首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The organic matter in soils may be stabilized by its interactions with minerals. We have studied such interactions in a Haplic Alisol under forest in which clay and organic matter have migrated from an eluvial A horizon to accumulate in an illuvial B horizon. We have tried to trace the fate of organic matter in these horizons (Ah and Bvt) by determining clay mineralogy, carbon and nitrogen content, hydrolysable amino acids, lignin signature by alkaline CuO oxidation and carbon species by 13C CPMAS NMR of bulk soils and particle‐size fractions. In both horizons, most of the organic matter was present in O–alkyl and methylene structures, each contributing one‐third to the bulk organic matter. In the Ah horizon the ratios of carbon‐to‐nitrogen, and yields for lignin and hydrolysable amino acids decreased as the particle‐size class decreased, but side‐chain oxidation of lignin compounds increased with decreasing particle size. In contrast to previous observations, the proportions of O–alkyl carbon increased as particle size decreased, constituting a major proportion of the organic carbon in the clay‐size fractions from both the Ah and Bvt horizons (≥ 38%), while proportions of methylene carbon decreased. Illite was the dominant mineral in the fraction ≤ 6 μm, whereas the mobile fine clay fraction (<0.2 μm) was rich in smectites – minerals with large surface areas. Our results support the hypothesis that potentially labile organic matter, such as O–alkyl carbon typically present in polysaccharides, may be stabilized against further degradation in organomineral complexes.  相似文献   

2.
The OAh and Ah horizons of acid brown and podzolic forest soils are reported to fix more radiocaesium than the mineral B horizons beneath them. We determined the respective influence of organic matter and clay minerals on the magnitude of Cs+ retention in a strongly acid brown forest soil in Belgium. The soil contained mica throughout the profile. Vermiculite was identified in the OAh and Ah horizons, and hydroxy interlayered vermiculite (HIV) in the Bw horizon. The OAh and Ah clay fraction retained much more Cs+ than the Bw horizon. The extraction of Al interlayers by Na-citrate resulted in a marked increase in Cs+ fixation in the Bw clays as well as the collapse of the vermiculitic layers after K+ saturation. Organic matter had a strong but indirect effect on Cs+ fixation. In the Bw horizon, acid weathering of layer silicates releases free Al and produces HIV minerals in which Al polymers block the access of radiocaesium onto Cs+-specific sites. In OAh and Ah horizons, free Al is complexed by organic acids. Consequently, the interlayer specific sites remain accessible for Cs+ fixation.  相似文献   

3.
The podzolization process is studied through lipids in nine characteristic podzol horizons. Organic matter accumulates particularly with aluminium in the Bh horizon, while the hard, cemented Bs horizon below this is formed mainly by iron oxides. The low soil pH seems to have no great influence on the preservation of lipids as reflected by the absolute amounts present and the presence of bacterial lipid markers throughout the profile. Independent of soil pH, lipids accumulate in organically enriched horizons. Albeit, high molecular weight organic compounds accumulate to a relatively greater extent than lipids in these horizons. A lipid signal related to the aerial parts, i.e. leaves and flowers, of Calluna is observed only in the O horizon. This ‘n‐alkane, steroid and triterpenoids’ signal is quickly lost in the underlying Ah horizon due to (bacterial) oxidation. The other total lipid extracts obtained are dominated by root‐derived compounds. In subsoil horizons rich in organic matter, i.e. the Ahb and Bh horizons, root‐derived friedooleanan and steroid compounds dominate the total lipid signal. Degraded horizons, poor in organic matter, i.e. the E2, Bhs, Bs and B/C horizons, are dominated by C22 and C24ω‐hydroxy acids, long‐chain (> C20) n‐alkanoic acids with a strong even‐over‐odd predominance and C22 and C24n‐alkanols. Steroid and root‐derived triterpenoids with a friedooleanan structure have been removed from these horizons through degradation. Based on total organic carbon content and lipid composition, the formation of an E1 horizon has started, but is not yet complete. In the Ahb horizon, a contribution from buried vegetation to the total lipid signal is still present, although degradation and an input from roots have significantly altered the original signal. Overall, lipid data indicate that degradation (microbial oxidation) is an important process that should be taken into account, in addition to leaching, when describing podzolization processes in soils.  相似文献   

4.
Abstract

The cation exchange capacity (CEC) at pH 7 was measured for samples of 347 A horizons and 696 B horizons of New Zealand soils. The mean CEC was 22.1 cmolc/kg for the A horizons and 15.2 cmolc/kg for the B horizons. Multiple regressions were carried out for CEC against organic carbon (C), clay content, and the content of seven groups of clay minerals. The results, significant at p <0.001, were consistent with most of the CEC arising from soil organic matter. For the samples of A horizon, the calculated CEC was 221 cmolc/kg per unit C and for the B horizons was 330 cmolc/kg C. There was also a contribution from sites on clay minerals. Multiple regression indicated that smectite had a higher CEC (70 cmolc/kg) than other minerals but it was not as high as that of type smectites; kaolin minerals had the lowest CEC. There was a significant effect of interaction between organic matter and some clay minerals on the CEC. Samples from B horizons containing allophane had lower CEC than those not containing allophane which is consistent with allophane reacting with carboxyl groups on organic matter. For the samples from the A horizons, however the CEC was higher when allophane was present.  相似文献   

5.
Abstract

Fertilizer recommendations need to be based on reliable soil sulfate determinations. Airdrying samples changes irreversibly many properties of soils with variable charge and might affect the extractable sulfate. In this study, sulfate extracted from air‐dry and field‐moist samples was compared. Two extracting solutions [water and 00.1 M Ca(H2PO4) 2] and two quantification methods (turbidimetry and ion chromatography) were assayed on A and B horizon samples of five Humic Acrisols from southeast Mexico. Air drying increased water‐extractable sulfate in Ah horizons, whereas in Bt horizons, it increased the 00.1 M Ca(H2PO4)2‐extractable sulfate. Airdrying increased dissolved organic carbon contents in all samples and increased soil acidity and oxalate extractable iron in 70 and 60% of the samples, respectively. Results showed larger coefficients of variation in air‐dried samples. Turbidimetry resulted less sensible than ion chromatography. To enhance sensitivity and reproducibility, particularly organic soil samples should be analyzed field‐moist and by ion chromatography.  相似文献   

6.
Dissolved organic matter (DOM) in soils is partially adsorbed when passing through a soil profile. In most adsorption studies, water soluble organic matter extracted by water or dilute salt solutions is used instead of real DOM gained in situ by lysimeters or ceramic suction cups. We investigated the adsorption of DOM gained in situ from three compartments (forest floor leachate and soil solution from 20 cm (Bg horizon) and 60 cm depth (2Bg horizon)) on the corresponding clay and fine silt fractions (< 6.3 μm, separated together from the bulk soil) of the horizons Ah, Bg, and 2Bg of a forested Stagnic Gleysol by batch experiments. An aliquot of each clay and fine silt fraction was treated with H2O2 to destroy soil organic matter. Before and after the experiments, the solutions were characterized by ultra‐violet and fluorescence spectroscopy and analyzed for sulfate, chloride, nitrate, and fluoride. The highest affinity for DOM was found for the Ah samples, and the affinity decreased in the sequence Ah > Bg > 2Bg. Dissolved organic matter in the 2Bg horizon can be regarded as slightly reactive, because adsorption was low. Desorption of DOM from the subsoil samples was reflected more realistically with a non‐linear regression approach than with initial mass isotherms. The results show that the extent of DOM adsorption especially in subsoils is controlled by the composition and by the origin of the DOM used as adsorptive rather than by the mineralogical composition of the soil or by contents of soil organic matter. We recommend to use DOM gained in situ when investigating the fate of DOM in subsoils.  相似文献   

7.
Abstract

Recently agricultural activity in the mountainous area of northern Thailand has increased and problems relating to soil fertility have arisen. In order to gain basic information about the soil properties associated with shifting cultivation, physicochemical properties of the surface soils (0–10 cm) and subsoils (30–40 cm) were investigated in selected villages in the area. The physicochemical properties of the soils studied are summarized as follows: 1) The soils were rich in organic matter, content of which ranged from 11.4 to 63.3 g C kg?1 in the surface soil. 2) The pH(H2O) of the soils mostly ranged from 5 to 7 and soil acidity was more pronounced in the deeper horizons. In the surface soils, exchangeable Ca and Mg were generally dominant, whereas exchangeable Al was often predominant in the subsoils. 3) Most of the soils showed a medium to fine texture with more than 30% clay. The clay mineral composition was characterized by various degrees of mixture of kaolin minerals and clay mica with, in some cases, a certain amount of 2:1-2:1:1 intergrades. 4) According to the ion adsorption curves, most of the B horizon soils were characterized by the predominance of permanent negative charges. On the other hand, organic matter contributed to the increase of variable negative charges in the surface soils. The content of organic matter and the percentage of the clay fraction were essential for determining the CEC of the soils of the surface 10 and 30–40 cm depths, respectively. Under the field conditions, the composition of exchangeable cations largely reflected the soil acidity. In addition, the content of organic matter also showed a significant correlation with that of available N in the surface soils. Thus, soil acidity both in the surface soils and subsoils, organic matter content in the surface soils, and clay content in the subsoils were considered to be the main factors that affected soil chemical fertility in the area.  相似文献   

8.
Abstract

An Investigation was conducted to determine the content and distribution of total and DTPA‐extractable Zn in the genetic horizons of 72 agriculturally important soils from the six major mineral soil areas in Louisiana.

The concentration of total Zn appeared to vary more with the clay constituents of the soils and the amount of the element in the parent materials than with soil depth. The majority of the soils had the largest amounts of total Zn in the subsurface horizons. The range in total Zn for all soils and horizons was from 7.0 to 150.0 ppm.

The DTPA‐extractable Zn in all of the soils and horizons ranged from 0.08 to 4.22 ppm. In the majority of the soil profiles the highest concentration of extractable Zn was in the surface horizons. There was a decrease in the extractable Zn with increasing soil depth. The alluvial soils along the Ouachita and Mississippi Rivers, and the Mississippi Terrace soil areas contained relatively large amounts of DTPA‐extractable Zn.

In some soils the extractable Zn significantly correlated with total Zn. There was also a close relationship between extractable Zn and organic matter content, especially in the Ap horizons.  相似文献   

9.
Boreal forest soils have the potential to sequester large amounts of carbon by accumulating charcoal from fire. Some suggest that sequestration rates could be large enough to account for some of the missing sink in the global CO2 budget, but further data on soil charcoal pools are necessary to adequately develop boreal carbon budgets under a changing climate and fire regime. The primary objective of this study was to determine the amount of charred wood in surface mineral soil horizons (Ah) of the Boreal Transition of Saskatchewan, a fire-prone grassland forest ecotone region of western Canada. A second objective was to use the charcoal data to infer vegetation dynamics and the development of these Ah horizons as a function of parent material type, i.e. glacio-fluvial, glacio-lacustrine and glacial till. The latter objective served to provide information in regards to future vegetation shifts and ecosystem C budgets of Boreal Plain ecosystems under climatic warming. The carbon fraction measured as charcoal is an important component of organic matter in Ah horizons of Chernozemic soils in Saskatchewan and differs from the classical model of humus fractions in Chernozems which suggests that it is a system created from microbial degradation of root litter only. The carbon sequestered as charcoal within the whole ecoregion was estimated at 36.1 Tg, which is the lower limit of the global annual rate of charcoal accumulation in terrestrial environments estimated from experimental fires. Charcoal pools were consistently lower in the fluvial soils relative to the lacustrine and till soils. We suggest a model where dry conditions and low water availability prevailing under the coarser fluvial soils during the Holocene favoured the dominance of low productivity herbaceous vegetation that led to a high ash to charcoal production ratio from fire and to the development of relatively thick Ah horizons through below ground additions of organic matter from root decay. We propose that the more available water in lacustrine and till soils favoured the growth of trembling aspen which, through less frequent/intense fires relative to grasslands and incomplete burning of the woody material, led to high charcoal accumulation rates in soil. The development of thick Ah horizons in lacustrine soils likely occurred during a warm and dry period of the early Holocene (i.e. the hypsithermal) when herbaceous vegetation invaded forested land or during dry spells in the mid to late Holocene (e.g. the Medieval Warm Period) when opening of forest canopies occurred, thus augmenting light transmission to the forest floor and favouring the growth of herbaceous vegetation in the understory. Such events did not create deep Ah horizons in the tills soils as a consistent rock impediment near the surface limited the penetration of understory roots at greater depth. These results suggest that fluvial sites my be the first shifting to herbaceous vegetation in the future due to climatic warming, followed by till sites and then lacustrine sites.  相似文献   

10.
The discharge of acidic mine drainage waters onto a hillslope in Dalarna, central Sweden, has lead to the contamination of the podzol soils with Cu, Fe, Ni, Pb, Zn and sulfate. Samples from contaminated and reference soils have been collected for chemical and mineralogical analyses. Jarosite is identified by x-ray diffraction analysis as a precipitate in the upper horizons (A, E, B) of the contaminated soils, where the soil acidity (pHKCl~2.6) promotes jarosite stability. The sequential chemical extraction of soil samples indicates that, in the reference A horizon, Cu, Pb, Ni and Zn are bound primarily to cation exchange sites and organic matter. In the A horizon of the contaminated soils closest to the rock dump, metal partitioning is dominated by the Fe oxide fractions, despite the high organic matter content; Pb is almost completely bound to crystalline Fe oxides, possibly adsorbed to Fe oxides or occuring in a jarosite solid solution. In the reference B and C horizons, Cu, Ni and Zn are primarily adsorbed/coprecipitated in the Fe oxide fractions, while Pb remains with a large fraction bound to organic matter. In the Fe-rich B horizon of the contaminated soils, the partitioning of the metals in cation exchange sites and to organic matter has greatly increased relative to the reference soils, resulting from the mobilization of organo-metal complexes down the profile.  相似文献   

11.
Abstract

Characteristics of Brown Forest soils developed under different bio-climatic conditions from low to high eleyations in the Kinki District were studied with special reference to their pedogenetic processes. The Brown Forest soils at high elevations were characterized by a lower bulk density, higher capacities to adsorb organic matter, phosphate, and moisture, which were correlated with the ratio of the amorphous content to the clay content (the value of the ratio of (Feo + Alo)/clay), as compared to those at low elevations. Considering the fact that the value of the (Feo + Alo)/clay ratio was not correlated with the volcanic glass index, the formation of an amorphous fraction at high elevations was considered to proceed according to the following mechanism.

Low temperature at high elevations (above 700 m) may retard the crystallization of oxide minerals. The amorphous oxides with variable positive charge thus formed may adsorb organic matter, confering a darker color and high moisture and high phosphate retention capacities to the subsoil. Adsorbed organic matter stabilizes these amorphous oxides, thus enhancing the amorphous properties and inhibiting crystallization. A1 translocation due to the weak podzolization may contribute to the increase of the content of amorphous materials.

Characterization of the B horizons in forest soils in Japan, in terms of the values of the ratios of (Feo + Alo)/clay, (Fed-Feo)/Fet, and Alo/Ald, (CEC -ECEQ/CEC and STPT-ZPC, suggested that forest soils might be classified into four groups.  相似文献   

12.
Low molecular weight organic acids are widespread and reactive in soils, but their distribution among mineral horizons is uncertain. We investigated the distribution of low molecular weight aliphatic carboxylic acids (LACAs) in three Japanese forest soils, two Acid Brown Forest soils and one Podzolic soil. The total LACAs ranged from 207.3 to 411.8 μmol kg–1 and were abundant in the lower horizons as well as in the surface horizons of these soils. The illuvial horizons of the Podzolic soil were rich in adsorbed oxalic acid and citric acid. Total LACAs were similar in the two subtypes of Brown Forest soils derived from different parent materials but formed under similar vegetation and climate, and were larger than that in the Podzolic soil. Among the volatile LACAs, formic acid and acetic acid dominated the moist horizons containing much organic material, whereas the non-volatile LACAs, the most abundant being oxalic acid and citric acid, increased in the subsurface horizons. The distribution of water-soluble LACAs in the Brown Forest soil profiles was closely correlated with soil acidity.  相似文献   

13.
Black Mollisols are typically rich in charred organic matter, however, little is known about the zonal distribution of black C (BC) in steppe soils. In this study, we used benzene polycarboxylic acids (BPCA) as specific markers for BC in particle‐size fractions of depth profiles in several zonal soils (Greyzem, Phaeozem, Chernozem, Kastanozem) of the Russian steppe. In addition, liquid‐state 13C‐NMR spectra were obtained on the alkaline‐soluble soil organic matter (SOM). The results showed that both the content and depth distribution of BC varies in the different soil types; the concentration of BC in the bulk top soils being closely related to the aromaticity of the SOM (r2 = 0.98 for the native topsoils, 0.83 for top‐ and subsurface soils). Especially the Chernozems were rich in aromatic SOM, which partly contained more than 17% BC of total C, most of which being allocated in the mineral fractions. Long‐term arable cropping did not reduce the BC contents of the surface soil, though it did promote the enrichment of BC in the silt fractions. The same shift was detected as soil depth increased. We conclude that BC is not fully inert in these soils, but apparently can be preserved in the silt as decomposition of SOM increased, i.e., it accumulates exactly in that fraction, which has been formerly assigned to contain old, aromatic C.  相似文献   

14.
The objective of this study was to determine the effect of bedrock, mean annual precipitation and slope orientation on soil organic carbon (SOC) accumulation of Quercus pyrenaica Willd forests. Twelve different oak stands, along a rainfall gradient over two bedrock types (granites and schists), were selected for this study. Properties of the diagnostic soil horizons were determined. Bedrock type was the principal factor affecting soil development and fertility. Accumulated SOC varied between 33 and 185 Mg C ha− 1, the amounts of C accumulated over schists being significantly higher than over granites because of higher soil acidity, ‘silt + clay’ content and metal complexation. The SOC content in the entire profile was over 125 times higher than the C accumulated in the stand forest litter at the schist sites and 50 times higher at the granite sites. Soil acidity and metal complexation hampered microbial decomposition of soil organic matter, producing SOC accumulation and forming thick umbric Ah/AB-horizons, being thicker at sites with high values of mean annual precipitation than at sites with low ones. Mineral N release was low in these soils.  相似文献   

15.
Abstract

Properties of sesquioxides, clay mineralogical composition, and charge characteristics of Brown Forest soils developed under beech forests in the Kinki (Ohdaigahara) and the Tohoku District (Hakkoda) were studied with special reference to their pedogenetic processes.

The Brown Forest soils in the Kinki District were characterized by the translocation of free Al, formation of Al and/or Fe-humus complexes throughout the profile, and the predominance of 2:1: 1-2:1 intergrade minerals in the subsurface horizons, whereas those in the Tohoku District were characterized by the formation of allophane and no remarkable translocation of free Al oxides. This difference in the pedogenetic processes under the same vegetation was reflected on the amounts of Al released from primary minerals in relation to the amounts of organic matter accumulated. Major distinctive characteristics included the values of the Alp/Alo, the Fep/Feo, the Alo/Ald ratios, the Sio content, and the STPT-ZPC and pH(H2O) values.

Among these the values of the Alo/Ald ratio and/or the Sio content were found to be suitable indices for the differentiation of Brown Forest soils from Andisols in Japan In addition to the criteria used to define andic soil properties.  相似文献   

16.
The accumulation and transformation of organic matter were studied in chronoseries of different-aged (3-, 10-, 20-, 30-, 43-, and 60-year-old) soils and a background (reference) plot. The ecogenetic succession of plants on sand quarry dumps was characterized. It was shown that the pedogenesis rate was closely related to the rate of phytocenosis development, and the thicknesses of organic and mineral horizons increased synchronously. The profile distribution of organic matter in young soils was estimated as an ectomorphic distribution, and the humus reserves in the mineral horizons of the same soils were comparable with the reserves of organic matter in the litters. The illuvial horizons of the soils under study played a significant role in the deposition of carbon dioxide; the resistance of organic matter to mineralization increased with age. In the soil chronoseries, the combustion heat of litter organic matter increased, as well as the content of energy accumulated in the litters. The composition of humus differed strongly between the eluvial and illuvial horizons; in the chronosequence, the relative content of humic acids increased in the E horizon, and that of fulvic acids increased in the B horizon. The effect of the phytocenosis on the soil was increasingly mediated with time. The accumulation and transformation of organic matter were the leading pedogenic processes at all stages.  相似文献   

17.
Abstract

The distribution of zinc in some major Zimbabwean soils was studied using 120 profiles taken from 22 different locations. The total zinc status (TL‐Zn) of the horizons of soils studied was low (8 ppm), and the range was narrow (3.7 to 16.3 ppm). The residual zinc (RS‐Zn) fraction was about 65 percent of the total zinc found in the soils, while 15 percent was organically bound zinc (OG‐Zn), 14 percent was available zinc (MG‐Zn), and 6 percent was zinc associated with hydrous metal oxides (OX‐Zn). The total zinc status of the soils was related to parent material. Generally, texture had a significant effect on zinc distribution with heavier textured soils having more zinc in most fractions than the lighter textured soils. A decrease in zinc down the profile was observed for available, residual, and total zinc. If cropped intensively, 32 per cent of the soils with less than 1 ppm available zinc have the potential for zinc deficiency. Multiple stepwise regression analysis showed that organic matter, silt and clay contents, available copper, and resin P2O5 contents were important for predicting the available zinc content of the soils, while texture and organic matter content were important in predicting total zinc content.  相似文献   

18.
The distribution of zinc, manganese, copper, cobalt, and nickel in Andosols was investigated. Sixty nine soil samples were collected from different horizons of an Andosols profile in Miyakonojo Basin in south Kyushu, Japan, The total contents of heavy metals were determined by digestion and four extraction solutions, 1 M NH4Ac (ammonium acetate) pH 4.5, 0.1 M HCl, 0.01 M EDTA (ethylenediaminetetraacetic acid) pH 6.5, and 0.005 M DTPA (diethylenetri-aminepentaacetic acid) pH 7.3 were used to determine the contents of available Zn, Mn, Cu, Co, and Ni in Andosols in relation to the organic carbon content. The results of the extraction analysis showed that by the use of 0.1 M H Cl high value of extracted heavy metals in the upper layers of the humus horizons were obtained while EDTA extraction yielded a large amount of the above mentioned metals in the high humus horizons. The extractable heavy metals contents were high and these metals closely related to the organic carbon content mostly in the humus horizons in the profile. Where, biocycling process may play an important role in the concentration of heavy metals. Based on the study, it was found that the total content of Zn increased towards the C horizons or pumice layers in the soil profile. Such a trend was also found in the case of the Mn content. While the Cu content in the humus horizons was much higher in the upper part of each humus horizon. According to this study the distribution of heavy metals, Cu (organic matter complexes) in the Andosols profile was more stable than that of Zn (organic matter complexes) in soils. It was shown that Zn in the surface humus horizon was enriched but that some amount was leached under buried conditions. The same phenomenon was also observed in the distribution of Mn in the profile. The movement of Co and Ni in the soil profile was limited, as evidenced by the sharp reduction in the concentrations of these two metals in buried soils.

Hence, it is concluded that the distribution of Zn, Mn, Cu, Co, and Ni was considerably higher in the humus horizons of the Andosols profiles.  相似文献   

19.
Abstract

Chemical properties of hydrophobic acid (HoA) fractions in water-soluble organic matter in soil and water are concerned with its interactions with mineral soil surfaces and organic pollutants. In 2004 we examined the seasonal and vertical changes in chemical properties of the HoA fraction in a Cambisol profile and compared these properties with those in the HoA fraction of an adjacent stream (aquatic humic substances) in a temperate forested watershed using high performance size exclusion chromatography (HPSEC) and 1H and 13C nuclear magnetic resonance (NMR) spectroscopy. The HoA fractions from Oi, Oe/Oa, A and B horizon soils in summer had lower O-alkyl C proportions than those recorded in samples in other seasons. The proportions of aromatic C in HoA fractions from A and B horizons were highest in summer. These seasonal variations were less significant than variations with soil depth. O-alkyl C proportions in HoA fractions decreased with increasing soil depth from the Oi to the A horizon. The HoA fractions from the B horizon showed a higher alkyl C proportion than samples from other horizons in winter and spring. These changes with soil depth from the Oi to A horizons might result from selective utilization of carbohydrate carbon by microorganisms, whereas those in the B horizon may result from sorption to mineral surfaces. The HoA fractions in the stream were similar in relative molecular weight, distribution of each type of proton and carbon species in HoA fractions from the B horizon, whereas stream HoA fractions collected in summer would be derived from organic horizons. This indicated that vertical changes in the chemical properties of HoA fractions in soil and pathways of water to the stream would largely affect the chemical properties of HoA fractions in the stream.  相似文献   

20.
Studies relating macro‐ and microscopic aspects of impacts of long‐term contaminative practices on soils are scarce. We performed such an approach by assessing the fate of metal pollutants in an area close to Paris, where sandy Luvisols were irrigated for 100 years with urban waste water. As a result, these soils display strong accumulation of organic matter, dissolved salts and metal pollutants in surface horizons, but also migration of metals to depth. We examined soil development and metal distribution patterns in two irrigated soils, in comparison with a non‐irrigated reference soil. Soil macromorphological characteristics were studied in the field. Soil micromorphology and micro‐scale metal distributions were both studied in situ in thin sections, the latter by synchrotron X‐ray mapping. Microscopic study focussed on characteristic parts of the Ap and Bt horizons, mainly involved in metal retention. For Ap horizons, both large and diffuse metal concentrations were revealed, mainly associated with organic matter and dissolved components added by irrigation water. For Bt horizons, zinc accumulation was detected on clay‐iron coatings. Our results suggest that with time, a double metal‐filtering capacity has developed in these sandy Luvisols: in the Ap horizon, an anthropogenic filter resulted from input of metal pollutants together with highly reactive organic matter, carbonates and phosphates, thus favouring metal immobilization and limiting migration to depth. In the Bt horizon, the evidence is of a second, natural filter. However, this filtering capacity is endangered by clay destruction due to ferrolysis, as revealed by micromorphology. Ferrolysis, here initiated by intensive irrigation practices, leads to a reduction of the natural filtering potential and an increasing risk of metal transfer towards the groundwater.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号