首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
胡敏酸对铵钾在粘土矿物上交互作用的影响   总被引:1,自引:0,他引:1  
Interaction of ammonium (NH+4) and potassium (K+) is typical in field soils. However, the effects of organic matter on interaction of NH+4 and K+have not been thoroughly investigated. In this study, we examined the changes in major physicochemical properties of three clay minerals (kaolinite, illite, and montmorillonite) after humic acid (HA) coating and evaluated the influences of these changes on the interaction of NH+4 and K+on clay minerals using batch experiments. After HA coating, the cation exchange capacity (CEC) and specific surface area (SSA) of montmorillonite decreased significantly, while little decrease in CEC and SSA occurred in illite and only a slight increase in CEC was found in kaolinite. Humic acid coating significantly increased cation adsorption and preference for NH+4, and this effect was more obvious on clay minerals with a lower CEC. Results of Fourier transform infrared spectrometry analysis showed that HA coating promoted the formation of H-bonds between the adsorbed NH+4 and the organo-mineral complexes. HA coating increased cation fixation capacity on montmorillonite and kaolinite, but the opposite occurred on illite. In addition, HA coating increased the competitiveness of NH+4 on fixation sites. These results showed that HA coating affected both the nature of clay mineral surfaces and the reactions of NH+4 and K+with clay minerals, which might influence the availability of nutrient cations to plants in field soils amended with organic matter.  相似文献   

2.
Much evidence has indicated that the occurrence of montmorillonite and vermiculite containing Al-interlayers is very common in solis, particularly acid soils. Viewed in the light of soil clay minerology, it would be required to investigate the properties of their original minerals. For the latter purpose, the Al-interlayer has been removed prior to the Mg-glycerol,K-saturation and heating tests for identification of montmorillonite and vermiculite. Its removal has been accomplished in sevsral ways; KOH plus KCl (1), NH4F, KCl plus HCl (2), Na-citrate (3),400C de hydroxylation-NaOH (4) dissolution. Although these methods are effective for the removal of Al-interlayers, they seem drastically to affect the minerals or are time-consuming. Inthe course of the study of hydroxy-Al interlaid complexes of expanding 2:1 layer lattice clay minerals, the authors have noticed the difference between the (001) spacings of hydroxy-Al complexes of montmorillonite and vermiculite; the former exhibited the 20 A basal spacing at room temperature against the 14 A spacing of the latter. This difference might be useful for differentiating montnmorillonite-chlorite intergrades in soils.  相似文献   

3.
Urine-treated soils make a significant contribution to gaseous N losses to the atmosphere. Our goal was to investigate the influence of clay type and content on ammonia (NH3) and nitrous oxide (N2O) emissions from urine under different wetting–drying soil conditions and to relate these results to urine-N transformation processes in soil. Three types of silt loam soils and synthetic sand–clay aggregates with three different clay-dominated materials (kaolinite, montmorillonite and vermiculite) were used in this laboratory study. Bulk soil, 4–4.75 mm and 9.5–11.2 mm aggregates were incubated with synthetic urine at 50% and 75% saturation under aerobic conditions. Repeated urine application affected the properties of the aggregates depending on the type of clay present. Greater clay content increased aggregate stability and reduced NH3 volatilization. The variation in clay ammonium (NH4 +) fixation capacities was reflected in NH3 volatilization as well as in the onset of N2O emissions, occurring first from kaolinite-dominated and last from vermiculite-dominated soils. Nitrous oxide production was greater in aggregates than in bulk soil, a difference that consistently increased with repeated urine applications for kaolinitic and vermiculitic treatments. A dual-peak N2O emission pattern was found, with the second maximum increasing with the number of urine applications. Emission of 15N-labeled N2 was found at 75% saturation in kaolinite and vermiculite-dominated samples. Anaerobic conditions were less pronounced with montmorillonite-dominated samples because shrink–swell action caused aggregate breakage.  相似文献   

4.
This paper reports a procedure for determining the content of strongly fixed NH4+ in soil. The procedure consists of a Kjeldahl digestion followed by an acid attack of the residue with a 5 m HF:1 m HCl solution. Distillations after each of the two treatments recover different forms of NH4+. The procedure was tested on fine earth (< 2 mm) and skeleton (> 2 mm) fractions of two forest soils developed on sandstone parent material. In both soil fractions we evaluated three different forms of NH4+-N: (i) Kjeldahl, (ii) non-exchangeable and (iii) micaceous. The last is located in the interlayer of mica flakes larger than 50 μm that resist the Kjeldahl digestion and is considered strongly fixed. The total NH4+-N content of a soil is obtained by the summation of the Kjeldahl and the micaceous NH4+-N. In the soils under consideration, the micaceous form prevails in the skeleton because this fraction is richer in micas of sand size (> 50 μm). Following the proposed procedure, we found that micas (muscovite and biotite) contain about 3000 mg kg–1 of NH4+-N in the interlayer. The presence of micaceous NH4+-N in soil is generally ignored because the skeleton is usually excluded from analyses, and the micas larger than 50 μm cannot be dissolved by the Kjeldahl treatments. The micaceous NH4+ is the least extractable form of NH4+-N, and we infer that it is the least available to plants.  相似文献   

5.
The fraction of nonexchangeable ammonium (NH4+) can play an important role in N cycling of soils as a sink (fixation) or a source (release) of NH4+. Recently fixed nonexchangeable NH4+ especially seems to be a significant source for N release. The aim of our study was to determine the effect of residence time on the kinetics of nonexchangeable NH4+ release from illite and vermiculite. Calcium-saturated illite and vermiculite, containing NH4+ that was “fixed” for one and 60 d, were extracted with a H-resin for 0.25 to 384 h. Both clay minerals “fixed” significantly more NH4+ in 60 d than in 1 d, but vermiculite “fixed” more NH4+ than illite. The kinetics of nonexchangeable NH4+ release from illite and vermiculite were well described by the Elovich equation and by a heterogeneous diffusion model. In vermiculite the percentage of nonexchangeable NH4+ release decreased from 84% to 78% when the time of fixation increased from 1 to 60 d. In illite time of residence has not influenced the complete release of newly fixed NH4+.  相似文献   

6.
In upper mineral horizons, CEC by compulsive and isotopic exchange methods, using Ba2+ as the saturating cation, gave higher values than the effective CEC at natural soil pH, and much higher values than CEC determined with m NH4OAc at pH 7. Cumulative Al release during leaching was considerably higher using Mg2+ and Ba2+ chlorides than K+ and NH4+ chlorides, and gave a different shape extraction curve. Basal spacing of the dominant dioctahedral vermiculite in the soil clays contracted from 14.5Å to 10.0–10.9 Å when saturated with NH4+ and K+, restricting release of interlayer Al. Lower horizons, containing a large proportion of Al-chlorite in the clay fraction, which did not contract with any of the cations, showed more normal exchange behaviour. On leaching, Al release was slightly greater with K+ and NH4+, than with Mg2+ and Ba2+, chlorides. The implication of the results for CEC measurements is discussed.  相似文献   

7.
Abstract

In view of the agronomic and economic significance of NH4 fixation in soils, an attempt has been made to relate this to the most reactive mineral constituents of soils ‐ the clay minerals, under the temperature‐moisture regimes normal to tropical upland rice soils. Laboratory fixation study was done with NH4, concentrations similar to those common in soils upon N fertilization, and under alternate wetting and drying at ambient temperatures rather than at 100°C as in many published studies.

Results of the investigation show that soil clays with dominant vermiculite and montmorillonite fix the greatest proportion of applied NH4 (94 and 91%), followed by beidellite (72%) and x‐ray amorphous (45–64%) clays. Fixation is negligible (10%) in the clay with mineral suite consisting of hydrous mica, halloysite, and chlorite. Crystallinity of minerals seems to influence NH4 fixation appreciably.  相似文献   

8.
Fate of fertilizer ammonium in soils with different composition of clay minerals in an incubation experiment In an incubation experiment with three different soils (gray brown podsolic soil from loess, alluvial gley, and brown earth, derived from basalt) the specific adsorption (fixation) and release of fertilizer NH4+ was investigated. In one treatment 120 mg NH4–N/kg soil was added, while the other treatment (control) received no nitrogen. Soils samples were taken every ten days and analyzed for nonexchangeable and exchangeable NH4+ and NO3?. The experimental results are showing that the specific adsorption of applied NH4+ was related to the type of clay minerals. While the loess soil, rich in illite, and the alluvial soil, rich in expansible clay minerals, bound about 40% of the added NH4+ specifically, the soil derived from basalt with mainly kaolinite bound only about 10 %. From the recently “fixed” fertilizer NH4+ about a half was nitrified during the incubation period of about 9 weeks. In the control there was no significant release of specifically bound NH4+. Obviously this NH4+ is located more deeply in the interlayers of the clay minerals and not available to microorganisms.  相似文献   

9.
An incubation experiment under aseptic and septic conditions using 15N-labelled NH4+-N and NO3-N, was carried out to study the effect of N transformations after flooding on NH4+ fixation in a paddy soil from China. After flooding ammonification was favoured, providing NH4+ for fixation by clay minerals. NH4+ fixation was more pronounced under low redox potential (Eh) conditions. Close correlations existed between exchangeable NH4+, Eh, and non-exchangeable NH4+. Therefore, two major conditions for NH4+ fixation induced by flooding in paddy soil were found, namely flooding promoted net production of NH4+ due to the deamination of organic N and, in addition, decreased the Eh of the soil. A lower Eh was caused by reduction and dissolution of Fe oxide coating on the clay minerals' surfaces, eliminating the obstacles for NH4+ diffusing into or out of the interlayers of clay minerals. A higher concentration of exchangeable NH4+ from deamination of organic N would drive NH4+ diffusing from the soil solution into the interlayers of clay minerals. 15N-labelled NO3 incorporated into the flooded soil was not reduced to NH3. The addition of NO3 retarded the decrease in the soil Eh and, therefore, NH4+ fixation.  相似文献   

10.
Abstract

The effect of sesquioxides on the mechanisms of chemical reactions that govern the transformation between exchangeable potassium (Kex) and non‐exchangeable K (Knex) was studied on acid tropical soils from Colombia: Caribia with predominantly 2∶1 clay minerals and High Terrace with predominantly 1∶1 clay minerals and sesquioxides. Illite and vermiculite are the main clay minerals in Caribia followed by kaolinite, gibbsite, and plagioclase, and kaolinite is the major clay mineral in High Terrace followed by hydroxyl‐Al interlayered vermiculite, quartz, and pyrophyllite. The soils have 1.8 and 0.5% of K2O, respectively. They were used either untreated or prepared by adding AlCl3 and NaOH, which produced aluminum hydroxide. The soils were percolated continuously with 10 mM NH4OAc at pH 7.0 and 10 mM CaCl2 at pH 5.8 for 120 h at 6 mL h?1 to examine the release of Kex and Knex. In the untreated soils, NH4 + and Ca2+ released the same amounts of Kex from Caribia, whereas NH4 + released about twice as much Kex as Ca2+ from High Terrace. This study proposes that the small ionic size of NH4 + (0.54 nm) enables it to enter more easily into the K sites at the broken edges of the kaolinite where Ca2+ (0.96 nm) cannot have access. As expected for a soil dominated by 2∶1 clay minerals, Ca2+ caused Knex to be released from Caribia with no release by NH4 +. No Knex was released by either ion from High Terrace. After treatment with aluminum hydroxide, K release from the exchangeable fraction was reduced in Caribia due to the blocking of the exchange sites but release of Knex was not affected. The treatment increased the amount of Kex released from the High Terrace soil and the release of Knex remained negligible although with Ca2+ the distinction between Kex and Knex was unclear. The increase in Kex was attributed to the initially acidic conditions produced by adding AlCl3 which may have dissolved interlayered aluminum hydroxide from the vermiculite present, thus exposing trapped K as exchangeable K. The subsequent precipitation of aluminum hydroxide when NaOH was added did not interfere with the release of this K, and so was probably formed mostly on the surface of the dominant kaolinite. Measurement of availability of K by standard methods using NH4 salts could result in overestimates in High Terrace and this may be a more general shortcoming of the methods in kaolinitic soils.  相似文献   

11.
Displacement of NH4+ fixed in clay minerals by fertilizer 15NH4+ is seen as one mechanism of apparent added nitrogen interactions (ANI), which may cause errors in 15N tracer studies. Pot and incubation experiments were carried out for a study of displacement of fixed NH4+ by 15N‐labeled fertilizer (ammonium sulfate and urea). A typical ANI was observed when 15N‐labeled urea was applied to wheat grown on soils with different N reserves that resulted from their long‐term fertilization history: Plants took up more soil N when receiving fertilizer. Furthermore, an increased uptake of 15N‐labeled fertilizer, induced by increasing unlabeled soil nitrogen supply, was found. This ANI‐like effect was in the same order of magnitude as the observed ANI. All causes of apparent or real ANI can be excluded as explanation for this effect. Plant N uptake‐related processes beyond current concepts of ANI may be responsible. NH4+ fixation of fertilizer 15NH4+ in sterilized or non‐sterile, moist soil was immediate and strongly dependent on the rate of fertilizer added. But for the tested range of 20 to 160 mg 15NH4+‐N kg–1, the NH4+ fixation rate was low, accounting for only up to 1.3 % of fertilizer N added. For sterilized soil, no re‐mobilization of fixed 15NH4+ was observed, while in non‐sterile, biologically active soil, 50 % of the initially fixed 15NH4+ was released up to day 35. Re‐mobilization of 15NH4+ from the pool of fixed NH4+ started after complete nitrification of all extractable NH4+. Our results indicate that in most cases, experimental error from apparent ANI caused by displacement of fixed NH4+ in clay is unlikely. In addition to the low percentage of only 1.3 % of applied 15N, present in the pool of fixed NH4+ after 35 days, there were no indications for a real exchange (displacement) of fixed NH4+ by 15N.  相似文献   

12.
Abstract

Eight methods to determine exchangeable cations and cation exchange capacity (CEC) were compared for some highly weathered benchmark soils of Alabama. The methods were: (1) 1N NH4OAc at pH 7.0 by replacement (for CEC only), (2) 1N NH4OAc at pH 7.0 (summation of basic cations plus 1N KCl extractable Al), (3) 1N NH4OAc at pH 7.0 (summation of basic cations plus exchangeable H+), (4) 0.1M BaCl2 (summation of basic cations plus exchangeable Mn, Fe and Al), (5) Mehlich 1 (summation of basic cations plus 1N KCl extractable Al), (6) Mehlich 1 (summation of basic cations plus exchangeable H+), (7) Mehlich 3 (summation of basic cations plus 1N KCl extractable Al), and (8) Mehlich 3 (summation of basic cations plus exchangeable H+). The 0.1M BaCl2 was chosen as the standard method for the highly weathered soils and the other methods compared to it. The results indicated that the 1N NH4OAc replacement method gave significantly higher CEC values compared to the summation methods. This was probably due to the overestimation of the field CEC caused by measurement of pH dependent cation exchange sites in these soils. There was, however, close agreement between the BaCl2 method and the summation methods that included extractable Al. The generally good agreement between these summation methods suggests that the Mehlich 1 and Mehlich 3 extractants, commonly used to determine available nutrients in the southeastem USA, may also be used to measure effective CEC of some acid‐rich sesquioxide benchmark soils of Alabama. However, 1N KCl extractable Al as opposed to exchangeable H+ should be included in the computation.  相似文献   

13.
Experiments were conducted with two typical paddy soils from China and a vermiculite to study the influence of iron oxides on the fixation and release of ammonium. Removing iron oxides, especially amorphous iron oxides, from the soils favoured the release of non-exchangeable NH4-N and stimulated the fixation of NH4-N in the presence of added (NH4)2SO4. Addition of artificial goethite and hematite to the original soils or to the soils free of iron oxides reduced the fixation of NH4+-ions. This effect was also observed with vermiculite. We conclude that the coating of clay minerals with iron oxides has an impact on the diffusion of NH4+-ions into and out of the interlayers of the clay minerals. The reduction and dissolution of iron oxides induced by low redox potential (Eh) after flooding of paddy soils is assumed to be an important mechanism controlling NH4+-fixation in paddy fields.  相似文献   

14.
Changes in 15N abundance and amounts of biologically active soil nitrogen   总被引:1,自引:0,他引:1  
 Estimation of the capacity of soils to supply N for crop growth requires estimates of the complex interactions among organic and inorganic N components as a function of soil properties. Identification and measurement of active soil N forms could help to quantify estimates of N supply to crops. Isotopic dilution during incubation of soils with added 15NH4 + compounds could identify active N components. Dilution of 15N in KCl extracts of mineral and total N, non-exchangeable NH44 +, and N in K2SO4 extracts of fumigated and non-fumigated soil was measured during 7-week incubation. Samples from four soils varying in clay content from 60 to 710 g kg–1 were used. A constant level of 15N enrichment within KCl and K2SO4 extracted components was found at the end of the incubation period. Total N, microbial biomass C and non-exchangeable NH4 + contents of the soils were positively related to the clay contents. The mineralized N was positively related to the silt plus clay contents. The active soil N (ASN) contained 28–36% mineral N, 29–44% microbial biomass N, 0.3–5% non-exchangeable NH4 + with approximately one third of the ASN unidentified. Assuming that absolute amounts of active N are related to N availability, increasing clay content was related to increased N reserve for crop production but a slower turnover. Received: 7 July 1998  相似文献   

15.
Abstract

During the period 1977–1979, NaNO3, urea, and urea plus 2% (wt/wt) nitrapyrin (2‐chloro‐6‐(trimethyl)pyridine) were compared on a Matapeake silt loam (fine silty mixed mesic Typic Hapludult) . Nitrogen sources were injected as solutions into the water system at 224 kg N ha‐1yr‐1used for subsurface trickle irrigation of corn (Zea maysL.). Nitrogen was withheld in 1980 in order to assess residual N effects. Grain yields in 1980 for the NaNO3, urea, and urea plus Nitrapyrin treatments were 5.10, 4.56 and 6.52 Mg ha‐1, respectively. Corresponding ear leaf N concentrations were 17.7, 16.7 and 19.2 g kg‐1. Significantly higher grain yield and leaf N concentrations associated with the use of nitrapyrin as a nitrification inhibitor indicated greater soil N reserves for this treatment. Non‐exchangeable (fixed) NH4 +, in soil cores taken in November 1981 averaged 54, 59 and 74 ug N g‐1for the respective N regimes. The concentration of fixed NH4 +increased with sampling depth, averaging 54, 61 and 72 ug N g‐1for the 0–5, 30–35, and 60–65 cm profile depths, respectively. This trend is ascribed to increasing quantities of micaceous and vermiculitic clay (<2 um) with increasing profile depth.  相似文献   

16.
Abstract

Soil cation exchange capacity (CEC) measurements are important criteria for soil fertility management, vaste disposal on soils, and soil taxonomy. The objective of this research was to compare CEC values for arable Ultisols from the humid region of the United States as determined by procedures varying widely in their chemical conditions during measurement. Exchangeable cation quantities determined in the course of two of the CEC procedures were also evaluated. The six procedures evaluated were: (1) summation of N NH4OAc (pH 7.0) exchangeable Ca, Mg, K, and Na plus BaCl2 ‐ TEA (pH 8.0) exchangeable acidity; (2) N Ca(OAc)2 (pH 7.0) saturation with Mg(OAc)2 (pH 7.0) displacement of Ca2+; (3) N NH4OAc (pH 7.0) saturation with NaCl displacement of NH4 +; (4) N MgCl2 saturation with N KCl displacement of Mg2+; (5) compulsive exchange of Mg2+ for Ba2+; and (6) summation of N NH4OAc (pH 7.0) exchangeable Ca, Mg, K, and Na plus N KCl exchangeable AJ. The unbuffered procedures reflect the pH dependent CEC component to a greater degree than the buffered methods. The compulsive exchange and the summation of N NH4OAc exchangeable cations plus N KCl exchangeable Al procedures gave CEC estimates of the same magnitude that reflect differences in soil pH and texture. The buffered procedures, particularly the summation of N NH4OAc exchangeable cations plus BaCl2 ‐ TEA (pH 8.0) exchangeable acidity, indicated inflated CEC values for these acid Ultisols that are seldom limed above pH 6.5. Exchangeable soil Ca and Mg levels determined from extraction with 0.1 M BaCl2 were consistently greater than values for the N NH4Oac (pH 7.0) extractions. The Ba2+ ion is apparently a more efficient displacing agent than the NH4 + ion. Also, the potential for dissolving unreacted limestone is greater for the Ba2 + procedures than in the NH4 + extraction.  相似文献   

17.
Reliable and quick methods for measuring nitrogen (N)–supplying capacities of soils (NSC) are a prerequisite for using N fertilizers. This study was conducted to develop a routine method for estimation of mineralizable N in two calcareous soils (sandy loam and clay soils) treated with municipal waste compost or sheep manure. The methods used were anaerobic biological N mineralization, mineral N released by 2 M potassium chloride (KCl), ammonium (NH4 +) N extracted by 1 N sulfuric acid (H2SO4), NH4 +-N extracted by acid potassium permanganate (KMnO4), and NH4 +-N released by oxidation of soil organic matter using acidified potassium permanganate. The results showed that oxidizable N extracted by acid permanganate, a simple and rapid measure of soil N availability, was correlated with results of the anaerobic method. Oxidative 0.05 N KMnO4 was the best method, accounting for 78.4% of variation in NSC. Also, the amount of mineralized N increased with increasing level of organic materials and was greater in clay soil than sandy loam soil.  相似文献   

18.
Abstract

Very low recovery of NH4+‐N was observed in total N determination of (NH4)2SO4 in KC1 solutions by a semimicro Kjeldahl method using permanganate and reduced iron to recover NO3‐ and NO2‐, whereas complete recovery was obtained in analysis of NH4+‐N in water, and of NO3 ?‐N or NO2 ?‐N in either water or KC1 solutions. The loss of NH4 +‐N observed with KC1 was attributed to the formation of NCl3 upon reaction of NH4 + with Cl2 generated during oxidation of Cl? by MnO4 ?. This difficulty is avoided by using K2SO4 instead of KC1 for extraction of inorganic N from soil. Complete recovery was obtained by adding 15N‐labeled NH4+, NO3‐, or NO2‐ to 0.5 M K2SO4 soil extracts, and total 15N analyses of the labeled extracts were in good agreement with values calculated from the additions of 15N and the total N contents of the soil extracts.  相似文献   

19.
Different types of cation exchange capacity (CEC) and related chemical properties were determined in the main genetic horizons of meadow-chestnut soils in the mesodepressions at the Dzhanybek Research Station of the Institute of Forestry of the Russian Academy of Sciences. In the A horizon, the CEC is mainly due to the organic matter from the clay and coarse fractions, which provides 36% of the soil CEC, and to labile silicates and other clay minerals of the clay fraction. In the Bt horizon, the CEC is mainly provided by the labile minerals of the clay fraction and organic matter of the clay and coarse fractions. The standard soil CEC was found to be significantly higher than the sum of the exchangeable cations in the A horizon and slightly lower than the sum of the exchangeable cations in the Bt and Bca2 horizons. This difference can be related to the fact that the NH4+ ion, which is selectively adsorbed by clay minerals, is used as a displacing cation during the determination of the exchangeable bases, while the Ba2+ ion, which is more selectively adsorbed by organic matter, is used during the determination of the standard CEC. In all the genetic horizons, the experimentally determined value of the standard CEC almost coincides with the CEC value obtained by summing the standard CECs of the different particle-size fractions with account for their contents; hence, this parameter is additive in nature.  相似文献   

20.
Cation‐exchange–capacity (CEC) results of calcareous soils and clays can be erroneous if the ammonium acetate method is used. In this study, a model is proposed to explain the process for systematic underestimation of the CEC. Seven clayey sediments from Germany with varying calcite and low organic‐C content were studied. After several exchange treatments with concentrated ammonium acetate (NH4Ac) solutions, the exchange population is assumed to be in homoionic ammonium form. Throughout the cation‐exchange experiment, calcite reacts with the NH4Ac exchange solution generating Ca2+ cations. During the necessary washing steps to remove excess salt, calcite dissolution is lower but still occurs. The permanently added Ca2+ ions compete successfully with NH , especially during the washing steps. This leads to a more or less partial biionic exchange population resulting in an underestimation of the CEC which is calculated based on NH concentration of the clay by Kjeldahl analysis. The biionic exchange population was proven using the new silver thiourea technique with presaturation of calcite, AgTU calcite . The clay with 148 g kg–1 calcite had a fraction of 16.4 cmol+ kg–1 exchangeable Ca2+. This is ca. 50% of the CEC of this clay being 31.8 cmol+ kg–1. For clays with similar mineralogical composition, this trend is proportional to the calcite content.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号