首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

Laboratory and greenhouse experiments were conducted to determine the effects of rate of nitrapyrin and soil pH on nitrification of NH4 + fertilizer in soil, and growth and chemical composition of burley tobacco (Nicotiana tabacum L. cv. ‘KY ‐14'). Such experiments were needed to develop information for increasing efficiency of N fertilizer use and to lessen the fertilizer‐induced soil acidity and salt effects on tobacco plants.

Results for laboratory and greenhouse incubations indicated that nitrification proceeeded slowly below pH 5.0 and the nitrapyrin necessary to delay nitrification increased with both increasing soil pH and length of incubation time. Generally, nitrification could be delayed 30 days by nitrapyrin rates of 0.25 or 0.5 μg g‐1 regardless of soil pH. but rates of 1 μg g‐1 nitrapyrin or higher were required for 60 days and longer incubation times, particularly at higher soil pH.

Growth and morphology of tobacco plants were either unaffected, or affected positively, by low rates of nitrapyrin (up to 2 μg g‐1). However, rates of 4 μg g‐1 and above reduced total plant dry weight, reducing sugars and contents of mineral elements. Concentrations and content of plant NO3 N and Mn were greatly decreased by application of nitrapyrin. Values for most parameters measured increased with increasing soil pH. The data show that low rates of nitrapyrin may be used to alter the ratio of NO3 to NH4 + N absorbed by tobacco and possibly improve growth and safety of tobacco.  相似文献   

2.
利用葡萄酒糟生产有机复混肥研究   总被引:4,自引:1,他引:4  
研究了以葡萄酿酒后副产物皮渣和籽渣为原料,采用化学腐熟促进处理、微生物好氧发酵和添加复配N、P、K等方法生产有机复混肥,该产品有机质含量≥300g/kg,N、P、K总含量≥250g/kg,并含有10多种中微量元素,田间试验结果表明与等养分和等价格化肥相比,施用该有机复混肥可增产10%以上,对多种经济作物品质有明显改善作用,且改土培肥效果明显。  相似文献   

3.
Abstract

A pot experiment with a lateritic soil measured the relative effectiveness of monocalcium phosphate (MCP) fertilizers and six phosphate (P) compounds which were used to represent fertilizer compounds that may be present in soils. The P compounds were added at various rates, wheat was grown, and the treated soils were extracted with eight standard soil P‐test reagents. The relative effectiveness (RE) values for the fertilizer compounds based on plant yield were 1.00, 0.33, 0.32, 0.20, 0.16, 0.15, and 0.09 for MCP, P sorbed on gibbsite (Gi‐P), P sorbed on goethite (Go‐P), P sorbed on calcite (Ca‐P), AlPO4 (Al‐P), Apatite (Ap‐P) and FePO4 (Fe‐P), respectively. For soil treated with Ap‐P, Gi‐P, Go‐P, Ca‐P, and MCP, soil test values were significantly related to the yield of wheat. Only Bray 1, Bray 2, ammonium oxalate, and Colwell soil tests adequately predicted yield for Al‐P treated soil, and no soil test was suitable for soil treated with Fe‐P. Where soil tests were predictive of yield, separate calibrations were required for the different P compounds. For example, in order to obtain 100 mg of wheat per pot from soil that was treated with Al‐P, Fe‐P, Ap‐P, Gi‐P, Go‐P, Ca‐P, and Bray 2 soil test values of 122, 8, 387, 112, 9, 202, and 50 ug/g, respectively, were required.  相似文献   

4.
Organic inputs [e.g. animal manure (AM) and plant residues] contribute directly to the soil organic N pool, whereas mineral N fertilizer contributes indirectly by increasing the return of the crop residues and by microbial immobilization. To evaluate the residual effect of N treatments established in four long‐term (>35 yr) field experiments, we measured the response of barley (grain yield and N offtake at crop maturity) to six rates (0, 30, 60, 90, 120 and 150 kg N/ha) of mineral fertilizer N (Nnew) applied in subplots replacing the customary long‐term plot treatments of fertilizer inputs (Nprev). Rates of Nprev above 50–100 kg N/ha had no consistent effect on the soil N content, but this was up to 20% greater than that in unfertilized treatments. Long‐term unfertilized plots should not be used as control to test the residual value of N in modern agriculture with large production potentials. Although the effect of mineral Nprev on grain yield and N offtake could be substituted by Nnew within a range of previous inputs, the value of Nprev was not eliminated irrespective of Nnew rate. Provided a sufficient supply of plant nutrients other than N, the use‐efficiency of Nnew did not change significantly with previous mineral N fertilizer rate. The residual effect of mineral N fertilizer was negligible compared with the residual effect of N from AM and catch crop residues.  相似文献   

5.
【目的】 薯麦轮作是我国甘薯种植的主要模式,施钾对甘薯、小麦都有较好的增产效果。本文研究了薯麦轮作中钾肥最佳运筹方案,以便更好地发挥钾肥效益。 【方法】 在江苏省农业科学院位于南京的六合基地连续进行了三年田间定位试验,在周年钾肥投入总量K2O 270 kg/hm2的前提下,设置5个甘薯 (S) /小麦 (W) 钾肥分配量处理,分别为 S0W270、S90W180、S135W135、S180W90、S270W0,重复三次。调查了产量、产量组成和生物量分配,测定了吸钾量、钾生理效率和钾表观平衡。 【结果】 钾肥分配量显著影响甘薯的块根产量、单株薯数、单个薯重、冠根比、吸钾量和钾生理效率,而对小麦产量、有效穗数、穗粒数、千粒重、草谷比、吸钾量、钾收获指数和钾生理效率均无显著影响。甘薯产量和周年产量均以钾肥全部施于薯季的S270W0处理最高,全部分配于麦季的S0W270处理次之,S270W0的甘薯产量和周年产量比薯麦两季分配的S90W180、S135W135、S180W90处理提高20.7%~24.5% (P < 0.05) 和17.8%~20.9% ( P < 0.01),S0W270的分别提高了9.9%~13.4% ( P > 0.05) 和8.2%~11.0% ( P > 0.05)。S270W0处理的单株薯数和单个薯重分别比钾肥施两季的处理高5.2%~10.4%和8.5%~30.6% ( P < 0.01),是其产量增加的主要原因;S0W270处理的单株薯数比 这三个处理高18.9%~24.8% ( P < 0.001),但单薯重低于其他处理,较高的单株薯数是该处理甘薯增产的主要原因。S180W90和S270W0处理甘薯整株吸钾量比S90W180和S0W270高出9.7%~16.1% ( P < 0.05)。随薯季施钾量增加,甘薯冠根比先增后减 ( P < 0.001)、钾生理效率先减后增 ( P < 0.01)、钾收获指数和商品率变化较小 ( P > 0.05)。甘薯吸钾量平均为K 2O 228.0 kg/hm2,是小麦的2.3倍;钾收获指数平均为0.55,是小麦的5.5倍。薯蔓中储存的钾占甘薯吸钾量的46.6%,薯蔓还田可满足小麦对钾的需求;麦秸中贮存的钾占小麦吸钾量的91.0%,麦秸还田只能满足甘薯吸钾量的39.5%。本研究施钾量下,秸秆不还田,甘薯和小麦年均携出土壤的钾达K2O 327.9 kg/hm2,年末土壤速效钾呈快速下降,三个轮作周期后土壤速效钾降低49.2%;秸秆和薯蔓完全还田条件下,薯麦轮作施钾量为K2O 134.3 kg/hm2时即可保持土壤钾素平衡。 【结论】 薯麦轮作中,以钾肥单施于甘薯上,可显著增加单株薯数和单个薯重,增加甘薯产量和周年产量。全部钾肥施于甘薯上,薯蔓还田可以满足小麦的钾素营养。麦秸和薯蔓完全还田条件下,可适当减少钾肥的投入,年施K2O 134.3 kg/hm2时即可保持钾素平衡。供试地区土壤和管理条件下,钾肥的管理模式建议为“秸秆还田 + 适宜施钾量 + 钾肥全部施于薯季”。   相似文献   

6.
In a field experiment conducted at Aligarh, India, nine combinations of nitrogen (N) and phosphorus (P) were factorially randomized with four triticales and one check each of wheat and rye to investigate the effect of progressive rates of application (180–300 kg N+P ha‐1) of combined N+P fertilizer on grain yield and quality. Grain yield, protein content, and values for yield components significantly increased with increasing combined N+P fertilizer rates up to 240 kg N+P ha‐1 (200 kg N+40 kg P ha‐1). The response of further increases in N+P rates gradually diminished, thereafter, despite increasing N and/or P in the fertilizer combinations. The data facilitated the selection of improved cultivars in terms of yield and quality of grain and simultaneously revealed the harmful effects of overfertilization.  相似文献   

7.
A 6 year field study comparing the effects of 5 fertilizer sources applied at 4 levels to 3 rabbiteye blueberry (Vaccinium ashei Reade) cultivars was established on a Typic paleudult soil in southern Misssssippi. Fertilizer sources had little influence on plant height, vigor, chlorosis, or fruit yield. The first year, ‘Tifblue’ was lowest in vigor and fruit yield, but after 4 growing seasons, had the highest plant height and fruit yields. Chlorosis symptoms were more prevalent at the highest fertilization rate, in the cultivar ‘Woodard’, and with Ca(NO3)2 fertilizer. During the first 5 years, fruit yields increased as fertilization levels increased from 0 to 5.9 g N/plant but additional fertilization did not influence yields There were no differences in plant vigor due to cultivars but the highest rate of fertilization decreased vigor. The cultivar X fertilization rate interaction was significant for plant height in 1983 and for fruit yields in 1984 and 1985. ‘Delite’ and ‘Woodard’ plant height increased while height of ‘Tifblue’ decreased as fertilization rates increased from the 0 to 5.9 g N/plant levels; higher rates decreased plant height in all cultivars. In 1984 and 1985 fruit yields of ‘Woodard’ and ‘Delite’ were not influenced by fertilization but yields of ‘Tifblue’ indicated a negative response to increasing fertilizer levels.  相似文献   

8.
ABSTRACT

Biochar can reduce N2O emissions and it can be added to the soil once, whereas fertilizers are often applied every cultivation season. The aging of biochar in soil affects its functioning but it is unclear whether palm shell biochar (PSB) could still mitigate N2O emissions even when additional basal N fertilizers are applied 1 year after the initial biochar application. We studied the impact of fresh and aged PSB (0%, 6%, 12%, and 18% w/w of dry soil) on N2O emissions, soil properties, nutrient content and yield of Komatsuna (Brassica rapa var. perviridis) under sandy soil conditions. The aged PSB non-significantly reduced N2O emissions but significantly offset soil acidification, and maintained a high soil nutrient status. Biochar application with fertilizer significantly increased plant tissue K and Ca content but decreased N, P and Mg content compared to the treatments without biochar. At higher application rates, biochar had negative effects on crop yield but as it aged, the negative effects were offset as a result of the similar variation in plant N uptake. Since seasonal N fertilizer application seems to be inevitable in Komatsuna cultivation, addition of biochar could be a possible way of counteracting the effects of excessive fertilizer use. Further research is needed to assess the feasible biochar application rates for Komatsuna fields in various soil types under field conditions.  相似文献   

9.
Fei  Chao  Zhang  Shirong  Wei  Wenliang  Liang  Bin  Li  Junliang  Ding  Xiaodong 《Journal of Soils and Sediments》2020,20(3):1199-1207
Purpose

Phosphorus (P) mobility in soil is controlled by its forms and soil sorption capacity. The P forms and soil sorption capacity are both affected by nitrogen (N) and carbon (C) addition. This paper aimed to (i) analyze effects of N and straw application on the different forms and content of P in the soil and its leachates in greenhouse soil, and (ii) explain variations in soil P transformation and transport in terms of contributing soil factors.

Material and methods

In this study, the impacts of N and straw application on the transformation and transport of soil P were investigated after 17 years in a greenhouse. Four fertilization regimes were implemented: farmer standard fertilization practice (CK), straw incorporation treatment (SC), optimized N fertilizer application (ON), and combined straw and optimized N fertilizer application (SN). P forms and its contents were determined in the selected leached water and its related soil samples.

Results and discussion

Compared with CK, ON treatment significantly (p < 0.05) decreased total phosphorus (Pt) and the proportion of organic phosphorus (Po) in soil, while straw amendment did not affect soil Pt content. SC, ON, and SN all decreased soil available phosphorus (Pa) but enhanced P transformation, as evidenced by the increase in the ratio of Pa to Pt and microbial phosphorus (MBP) and alkaline phosphatases (ALP) in soil. After SN implementation, soil P adsorption capacity increased significantly and was associated with higher soil organic matter (SOM) and CaCO3. ON showed lower Pt in the leachate than CK, but SC did not lead to significantly different. Under the SN regime, Pt loss by leaching decreased by 29.4% compared with CK and significantly reduced proportion of total dissolve P (DPt) in leachate.

Conclusions

Our study highlights that straw and optimized N fertilizer in SN treatment not only generates lower P loss by leaching but also promotes the transformation of soil P, which were attributed to higher soil Pa in greenhouse soil. This finding further indicates that P transformation and transport in the different fertilizer regimes was primarily linked to pH and SOM in greenhouse soil.

  相似文献   

10.
Abstract

Nitrogen (N) fertilizer is a key factor of yield increase but also an environmental pollution hazard. The sustainable agriculture system should have an acceptable level of productivity and profitability and an adequate environmental protection. The objectives of this study were to determine the relationships between N rate, DM yield, plant N concentration (NC) and residual soil nitrate‐nitrogen in order to improve the predicted N rate in corn (Zea mays L.) silage. The experiment was conducted over a period of three years in the province of Quebec on three soil series in a continuous corn crop sequence. Treatments consisted of six rates of N: O, 40, 80, 120, 160, and 200 kg N ha‐1 as ammonium nitrate applied at planting: broadcast and side banded. Four optimum N rates were calculated using different models: (i) economic rate base on fertilizer and corn price using the quadratic model (E); (ii) economic rate based on fertilizer and corn price using the quadratic‐plus‐plateau model (QP); (iii) critical rate based on linear‐plus‐plateau model (P); (iv) lower than maximum rate (L) corresponding to 95% of maximum yield. The optimum plant NC at all growing stages and the N uptake at harvest were calculated depending on these N rates and yields.

The NC of whole plant at 8‐leaf stage (25–30 cm plant height) of ear leaf at tasselling and of whole plant at harvest stage, the N rate, the N uptake at harvest and the DM yield were all significantly intercorrelated and affected by soils and years, but not affected by N fertilizer application method. The DM yield was linearly and significantly related to NC of whole plant at 8‐leaf stage (rv = 0.932**). At this stage, the average NC corresponding to the optimum N rate and yield was of 3.71, 3.68, and 3.66% as calculated with E, L, and P model, respectively. Our data suggest that the NC of whole plant at 8‐leaf stage may be used to evaluate the N nutrition status of plant and the required optimum N fertilizer rate. The NC of ear leaf at tassel stage was also significantly correlated to corn yield (r = 0.994**). It may be used as an indicator to evaluate the near‐optimum N rate in the subsequent years.

The N uptake by whole above‐ground plant at harvest was quadratically related to corn yield. Data show that at high fertilizer N rate, the N uptake still increased without significantly increasing yield. The N uptake was of 176.5, 163.0, and 155.0 kg N ha‐1 using the E, L and P rates of 146, 126, and 115 kg N applied ha‐1, respectively. The optimum N rate and yield were affected by soil type and year, but not by the method of N fertilizer application. The yield increased rapidly up to a N rate of about 120 kg N ha‐1 and then quite slightly to a maximum N rate of 192 kg N ha‐1. The optimum N rate was of 115 and 126 kg N ha‐1 using the P and L model respectively and as high as 146.8 kg N ha‐1 using the E model. The L model, using a much smaller N rate, gave a reasonably high yield compared to E rate (12.2 and 12.5 Mg ha‐1, respectively). The data show that a relatively much lower N rate than maximum did not proportionally diminish the yield. Thus, for a difference of 40.4% between maximum N rate and P rate a difference of only 7.4% in yield was observed. Using the L model the differences in rate and yield were of 34.4% and 4.7%, respectively. The QP model gave no significant difference compared to E model.

At harvest the residual soil NO3‐N increased significantly with increasing N fertilizer rate in whole of the 100 cm soil profile, but mainly in the top 40 cm soil layer. The total NO3‐N found in 0–100 cm profile at rate of 0, 120 and 200 kg applied N ha‐1 at planting was as high as 33.7, 60.5, and 74.5 kg N ha‐1 respectively in a light soil and 37.5, 97.5, and 145.5 kg N ha‐1 in a heavy clay soil. The difference in NO3‐N content in the 60–100 cm layer between different applied N rate suggests that at harvest, part of fertilizer N applied at planting was already leached below the 100 cm soil layer. Results, thus, show that reasonably high corn yields can be obtained using more adequate N fertilizer rates which avoid the overfertilization and are likely to reduce the air and ground water pollution.  相似文献   

11.
Abstract

A greenhouse experiment was carried out to determine the S response and the plant S content of rice (Oryza sativa L.) cultivars OS‐6 and IR‐20 grown in sandy Apomu soil series under upland conditions.

Sulphur application increased growth and dry matter yield. At low S rates OS‐6 gave higher grain yield than IR‐20. With high S rates, OS‐6 responded more in straw production. The leaf S content was highest during early growth and decreased with plant age. At flower emergence, the blade of the Y‐leaf appeared to be a suitable index for measuring the S status of the plant. The critical S level was estimated at 0.15%. The critical S levels in the grain and straw at harvest were estimated respectively at 0.12%, and 0.10%. The N/S ratios for the grain and straw at harvest appeared not to be a useful index for determining the critical S status of the plant.  相似文献   

12.
Responses of residual and recommended nitrogen (N), phosphorus (P), potassium (K), sulfur (S) nutrient amounts and crops (yield, emergence, and height) to 0, 60, 100, and 140% soil test-based fertilizer rate applications on the same plots for six years under minimum tillage and direct seeding systems were assessed. Higher fertilizer rates increased residual nitrate (NO3)-N, extractable K, and sulfate (SO4)-S amounts after a low crop yield year, particularly NO3-N, without temporal trend. Increase in residual available P level at higher fertilizer rates showed a positive temporal trend. Lower N, P, and S fertilizer rates were recommended to crops after higher residual NO3-N, available P, and SO4-S levels. Crops effectively used the residual nutrients. Compared to 0%, the relative seed yields at 60, 100, and 140% rates increased with years of fertilization. There were no clear responses of measured soil and crop parameters to seeding systems. Testing residual nutrients can optimize fertilizer use and crop yields.  相似文献   

13.
Summary A pot experiment was conducted to study the availability of soil and fertilizer N to wetland rice as influenced by wheat straw amendment (organic amendment) and to establish the relative significance of the two sources in affecting crop yield. Straw was incorporated in soil at 0.1, 0.2, and 0.3% before transplanting rice. Inorganic N as 15N-ammonium sulphate was applied at 30, 60, and 90 g g-1 soil either alone or together with wheat straw in different combinations. After harvesting the rice, the plant and soil samples were analyzed for total N and 15N. Straw incorporation significantly decreased the dry matter and N yield of rice, the decrease being greater with higher rates of straw. The reduction in crop yield following the straw incorporation was attributed mainly to a decrease in the uptake of soil N rather than fertilizer N. The harmful effects of organic matter amendment were mitigated by higher levels of mineral N addition. The uptake of applied N increased and its losses decreased due to the straw incorporation. Mineral N applied alone or together with organic amendment substantially increased the uptake of unlabelled soil N. The increase was attributed to a real added N interaction.  相似文献   

14.
凉州灌区酿酒葡萄氮肥施用研究   总被引:1,自引:1,他引:0  
[目的]通过田间试验,研究酿酒葡萄对不同氮肥施用量及施用深度的响应,为甘肃省凉州灌区酿酒葡萄氮肥合理施用提供依据。[方法]在凉州区设置酿酒葡萄氮肥施用量及施用深度试验,研究不同氮肥施用量及施用深度对酿酒葡萄产量、收获期果实、叶片和叶柄含氮量及收获期和第2a萌芽期0—200cm土层硝态氮含量的影响。[结果]10和30cm施肥深度之间酿酒葡萄产量、收获期果实、叶片和叶柄含氮量及收获期和第2a萌芽期0—200cm土层硝态氮含量差异不显著。氮肥施用量对酿酒葡萄产量和叶柄含氮量的影响达到显著水平,对果实和叶片含氮量的影响不明显,其中高氮(300kg/hm~2)和中氮(240kg/hm~2)处理之间酿酒葡萄产量、果实含氮量、叶片含氮量、叶柄含氮量差异不明显,但是高氮和中氮处理与低氮(180kg/hm~2)处理相比,产量增加28.6%和24.1%,叶片含氮量增加17.4%和11.3%,叶柄含氮量增加了40.7%和33.0%,而对于收获期和第2a萌芽期0—200cm土层硝态氮含量,高氮处理相对于中氮和低氮处理增加了53.8%,94.4%和41.8%,76.1%,氮肥施用量和施用深度的交互效应,仅叶片含氮量达到显著水平。[结论]受土壤质地和传统沟灌影响,氮肥施用深度对酿酒葡萄影响效果不明显,240kg/hm~2为酿酒葡萄较为合适的氮肥施用量,但氮素也存在损失风险。所以,凉州灌区酿酒葡萄合理施肥应该和灌水方式进行结合来确定合理的施肥量和施肥方式。  相似文献   

15.
西红柿对聚烯烃控释肥这种新的施肥方法的反应   总被引:2,自引:0,他引:2  
The response of tomato (Lycopersicon esculentum) plants basically fertilized with 0.3 g N per plant of compound fertilizer with a N:P2O5:K2O ratio of 20:10:20 to sticks of polyolefin-coated fertilizer (POCF) (LongT0 with a N:P2Os:K2O ratio of 14:12:14) applied 23 d after transplanting was investigated using rooting boxes in the greenhouse. The results at 26 and 40 d after stick fertilizer treatment showed that the use of the stick fertilizer greatly increased the production of many new fine roots from the tomato plants. Compared to the unfertilized control, root length and root length density in the stick fertilizer treatment increased by 3.6-6.7 fold. In the soil zones near the stick fertilizer, root weight and root mass density were also significantly higher for the stick fertilizer treatment. Additionally, the use of the stick fertilizer increased the N, P and K concentrations in the leaves and stems of the tomato plants. The new fine roots growing near the stick fertilizer not only absorbed more nutrients and translocated them to the shoots, but also contained more nutrients within themselves. The soil ammonium and nitrate N data showed that N released from the stick fertilizer played a major role in inducing the production of new fine roots. These results indicated that stick fertilizer could be used as an alternative to the co-situs application technique to change and control the root distribution of crops as well as to increase the potential capacity of roots for water and nutrient absorption.  相似文献   

16.
Abstract

Efficient crop use of nitrogen (N) fertilizer is critical from economic and environmental viewpoints, especially under irrigated conditions. Nitrogen fertilizer (15N‐labeled urea) and irrigation methods (drip and furrow) were evaluated on spring and fall potato cultivars under Syrian Mediterranean climatic conditions. Field experiments were conducted in the El‐Ghab Valley near Hama in fall 2000 and spring 2001 on a heavy clay soil. Four N‐fertilizer applications (70, 140, 210, and 280 kg N/ha) were applied in five equally split treatments for both irrigation methods. Potato was irrigated when soil moisture in the specified active root depth reached 80% of the field capacity as indicated by the neutron probe.

Higher marketable tuber yield of spring potato was obtained by fertigation compared to furrow irrigation; the magnitude of tuber yield increases was 4, 2, 31, and 13%, whereas for fall potato the tuber yield increases were 13, 27, 20, and 35% for N fertilizer rates of 70, 140, 210, and 280 kg N/ha, respectively. Shoot dry matter and tuber yields at the bulking stage were not good parameters to estimate marketable tuber yield. The effect of N treatments on potato yield with furrow irrigation and fertigation was limited and not significant. Drip fertigation improved tuber yield of fall potato relative to national average yield. Nitrogen uptake increased with increasing N input under both irrigation methods. Reducing N input under both irrigation methods improved N recoveries. Increasing N input significantly increased total N content in plant tissues at the bulking stage. Spring potato yields were almost double those of fall potato under both irrigation methods and all N treatments.

Nitrate (NO3) movement in the soil solution for fall potato was monitored using soil solution extractors. Furrow irrigation resulted in greater movements of NO3‐N below the rooting zone than drip fertigation.

Harvest index did not follow a clear trend but tended to decrease upon increasing N fertilization rates beyond 140 kg N/ha under both irrigation methods. Drip fertigation improved field water‐use efficiencies at the bulking and harvest stages. Fertigation increased specific gravity of potato tubers relative to furrow irrigation. Higher N input decreased specific gravity of potato tubers under both irrigation methods.  相似文献   

17.
Abstract

The aim of this study was to determine the relationships between soil water and nitrogen fertilizer and their effect on grain corn yield (Zea mays L.) in a zone where the limiting factor of yield and nitrogen efficiency is the water supply. The experiments were carried out for 10 years on a deep‐permeable well—drained chernozem in a temperate—continental dry climate with annual precipitation of about 500 mm.

Different nitrogen rates were applied and plant available soil water (PAW) was determined every year before and during the growing season. Multiple regressions were fitted for nitrogen rate, soil water and corn yield.

The results show that there is a significant interaction between soil water content, applied nitrogen and corn yield. The soil water explains the greatest part of yield variation, followed by the soil water‐added nitrogen interaction effect and the direct effect of added nitrogen. The PAH on July 1st gave a better correlation (R2 = 0.88) than June 1st (R2 = 0.85) or March 1st PAW (R2 = 0.72). But the best correlation was obtained when both June and July PAW were taken together in the regression (R2 = 0.914). July PAW was also more efficient in terms of yield per PAW. Thus, 1 mm of PAW on March, June and July 1st increased the control yield by 12.5, 14.6, and 18.3 kg grain/ha respectively, and by 18.0, 22.0 and 32.0 kg grain/ha for the fertilized yield (with 60 kg N/ha). At low soil moisture content, the applied N had no or even negative effect on water use efficiency and yield while at high PAW the water use efficiency was greatly increased by the applied N.  相似文献   

18.
Abstract

Current nitrogen (N) fertilizer recommendations for Kentucky bluegrass (Poa pratensis L.) seed production in northern Idaho are based on potential yield and annual precipitation. Soil test correlation information collected for other northern Idaho crops provide the basis for P, S and B recommendations. The objective of this paper is to assess the current recommendations with a series of forty field trials conducted on ten sites during four seed production seasons. All field trials were conducted on Alfisols and Mollisols initially containing less than 60 kg N/ha, 3.5 μg/g NaOAc extractable P, 40 kg extractable SO4‐S/ha and 0.5 μg/g extractable B. Fertilization rates evaluated included: 0, 50, 75, 100, 125, 150 and 200 kg N/ha; 0, 30 and 60 kg P2O5/ha; 0, 25, and 50 kg SO4‐S/ha, and 0 and 1.5 kg B/ha. Five field sites contained the cultivar ‘Argyle’ Kentucky bluegrass seed, while the other five sites contained the cultivar ‘South Dakota’.

Excellent relationships between percent maximum Kentucky bluegrass seed production and the sum of inorganic soil N + fertilizer N applied were observed for the ‘Argyle’ (R2=0.65) and ‘South Dakota’ (R2=0.72) cultivars. Phosphorus applications of 30 kg P2O5/ha improved seed yields from 10.0 to 51.6% when initial soil test values were less than 3.0 6 μg/g NaOAc extractable P. When initial SO4‐S soil values were less than 32 kg/ha fertilizer additions increased seed yields from 12.6 to 107.3%. Boron applications did not improve seed yields. Analysis of these trials indicates that adequate information is available to make satisfactory P, S and B fertilizer recommendations; however, additional soil test correlation information is needed for N recommendations.  相似文献   

19.
长期施氮、磷、钾化肥对玉米产量及土壤肥力的影响   总被引:53,自引:3,他引:53  
以1990年建立的国家褐潮土土壤肥力与肥料效益长期监测基地(北京昌平站)的长期肥料定位试验为研究平台,研究了不同施肥制度对玉米产量和土壤肥力的影响。结果表明,长期均衡地施NPK肥或NPK与有机肥配施,可以显著提高玉米产量和土壤有机质、全氮、全磷、速效氮、速效磷、速效钾等肥力指标,并能提高土壤微量元素的含量;而不均衡施肥(N、NK、NP、PK)导致相应的营养元素的耗竭。相关分析表明,在褐潮土上增施磷肥和有机肥对提高玉米产量具有重要的作用。  相似文献   

20.
Abstract

A greenhouse experiment was conducted on clay loam soil of pH 7.8 to evaluate the effect of P, N fertilization and foliar applied Mn on yield and nutrient concentration in leaves and seeds of soybean. A significant yield increase was obtained for each added increment of P fertilizer up to 30 kg P2O5/acre. At application rates of 0, 15, 30 & 45 kg P2O5/acre, the seed yield was subsequently 27.8, 65.8, 82.8 & 83.6% of the maximum yield obtained at the maximum calculated P level. The yield increase accounted 14.2 and 10.2% for N and Mn applications. In all treatments, in which P was combined with N, the seed yield was relatively higher than with P or N applied alone.

Phosphorus, N and Mn content in leaves and seeds were positively correlated with the applied nutrient fertilizers. At any given level of applied P and Mn, P content was significantly higher in +N than ‐N treatments. By Mn application, P content in leaves and seeds was decreased. Phosphorus and Mn applications did not influence N content in leaves and seeds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号