incorporation of residues with reduced NPK fertilizer application may be a sustainable soil fertility management option for continuous yam production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号