首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ABSTRACT

Effects of application of zinc (Zn) (0, 1, 5, 10 mg kg?1 soil) and phosphorus (P) (0, 10, 50, 100 mg kg?1 soil) on growth and cadmium (Cd) accumulations in shoots and roots of winter wheat (Triticum aestivum L.) seedlings were investigated in a pot experiment. All soils were supplied with a constant concentration of Cd (6 mg kg?1 soil). Phosphorus application resulted in a pronounced increase in shoot and root biomass. Effects of Zn on plant growth were not as marked as those of P. High Zn (10 mg kg?1) decreased the biomass of both shoots and roots; this result may be ascribed to Zn toxicity. Phosphorus and Zn showed complicated interactions in uptake by plants within the ranges of P and Zn levels used. Cadmium in shoots decreased significantly with increasing Zn (P < 0.001) except at P addition of 10 mg kg?1. In contrast, root Cd concentrations increased significantly except at Zn addition of 5 mg kg?1 (P < 0.001). These results indicated that Zn might inhibit Cd translocation from roots to shoots. Cadmium concentrations increased in shoots (P < 0.001) but decreased in roots (P < 0.001) with increasing P supply. The interactions between Zn and P had a significant effect on Cd accumulation in both shoots (p = 0.002) and roots (P < 0.001).  相似文献   

2.
Three pot experiments were set up to determine how efficiently mycorrhizal fungi affect the uptake, translocation, and distribution of labeled phosphorus (32P), phosphorus (P), and heavy metals in alfalfa (Medicago sativa L.). In experiments 1 and 2, the efficiencies of different arbuscular mycorrhizal fungi (AMF) species including Glomus mosseae, G. etunicatum, G. intraradices and a mixed strain (G. mosseae, Gigaspora hartiga, and G. fasciculatum) on uptake, translocation, and distribution of 32P and P in alfalfa were investigated, respectively. In a third experiment, the efficiency of G. mosseae on uptake and distribution of heavy metals [cadmium (Cd), cobalt (Co), lead (Pb), and combinations] was tested. Results of experiments 1 and 2 suggest that G. mosseae was the most effective at increasing the uptake of 32P and P. Experiment 3 result showed that in the triple-metal-contaminated soil, inoculated plants had greater Co (32.56 mg kg?1) and Pb (289.50 mg kg?1) concentration and G. mosseae enhanced the translocation of heavy metals to shoot. Hence, mycorrhizal alfalfa in symbiosis with G. mosseae can be used for remediation of heavy metals polluted soils with high efficiency.  相似文献   

3.
The effects of inoculating arbuscular mycorrhizal (AM) fungi on the growth, phosphorus (P) uptake, and yield of Welsh onion (Allium fistulosum L.) were examined under the non-sterile field condition. Welsh onion was inoculated with the AM fungus, Glomus R-10, and grown in a glasshouse for 58?days. Non-inoculated plants were grown as control. Inoculated and non-inoculated seedlings were transplanted to a field with four available soil P levels (300, 600, 1,000, and 1,500?mg P2O5?kg?1 soil) and grown for 109?days. AM fungus colonization, shoot P concentration, shoot dry weight, shoot length, and leaf sheath diameter were measured. Percentage AM fungus colonization of inoculated plants was 94% at transplant and ranged from 60% to 77% at harvest. Meanwhile, non-inoculated plants were colonized by indigenous AM fungi. Shoot length and leaf sheath diameter of inoculated plants were larger than those of non-inoculated plants grown in soil containing 300 and 600?mg P2O5?kg?1 soil. Shoot P content of inoculated plants was higher than that of non-inoculated plants grown in soil containing 300 and 600?mg P2O5?kg?1 soil. Yield (shoot dry weight) was higher for non-inoculated plants grown in soil containing 1,000 and 1,500?mg P2O5?kg?1 soil than for those grown in soil containing 300 and 600?mg?P2O5 kg?1 soil. Meanwhile, the yields of inoculated plants (200?g plant?1) grown in soils containing the four P levels were not significantly different. Yield of inoculated plants grown in soil containing 300?mg P2O5 kg?1 soil was similar to that of non-inoculated plants grown in soil containing 1,000?mg P2O5?kg?1 soil. The cost of AM fungal inoculum for inoculated plants was US$ 2,285?ha?1 and lower than the cost of superphosphate (US$ 5,659?ha?1) added to soil containing 1,000?mg P2O5 kg?1 soil for non-inoculated plants. These results indicate that the inoculation of AM fungi can achieve marketable yield of A. fistulosum under the field condition with reduced application of P fertilizer.  相似文献   

4.
ABSTRACT

A pot experiment was conducted out to investigate the yield and pungency of spring onion (Allium fistulosum L.) as affected by inoculation with arbuscular mycorrhizal (AM) fungi and addition of nitrogen (N) and sulfur (S) fertilizers. Plants were inoculated with either Glomus mosseae or Glomus intraradices or grown as uninoculated controls. Two levels of N and S were applied to the soil in factorial combinations of 50 and 250 mg N kg?1 soil and 0 and 60 mg S kg?1 soil. Plants were grown in a greenhouse for 25 weeks and then harvested. Mycorrhizal colonization resulted in increased shoot dry weight, shoot-to-root ratio, shoot length, sheath diameter, and phosphorus (P) concentrations. Shoot dry-matter yield was significantly affected by added N, but not by S. Shoot dry weight increased with increasing N supply (except for non-mycorrhizal controls without additional S fertilizer). Shoot total S concentration (TSC), enzyme-produced pyruvate (EPY), and organic sulfur concentration (OSC) in plants inoculated with Glomus mosseae were significantly lower than those of non-mycorrhizal controls, while these parameters in plants inoculated with Glomus intraradices were comparable to or higher than in the controls. Neither N nor S supply affected shoot EPY or OSC, whereas shoot TSC (except in plants inoculated with Glomus mosseae) and SO4 2? concentrations were usually significantly increased by S supply. In soil of high S and low P availability, mycorrhizal colonization had a profound influence on both the yield and the pungency of spring onion.  相似文献   

5.
ABSTRACT

A pot experiment was conducted to study the growth and pungency of Allium cepa L. grown in Perlite as affected by colonization by the arbuscular mycorrhizal (AM) fungi Glomus versiforme and Glomus intraradices BEG141 and by ammonium:nitrate (NH4 +:NO3 ?) ratios of 3:1, 1:1, and 1:3 in 4 mM solutions. Plants were harvested when bulb formation commenced. In general, mycorrhizal colonization resulted in increased shoot dry weight, shoot length, sheath diameter, root nitrogen (N) and phosphorus (P) content (except with G. intraradices and a NH4 +:NO3 ? ratio of 1:3), shoot N and P concentrations (except with G. versiforme and a NH4 +:NO3= ratio of 3:1) and content. Plants inoculated with G. versiforme had higher growth parameters and N and P content than those with G. intraradices, whereas N and P concentrations showed the opposite trends. Growth parameters and N and P content of non-mycorrhizal plants were highest at a NH4 +:NO3= ratio of 1:3, while those of plants inoculated with G. versiforme or G. intraradices were highest at a ratio of NH4 +:NO3 ? 3:1 or 1:1. Neither mycorrhizal colonization nor proportion of inorganic N species significantly affected bulb enzyme-produced pyruvate or total or organic sulfur (S) concentrations in plant shoots. Colonization by AM fungi made a substantial contribution to onion growth and may not have been directly related to bulb pungency at early stages of plant growth. However, the influence of AM fungi on plant N and P metabolism may have implications for onion flavor at later stages of plant growth.  相似文献   

6.
Cadmium (Cd) contamination of the soil and its concentrations in spinach and cabbage were studied in a pot culture experiment. Eight levels of Cd (0–100 mg kg?1 soil) were applied singly. Application of Cd of up to 10 and 15 mg kg?1 resulted in safe Cd concentrations (1.56 and 1.38 mg kg?1) in the shoots of spinach and cabbage, respectively, at the consumable stage. The total chlorophyll content gradually decreased with the addition of Cd, and the maximum decreases were 31.7 and 32% in spinach and cabbage, respectively, at 60 days of crop growth in the treatment Cd100 over the control. The greatest diethylene triamine penta-acetic acid (DTPA)–extractable Cd contents in the postharvest soil of spinach and cabbage were 22.09 and 24.22 mg kg?1, respectively, in the treatment Cd100. The DTPA Cd was significantly negatively correlated with leaf area and total chlorophyll content while positively correlated with root and shoot Cd concentrations of spinach and cabbage.  相似文献   

7.
A screen-house experiment was conducted to study cadmium (Cd) and lead (Pb) phytoextraction using mustard and fenugreek as test crops. Cadmium was applied at a rate of 20 mg kg?1 soil for both crops, and Pb was applied at 160 and 80 mg kg?1 soil for mustard and fenugreek, respectively. The disodium salt of ethylenediamine tetraacetic acid (EDTA) was applied at 0, 0.5, 1.0, and 1.5 g kg?1 soil. Dry-matter yield (DMY) of both crops decreased with increasing rates of EDTA application. Application of 1.5 g EDTA kg?1 soil caused 23% and 70% declines in DMY of mustard and fenugreek shoots, respectively, in the soils receiving 20 mg Cd kg?1 soil. Similarly, in soil with 160 mg Pb kg?1 soil, application of 1.5 g EDTA kg?1 resulted in 25.4% decrease in DMY of mustard shoot, whereas this decrease was 55.4% in fenugreek grown on a soil that had received 80 mg Pb kg?1 soil. The EDTA application increased the plant Cd and Pb concentrations as well as shoot/root ratios of these metals in both the crops. Application of 1.5 g kg?1 EDTA resulted in a 1.50-fold increase in Cd accumulation and a 3-fold increase in Pb accumulation by mustard compared to the control treatment. EDTA application caused mobilization of Cd and Pb from carbonate, manganese oxide, and amorphous iron oxide fractions, which was evident from decrease in these fractions in the presence of EDTA as compared to the control treatment (no EDTA).  相似文献   

8.
A greenhouse experiment was designed to determine the cadmium (Cd) and lead (Pb) distribution and accumulation in parsley plants grown on soil amended with Cd and Pb. The soil was amended with 0, 5, 10 20, 40, 60, 80, and 100 mg Cd kg?1 in the form of cadmium nitrate [Cd(NO3)2] and 0, 5, 10, 50 and 100 mg Pb kg?1 in the form of lead nitrate [Pb(NO3)2]. The main soil properties; concentrations of the diethylenetriaminepentaacetic acid (DTPA)–extractable metals lead (Pb), Cd, copper (Cu), iron (Fe), zinc (Zn), and manganese (Mn) in soil; plant growth; and total contents of metals in shoots and roots were measured. The DTPA-extractable Cd was increased significantly by the addition of Cd. Despite the fact that Pb was not applied, its availability was significantly greater in treatments 40–100 mg Cd kg?1 compared with the control. Fresh biomass was increased significantly in treatments of 5 and 10 mg Cd kg?1 as compared to the control. Further addition of Cd reduced fresh weight but not significantly, although Cd concentration in shoots reached 26.5 mg kg?1. Although Pb was not applied with Cd, its concentration in parsley increased significantly in treatments with 60, 80, and 100 mg Cd g?1 compared with the others. Available soil Pb was increased significantly with Pb levels; nevertheless, the increase was small compared to the additions of Pb to soil. There were no significant differences in shoot and root fresh weights between treatments, although metal contents reached 20.0 mg Pb kg?1 and 16.4 mg Pb kg?1 respectively. Lead accumulation was enhanced by Pb treatments, but the positive effect on its uptake was not relative to the increase of Pb rates. Cadmium was not applied, and yet considerable uptake of Cd by control plants was evident. The interactive effects of Pb and Cd on their availability in soil and plants and their relation to other metals are also discussed.  相似文献   

9.
Silicon(Si) offers beneficial effect on plants under cadmium(Cd) stress such as promoting plant growth and increasing resistance to heavy metal toxicity. In this study, a pot experiment was performed to study the role of Si in alleviating Cd toxicity in tobacco(Nicotiana tabacum L.) plants on a yellow soil taken from Guiyang, China. Nine treatments consisting of three concentrations of Cd(0, 1, and 5 mg kg~(-1)) together with three Si levels(0, 1, and 4 g kg~(-1)) were established. Plant growth parameters, Cd concentration,and the malondialdehyde(MDA), chlorophyll, and carotenoid contents were determined 100 d after transplanting of tobacco seedlings.Application of exogenous Si enhanced the growth of tobacco plants under Cd stress. When 5 mg kg~(-1) Cd was added, Si addition at 1 and 4 g kg~(-1) increased root, stem, and leaf biomass by 26.1%–43.3%, 33.7%–43.8%, and 50.8%–69.9%, respectively, compared to Si addition at 0 g kg~(-1). With Si application, the transfer factor of Cd in tobacco from root to shoot under both 1 and 5 mg kg~(-1) Cd treatments decreased by 21%. The MDA contents in the Si-treated tobacco plants declined by 5.5%–17.1% compared to those in the non-Si-treated plants, indicating a higher Cd tolerance. Silicon application also increased the chlorophyll and carotenoid contents by 33.9%–41% and 25.8%–47.3% compared to the Cd only treatments. Therefore, it could be concluded that Si application can alleviate Cd toxicity to tobacco by decreasing Cd partitioning in the shoots and MDA levels and by increasing chlorophyll and carotenoid contents, thereby contributing to lowering the potential health risks of Cd contamination.  相似文献   

10.
《Journal of plant nutrition》2013,36(12):2175-2188
Abstract

The influence of soil organic matter (OM) in the uptake of cadmium (Cd) by Sorghum will be studied in order to get a better knowledge in the yield and understanding of detoxification mechanisms of soils. Plants were grown for 60 days in a greenhouse pot experiment using a contaminated soil with 4.5 and 35 mg Cd kg?1, in absence and presence of OM. An Irish peat moss (70 g kg?1 of soil) was added as OM. In the presence of OM the biomass production of root and shoot was increased with a positive correlation between biomass increment and contamination level. For experiments with 35 mg Cd kg?1 of soil the biomass production was increased of about 7 times in the presence (vs. absence) of OM. Although the presence of OM had decreased Cd root concentration by decreasing Cd bioavailability in soil, the increase of biomass in presence of OM led to an increase of about 3 times on the Cd amount in shoot, result that can be important in soil phytoremediation.  相似文献   

11.
Phytoremediation is an attractive, economical alternative to soil removal and burial methods to remediate contaminated soil. The objective of this study was to investigate the effects of adding different rates of Bacillus megaterium on the capacity of Brassica napus plants to take up boron (B), lead (Pb), and cadmium (Cd) from polluted soils under field conditions. Field experiments were conducted using a randomized complete block design with control (without pollution and B. megaterium application) and B, Pb, and Cd in two doses (0 and 100 mg kg?1), B. megaterium with four doses (no application and 108 cfu B. megaterium ml?1 sprayed at 50 ml plot?1, 100 ml plot?1, 150 ml plot?1). Results indicated that soil pollution treatments significantly decreased seed (SDMY), shoot (SHDMY), root (RDMY), and total dry-matter yield (TDMY) of plants at 42.9, 3.8, 62.6, and 23.4% for B-polluted treatment; 25.8, 8.7, 17.6, and 14.2% for Pb-polluted treatment; and 33.2, 7.0, 14.0, and 16.4% for Cd-treatment without B. megaterium application, respectively. However, the application of B. megaterium ameliorated the negative effects of B, Pb, and Cd at 41.4, 52.7, and 10.9% for B; 24.4, 21.6, and 4.9% for Pb; and 22.8, 22.0, and 3.3% for Cd, respectively. The potentially bioavailable and relatively available fraction of soil B, Pb, and Cd increased with increases in the B. megaterium application but total fraction and stable fraction decreased. It is concluded that the seed and shoot parts of B. napus can be used as hyperaccumulators for plant B, Pb, and Cd remediation according to remediation factors but the shoot is the biggest part of the plant, and thus an important portion of the plant to remove B, Pb, and Cd from the B-, Pb-, and Cd-contaminated soils. To decrease desired concentration for 8 mg B kg?1, 4 mg Pb kg?1, and 3 mg Cd kg?1 in the active rooting zone of soil, approximately 2, 6, and 21 years would be necessary with only 150 ml plot?1 B. megaterium–sprayed soil cultivated with B. napus, respectively.  相似文献   

12.
《Journal of plant nutrition》2013,36(11):1663-1677
Micronutrient uptake and distribution within poppy plants (Papaver somniferum L.) were studied in two pot experiments using a loamy garden soil as substrate. In the first experiment a supplement of increasing cadmium (Cd) concentrations to the substrate and in the second the influence of cultivars and harvest time were studied. At the stage of seed ripening the taproots were already decaying, and the Cd concentration in the shoot reflected the Cd supply in the substrate. In the shoot the highest Cd concentrations were found in seeds. With 24 mg Cd per pot (6 mg kg?1), Cd concentration reached 1.7 mg kg?1.

The four poppy varieties (Edel-Weiss, Marianne, Soma, White Poppy) differed clearly in seed production but reached comparable Cd concentrations of about 1.3 mg kg?1 in the seeds at the second harvest. Seeds made up 2.5 to 12.9% of shoot biomass, but stored 15 to 42% of total Cd in the shoot, which indicates a preferential translocation of Cd into seeds in this plant species.

In addition, Cd supply had a marginal effect on the concentration of micronutrients in seeds and stems + leaves. At the highest Cd supply of 6 mg Cd kg?1 soil a growth reduction of about 25% could be observed.  相似文献   

13.
Acacia mangium grown in aeroponic culture was co-inoculated with selected strains of Bradyrhizobium sp. and Glomus intraradices. A single-step technique using alginate as an embedding and sticking agent for an inoculum composed of arbuscular mycorrhiza (AM)-infected sheared roots was used to infect plants. This method resulted in the successful establishment of AM in 100% of the inoculated plants after 7 weeks. The results indicated that dual microbial inoculation with Glomus intraradices strain S-043 and Bradyrhizobium strain AUST 13C stimulated the growth of A. mangium in aeroponic culture. The effects of single and dual microbial inoculations were also evaluated at two levels of P in the nutrient medium. A concentration of 5 mg P kg–1 stimulated the development of AM without affecting plant development or establishment of Bradyrhizobium symbiosis. In contrast, saplings supplemented with a higher concentration of P (25 mg kg–1) alone or co-inoculated with Bradyrhizobium had lower AM frequencies.  相似文献   

14.
Abstract

Hydroponic culture is often used for screening plant tolerance or remediation efficacy to environmental pollutants. Field experiments are usually avoided because of soil and groundwater contamination; thus pot experiments are the next step. In this study, the effect of various levels of atrazine in corn and cadmium (Cd) in corn and sunflower on physiological traits was comparatively investigated in hydroponic and soil culture. Also, Cd absorption and transfer factor to shoots were determined in soil. Atrazine affected corn growth at about 20% at the rates of 2 mg L?1 and 20 mg kg?1. In both species, Cd was largely stored in the root (75–88%), and the transfer factor was higher in corn than sunflower (0.59 vs. 0.37, at 20 mg kg?1). Cadmium threshold of 20% reduction in shoot growth, leaf area, and chlorophyll in corn was observed at about 20, 40, and 80 mg kg?1, respectively. The ratio of hydroponic–soil pollutant rate that similarly affected plant growth was about 1:10 and 1:5 for atrazine and Cd, respectively. The linear correlation coefficient between traits was also studied.  相似文献   

15.
ABSTRACT

Cadmium (Cd) and lead (Pb) are toxic trace elements which are not essential for plants but can be easily taken up by roots and accumulated in various organs, and cause irreversible damages to plants. A pot experiment was carried out to investigate the individual and combined effects of Cd (0, 10, 20 mg kg?1) and Pb (0, 500, 1000 mg kg?1) level in a calcareous soil on the status of mineral nutrients, including K, P, Ca, Mg, S, Fe, Mn, Cu, and Zn, in alfalfa (Medicago sativa L.) plants. Soil Pb level considerably (P ≤ 0.05) affected the concentrations of more elements in plants than soil Cd level did, and there were combined effects of soil Cd level and Pb level on the concentrations of some nutrients (Ca, Mg, and Cu) in plants. The effects of soil Cd level and Pb level on plant nutrient concentrations varied among plant parts. Cd and Pb contamination did not considerably affect the exudation of carboxylates in the rhizosphere. An increase in rhizosphere pH and exudation of significant amounts of carboxylates (especially oxalate) in the rhizosphere might contribute to the exclusion and detoxification of Cd and Pb. Neither shoot dry mass nor root dry mass was significantly influenced by soil Cd level, but both of them were considerably reduced (by up to 25% and 45% on average for shoot dry mass and root dry mass, respectively) by increasing soil Pb level. The interaction between soil Cd level and Pb level was significant for root dry mass, but not significant for shoot dry mass. The results indicate that alfalfa is tolerant to Cd and Pb stress, and it is promising to grow alfalfa for phytostabilization of Cd and Pb on calcareous soils contaminated with Cd and Pb.  相似文献   

16.
Interactions between Zn and Cd on the accumulation of these metals in coontail, Ceratophyllum demersum were studied at different metal concentrations. Plants were grown in nutrient solution containing Cd (0.05–0.25 mg l?1) and Zn (0.5–5 mgl?1). High concentrations of Zn caused a significant decrease in Cd accumulation. In general, adding Cd solution decreased Zn accumulation in C. demersum except at the lowest concentration of Zn in which the Zn accumulation was similar to that without Cd. C. demersum could accumulate high concentrations of both Cd and Zn. The influence of humic acid (HA) on Cd and Zn accumulation was also studied. HA had a significant effect on Zn accumulation in plants. 2 mg l?1 of HA reduced Zn accumulation at 1 mg l?1 level (from 2,167 to 803 mg kg?1). Cd uptake by plant tissue, toxicity symptoms and accumulation at 0.25 and 0.5 mg l?1, were reduced (from 515 to 154 mg kg?1 and from 816 to 305 mg kg?1, respectively) by addition of 2 mg l?1 of HA. Cd uptake reached a maximum on day 9 of treatment, while that of Zn was observed on day 15. Long-term accumulation study revealed that HA reduced toxicity and accumulation of heavy metals.  相似文献   

17.
ABSTRACT

A pot experiment was carried out to investigate the tolerance of cucumber plants (Cucumis sativus L.) to root-knot nematode after inoculation with Glomus intraradices. Plants were inoculated with G. intraradices for four weeks and then transplanted in soil treated with Meloidogyne incognita for a further five weeks. The low phosphorus (P) loamy soil was amended with 50 and 100 mg P kg?1 soil. Mycorrhizal colonization increased shoot dry weight, shoot length, leaf numbers, root fresh weight and shoot P concentration, whereas nematode penetration and reproduction were significantly decreased. Similarly, P fertilization usually increased shoot growth and significantly decreased the number of galls and the number of egg masses and eggs per g root. Our results indicate that inoculation with G. intraradices and P fertilizer confer tolerance of cucumber plants to M. incognita by enhancing plant growth and by suppressing reproduction and/or galling of nematodes during the early stages of plant growth.  相似文献   

18.
The influence of Glomus mosseae supplemented with ethylenediaminetetraacetic acid (EDTA) on lead (Pb) uptake by Fenugreek (Trigonella foenum-graecum) was studied under pot conditions in a 2?×?2?×?5 factorial design with two AM treatments (G. mosseae inoculated and uninoculated), two EDTA concentrations (without and with 2.5 mmol EDTA kg?1), and five lead concentrations (0, 50, 100, 400, and 800 mg kg?1). A negative interaction was found between increasing lead concentration and G. mosseae. The plant dry matter and chlorophyll content was enhanced by G. mosseae whereas G. mosseae with EDTA showed the greatest root and shoot phosphorus (P) content. Ethylenediaminetetraacetic acid significantly enhanced lead concentration in the plant; however, at the same time it resulted in a slight decrease in the dry matter. However, when EDTA was applied along with G. mosseae, the deleterious effect of EDTA was overcome by the G. mosseae by promoting mineral uptake and plant growth, and hence metal accumulation also increased.  相似文献   

19.
Abstract

Greenhouse experiment was conducted to evaluate the effect of arbuscular mycorrhizal fungi (AMF) on plant growth, and nutrient uptake in saline soils with different salt and phosphorus (P) levels. The following treatments were included in this experiment: (i) Soil A, with salt level of 16.6 dS m?1 and P level of 8.4 mg kg?1; (ii) Soil B, with salt level of 6.2 dS m?1 and P level of 17.5 mg kg?1; and (iii) Soil C, with salt level of 2.4 dS m?1 and P level of 6.5 mg kg?1. Soils received no (control) or 25 mg P kg?1 soil as triple super phosphate and were either not inoculated (control) or inoculated with a mixture of AM (AM1) and/or with Glomus intraradices (AM2). All pots were amended with 125 mg N kg?1 soil as ammonium sulfate. Barley (Hordeum vulgar L., cv. “ACSAD 6”) was grown for five weeks. Plants grown on highly saline soils were severely affected where the dry weight was significantly lower than plants growing on moderately and low saline soils. The tiller number and the plant height were also lower under highly saline condition. The reduced plant growth under highly saline soils is mainly attributed to the negative effect of the high osmotic potential of the soil solution of the highly saline soils which tend to reduce the nutrient and water uptake as well as reduce the plant root growth. Both the application of P fertilizers and the soil inoculation with either inoculum mixture or G. intraradices increased the dry weight and the height of the plants but not the tiller number. The positive effect of P application on plant growth was similar to the effect of AM inoculation. Phosphorus concentration in the plants was higher in the mycorrhizal plant compared to the non mycorrhizal ones when P was not added. On the other hand, the addition of P increased the P concentration in the plants of the non mycorrhizal plants to as high as that of the mycorrhizal plants. Iron (Fe) and zinc (Zn) uptake increased with AM inoculation. The addition of P had a positive effect on micronutrient uptake in soil with low level of soil P, but had a negative effect in soil with high level of soil P. Micronutrient uptake decreases with increasing soil salinity level. Inoculation with AMF decreases sodium (Na) concentration in plants grown in soil of the highest salinity level but had no effect when plants were grown in soil with moderate or low salinity level. The potassium (K) concentration was not affected by any treatment while the K/Na ratio was increased by AM inoculation only when plant were grown in soil of the highest salinity level.  相似文献   

20.
The effects of increasing levels of metals (10 and 20 mg of Cr kg-1 and 25 and 50 mg of Cd, Pb, and Ni kg-1 soil) and arbuscular mycorrhizal (AM) fungi Glomus intraradices on the yield, chemical composition of volatile oil, and metal accumulation in sweet basil (Ocimum basilicum L.) were investigated in a pot experiment. The shoot yield, content of essential oil, and root yield of sweet basil were increased by the application of low dose of Cd, Pb, and Ni as compared to control. The application of high level of metals had deleterious effect on the yield. In soil with low dose of metal applied, AM fungi inoculation significantly enhanced the metal concentration in shoots and had adverse effect on the yield, whereas in soil with high dose of metal applied, AM fungal inoculation reduced the metal concentration in shoot and had beneficial effect on the yield. The content of linalool in basil oil was decreased and that of methyl chavicol was increased by the application of Cr, Cd, and Pb in soil as compared to control. Similarly, the level of linalool and methyl chavicol was decreased and that of methyl eugenol was increased by the application of Ni as compared to control. However, AM fungal inoculation led to maintain the content of linalool, methyl chavicol, and methyl eugenol in volatile oil, which were either increased or decreased by the application of metals. We conclude that the AM–sweet basil symbiosis could be used as a novel approach to enhance the yield and maintain the quality of volatile oil of sweet basil under metal-contaminated soils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号