首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
A field experiment was conducted on a salt-affected soil to determine the effect of application of three types of Dhaincha (Sesbania aculeata Pers.) residues (R, roots; L, shoots; L+R, shoots plus roots) on the performance of sorghum (Sorghum bicolor L.) using the indirect 15N isotopic dilution technique. Results indicated that sesbania residues (L and L+R), used as green manures, significantly increased grain yield, dry matter production, N uptake, and water use efficiency of sorghum. Percentages of nitrogen (N) derived from residues (%Ndfr) in sorghum ranged from 6.4% to 28%. The N recoveries in sorghum were 52%, 19.6% and 19.7% of the total amount contained in sesbania roots, shoots and roots plus shoots, respectively. The beneficial effects of sesbania residues are attributed not only to the additional N availability to the plants, but also to effects on the enhancement of soil N uptake, particularly in the L+R treatment. The findings suggest that the use of Sesbania aculeata residues, as a green manure, can provide a substantial portion of total N in sorghum. In addition, the use of sesbania green manure in salt-affected soils, as a bio-reclaiming material, can be a promising approach for enhancing plant growth on a sustainable basis.  相似文献   

2.
A pot experiment was conducted to determine the effect of four rates of nitrogen (N) in the form of leucaena leaves and the time of application on the performance of sorghum plants using the 15N isotopic dilution technique. Results showed that leucaena green manure (LGM) increased dry matter and N yield of sorghum. Nitrogen recoveries of LGM ranged between 23 and 47%. An additional beneficial effect of LGM was attributed to the enhancement of soil N uptake. The best timing of LGM incorporation for obtaining more N derived from LGM, less soil N uptake, and greater dry matter and N in sorghum leaves seemed to be at planting. However, the appropriate timing and rate of LGM to obtain greater dry matter and N yield in panicles, as well as in the whole plant of sorghum, appeared to be at 30 days before planting, particularly a rate of 120 kg N ha?1.  相似文献   

3.
A field experiment was conducted to obtain the N balance sheet for sole crops and intercrops of sorghum [Sorghum bicolor (L.) Moench] and pigeonpeas [Cajanus cajan (L.) Millsp.]. Intercropping gave a significant advantage over sole cropping in terms of dry matter production and grain yield, as calculated on the basis of the land equivalent ratio and area-time equivalent ratio. The N fertilizer use efficiency and atmospheric N2 fixation by pigeonpea were estimated using 15N-labeling and natural abundance methods. The N fertilizer use efficiency of sorghum was unaltered by the cropping system, while that of the pigeonpea was greatly reduced by intercropping. Although intercropping increased the fractional contribution of fixed N to the pigeonpeas, no significant difference was observed between the cropping systems in total symbiotically fixed N. There was no evidence of a significant transfer of N from the pigeonpea to the sorghum. This study showed that use of soil N and fertilizer N by pigeonpeas was almost the same as that by sorghum in sole cropping, indicating the potential competence of pigeonpeas to exploit soil N. However, when N was exhausted by a companion crop in intercropping, the pigeonpea crop increased its dependency on atmospheric N2 fixation. We conclude that knowledge of how N from different sources is shared by companion crops is a prerequisite to establishing strategies to increase N use, and consequently land productivity, in intercropping systems.  相似文献   

4.
The beneficial role of green manures in rice production is generally ascribed to their potential of supplying plant nutrients, particularly nitrogen (N). However, the mechanisms through which green manures enhance the crop productivity are poorly understood. Pot experiments were conducted using a 15N-tracer technique: (1) to compare the biomass production potential of sesbania (Sesbania aculeata Pers.) and maize (Zea mays L.) as green manuring crops for lowland rice and (2) to compare the effect of the two types of green manure and inorganic N on the dry matter accumulation and N uptake by two rice (Oryza sativa L.) cultivars, viz. IR-6 and Bas-370. Although maize produced three times higher shoot biomass compared with sesbania, the latter showed higher N concentration; and thus the total N yield was similar in the two types of plants. Applying the shoot material of the two plants to flooded rice significantly enhanced the dry matter yield and N uptake by the two rice cultivars, the positive effects generally being more pronounced with sesbania than with maize amendment. The difference in the growth-promoting potential of the two plant residues was related more to an increased uptake of the native soil N rather than to their direct role as a source of plant-available N. A positive added nitrogen interaction (ANI) was observed due to both plant residues, the effect was much more pronounced with the application of sesbania than with maize residues. In both rice cultivars, inorganic N also caused a substantial ANI, particularly at higher application rate. Losses from the applied N were 2–3 times lower from sesbania, compared with maize treatment. Green manuring with sesbania also caused much lower N losses than the inorganic N applied at equivalent or higher rates. The overall benefit of green manuring to rice plants was higher than inorganic N applied at comparable rates. The two rice cultivars differed in their response to green manuring, IR-6 generally being more responsive than Bas-370.  相似文献   

5.
Abstract

A glasshouse study employing a split-root technique was conducted to investigate the influence of intercropping with maize (Zea mays L.) in a calcareous soil on N2 fixation by peanut (Arachis hypogaea L.) at early stages of growth. In this intercropping system, competitive interactions between maize and peanut for N and improvement of Fe uptake were likely to be important factors affecting N2 fixation of peanut. The experiment was comprised of three treatments which included treatment I: peanut monocropping; treatment II: maize/peanut intercropping (the major and the minor compartments with low N, 50 mg kg?1); treatment III: maize/peanut intercropping (the major compartment with low N, 50 mg kg?1 and the minor compartment with high, N 200 mg kg?1). The minor compartment of treatment III was fertilized with 200 mg kg?1 N for reducing or eliminating the competition of N coming from intercropping maize. Intercropping with maize corrected Fe chlorosis of peanut by significantly increasing plant Fe concentration and uptake. Compared with the monocropping treatment, iron uptake increased from intercropping treatment II and III by 22 and 24% per plant, 30 and 29% shoots, 38 and 60% nodules. Iron uptake by the root nodules was especially enhanced in the intercropping system. In contrast, intercropping with maize had little effect on NO3 ?1-N concentrations in the soil rhizosphere of peanut or on N concentrations and uptake by peanut compared with plants in monoculture. The results indicate that the improvement in Fe nutrition was an important factor promoting N2 fixation by peanut in the intercropping system at the flowering stage of peanut growth, and that competition for N by intercropped maize had little effect on N2 fixation by peanut under the experimental conditions.  相似文献   

6.
Summary N accumulation and natural 15N abundance in three legumes (groundnuts, cowpeas, and soybeans) and in two cereals (sorghum and maize) were investigated over two seasons in Alfisols with and without N fertilization. Using the N uptake and natural 15N abundance of non-nodulating plants as the indication of N derived from soil and fertilizer, the per cent N derived from atmospheric N2 was calculated for nodulated plants. In the first experiment, the groundnut genotype contained 85% atmosphere-derived N, but the percentage decreased with N application. Estimates of atmosphere-derived N by the N-difference and 15N-abundance techniques gave identical results. The percentages of atmosphere-derived N estimated by the two methods at different stages of groundnut growth were also similar. In the second experiment, atmosphere-derived N was estimated in plants grown with 0–200 kg ha-1 applied N. The estimated atmosphere-derived N ranged from 42% to 61% for groundnuts from 33% to 77% for cowpeas, and from 24% to 48% for soybeans, depending on the amount of N applied. Inoculation with a Bradyrhizobium strain increased the percentage of atmospherederived N in soybean plants grown without any fertilizer N. The natural 15N abundance of sorghum and maize was very close to that of the non-nodulating groundnut, suggesting that these cereals can be used as reference plants in the estimation of atmosphere-derived N by the natural 15N-abundance method.ICRISAT Journal Article No. 876  相似文献   

7.
Dual natural abundance analysis of 15Nitrogen (N) and 13Carbon (C) isotopes in lentil plants subjected to different soil moisture levels and rates of potassium (K) fertilizer were determined to assess crop performance variability in terms of growth and N2-fixation (Ndfa). The δ15N values in lentils ranged from +0.67 to +1.36‰; whereas, those of the N2-fixed and reference plant were ?0.45 and +2.94‰, respectively. Consequently, the Ndfa% ranged from 45 and 65% of total plant N uptake. Water stress reduced Δ13C values. However, K fertilization enhanced whole plant Δ13C along with dry matter yield and N2-fixation. The water stressed plants amended with K fertilizer seemed to be the best treatment because of its highest pod yield, high N balance, and N2-fixation with low consumption of irrigation water. This illustrates the ecological and economical importance of K fertilizer in alleviating water stress occurring during the post-flowering period of lentil.  相似文献   

8.
Summary Sources of N used by cropped and intercropped cowpeas and rice were determined by the 15N isotope-dilution technique. The biological efficiency of intercropping cowpeas and rice was assessed by calculating the land equivalent ratio of dry matter yield, total N, and uptake of N. A reduced N uptake by both cowpeas and rice during mixed cropping was attributed to mutual competition, with both crops competing effectively for the scarce environmental resources. The lack of a significant difference in the uptake of fertilizer and soil N by mixed-crop rice and cowpeas is an indication that the soil N was sufficient and that the mixed cropping did not create any imbalance in soil and fertilizer N uptake. The land equivalent ratio ranged between 120% and 180% for shoot dry matter and total N, showing that biological efficiency was increased by intercropping cowpeas with rice. The proportion of N derived from the atmosphere by mono- and intercropped cowpeas was not significantly different, showing that the potential of cowpeas to fix N2 was independent of the cropping system, since the rice did not stimulate the cowpeas to fix more N2.  相似文献   

9.
It is still unclear whether elevated CO2 increases plant root exudation and consequently affects the soil microbial biomass. The effects of elevated CO2 on the fate of the C and nitrogen (N) contained in old soil organic matter pools is also unclear. In this study the short and long-term effects of elevated CO2 on C and N pools and fluxes were assessed by growing isolated plants of ryegrass (Lolium perenne) in glasshouses at elevated and ambient atmospheric CO2 and using soil from the New Zealand FACE site that had >4 years exposure to CO2 enrichment. Using 14CO2 pulse labelling, the effects of elevated CO2 on C allocation within the plant-soil system were studied. Under elevated CO2 more root derived C was found in the soil and in the microbial biomass 48 h after labelling. The increased availability of substrate significantly stimulated soil microbial growth and acted as priming effect, enhancing native soil organic matter decomposition regardless of the mineral N supply. Despite indications of faster N cycling in soil under elevated CO2, N availability to plants stayed unchanged. Soil previously exposed to elevated CO2 exhibited a higher N cycling rate but again there was no effect on plant N uptake. With respect to the difficulties of extrapolating glasshouse experiment results to the field, we concluded that the accumulation of coarse organic matter observed in the field under elevated CO2 was probably not created by an imbalance between C and N but was likely to be due to more complex phenomena involving soil mesofauna and/or other nutrients limitations.  相似文献   

10.
Summary The legume Medicago sativa (+Rhizobium melilott) was grown under controlled conditions to study the interactions between soluble P in soil (four levels), or a mycorrhizal inoculum, and the degree of water potential (four levels) in relation to plant development and N2 fixation. 15N-labelled ammonium sulphate was added to each pot for a qualitative estimate of N2 fixation, in order to rank the effects of the different treatments.Dry-matter yield, nutrient content and nodulation increased with the amount of plant-available P in the soil, and decreased as the water stress increased, for each P-level. The mycorrhizal effect on dry matter, N yield, and on nodulation was little affected by the water potential. Since P uptake was affected by the water content in mycorrhizal plants, additional mechanisms, other than those mediated by P, must be involved in the mycorrhizal activity.There was a positive correlation between N yield and nodulation for the different P levels and the mycorrhizal treatment at all water levels. A high correlation between plant unlabelled N content and atom% 15N excess was also found for all levels of P. In mycorrhizal plants, however, the correlation between unlabelled N yield and 15N was lower. This suggests that mycorrhiza supply plants with other N sources in addition to those derived from the improvement on N2 fixation.  相似文献   

11.
Summary A spontaneous mutant ofAzospirillum lipoferum, resistant to streptomycin and rifampicin, was inoculated into the soil immediately before and 10 days after transplanting of rice (Oryza sativa L.). Two rice varieties with high and low nitrogen-fixing supporting traits, Hua-chou-chi-mo-mor (Hua) and OS4, were used for the plant bacterial interaction study. The effect of inoculation on growth and grain and dry matter yields was evaluated in relation to nitrogen fixation, by in situ acetylene reduction assay,15N2 feeding and15N dilution techniques. A survey of the population of marker bacteria at maximum tillering, booting and heading revealed poor effectivety. The population of nativeAzospirillum followed no definite pattern. Acetylene-reducing activity (ARA) did not differ due to inoculation at two early stages but decreased in the inoculated plants at heading. In contrast, inoculation increased tiller number, plant height of Hua and early reproductive growth of both varieties. Grain yield of both varieties significantly increased along with the dry matter. Total N also increased in inoculated plants, which was less compared with dry matter increase.15N2 feeding of OS4 at heading showed more15N2 incorporation in the control than in the inoculated plants. The ARA,15N and N balance studies did not provide clear evidence that the promotion of growth and nitrogen uptake was due to higher N2 fixation.  相似文献   

12.
Elevated CO2 may increase nutrient availability in the rhizosphere by stimulating N release from recalcitrant soil organic matter (SOM) pools through enhanced rhizodeposition. We aimed to elucidate how CO2-induced increases in rhizodeposition affect N release from recalcitrant SOM, and how wild versus cultivated genotypes of wheat mediated differential responses in soil N cycling under elevated CO2. To quantify root-derived soil carbon (C) input and release of N from stable SOM pools, plants were grown for 1 month in microcosms, exposed to 13C labeling at ambient (392 μmol mol−1) and elevated (792 μmol mol−1) CO2 concentrations, in soil containing 15N predominantly incorporated into recalcitrant SOM pools. Decomposition of stable soil C increased by 43%, root-derived soil C increased by 59%, and microbial-13C was enhanced by 50% under elevated compared to ambient CO2. Concurrently, plant 15N uptake increased (+7%) under elevated CO2 while 15N contents in the microbial biomass and mineral N pool decreased. Wild genotypes allocated more C to their roots, while cultivated genotypes allocated more C to their shoots under ambient and elevated CO2. This led to increased stable C decomposition, but not to increased N acquisition for the wild genotypes. Data suggest that increased rhizodeposition under elevated CO2 can stimulate mineralization of N from recalcitrant SOM pools and that contrasting C allocation patterns cannot fully explain plant mediated differential responses in soil N cycling to elevated CO2.  相似文献   

13.
Knowledge about nitrate transformation processes and how they are affected by different plants is essential in order to reduce the loss of valuable N fertiliser as well as to prevent environmental pollution due to nitrate leaching or N2O emission after fertilisation or the reflooding of degraded fens with nitrate-containing municipal sewage. Therefore four microcosm 15N tracer experiments were performed to evaluate the effect of common wetland plants (Phalaris arundinacea, Phragmites australis) combined with different soil moisture conditions (from dry to reflooded) on nitrate turnover processes. At the end of experiment, the total formation of gaseous N compounds was calculated using the 15N balance method. In two experiments (wet and reflooded soil conditions) the N2O and N2 emissions were also directly determined.Our results show that in degraded fen soils, which process mainly takes place—denitrification or transformation into organic N compounds—is determined by the soil moisture conditions. Under dry soil moisture conditions (water filled pore space: 31%) up to 80% of the 15N nitrate added was transformed into organic N compounds. This transformation process is not affected by plant growth. Under reflooded conditions (water filled pore space: 100%), the total gaseous N losses were highest (77-95% of the 15N-nitrate added) and the transformation into organic N compounds was very low (1.8% of 15N nitrate added). Under almost all soil conditions plant growth reduced the N losses by 20-25% of the 15N nitrate added due to plant uptake. The N2 emissions exceeded the N2O emissions by a factor of 10-20 in planted soil, and as much as 30 in unplanted soil. In the treatments planted with Phragmites australis, N2O emission was about two times higher than in the corresponding unplanted treatment. 15% of the N2O and N2 formed was transported via the Phragmites shoots from the soil into the atmosphere. By contrast, Phalaris arundinacea did not affect N2O emissions and no emission via the shoots was observed.  相似文献   

14.
Summary We used 15N technology to investigate N2 fixation by Sesbania speciosa and Sesbania rostrata and its transfer to a lowland rice crop after incorporation of the Sesbania spp. into soil as green manure. During the first 50 days after establishment in November–December 1989, S. speciosa and S. rostrata produced 1126 and 923 kg dry matter ha-1 respectively. They gathered 31 and 23 kg N ha-1 respectively, of which 62%±5% and 55%±3% respectively, came from N2 fixation. Both these species produced a greater biomass during September–October 1989, with S. rostrata producing more than S. speciosa. These results reflected differential responses by the plants to different day lengths at different times of the year. Furthermore, the dry matter yield and %N of 15N-labelled S. speciosa were smaller than those of the unlabelled plants, possibly due to inhibition of N2 fixation in root nodules by the chemical N fertilizers added during labelling. These differences were not so pronounced in the stem-nodulated S. rostrata. The increased grain yield of rice fertilized with N in the form of chemical fertilizer or green manure was a result of an increased number of panicles per hill. The rice crop manured with S. speciosa produced a lower grain yield, with a lower grain weight than that manured with S. rostrata. This was due to a low uptake of soil N by rice manured with S. speciosa. Recovery of N from the green manure in rice straw with S. speciosa was significantly higher than from rice manured with S. rostrata, because of the higher applied N uptake by rice manured with the former.  相似文献   

15.
The effects of 15N-labeled ammonium nitrate on yield, uptake of nitrogen (N) by sorghum (Sorghum sudanense, Piper), and on N remaining in the soil were studied in a field experiment with different N rates (0, 50, and 100 kg N ha?1) and with two irrigation water qualities, well water (WW) and treated wastewater (TWW). Treated wastewater irrigation increased dry matter and N yield compared to WW. At equal N rates, recovery of 15N-labeled fertilizer by plants increased with TWW irrigation compared to WW (36% versus 23%). Neither fertilizer rate nor water quality had an effect on the 15N-labeled fertilizer remaining in the 0- to 60-cm layer of soil. On average 41% in the TWW treatment (49–33%) and 38% in WW treatment was mostly present in the surface 20-cm layer. Losses of 15N-labeled fertilizer were unaffected by irrigation water quality (35%) and increased with N application rate in TWW (4% versus 31%).  相似文献   

16.
The rose of an isolate of the arbuscular mycorrhizal (AM) fungusGlomus mosseae in the protection ofMedicago sativa (+Rhizobium meliloti) against salt stress induced by the addition of increasing levels of soluble salts was studied. The interactions between soluble P in soil (four levels), mycorrhizal inoculum and degree of salinity in relation to plant growth, nutrition and infective parameters were evaluated. Salt stress was induced by sequential irrigation with saline water having four concentrations of three salts (NaCl, CaCl2, and MgCl2).15N-labelled ammonium sulphate was added to provide a quantitative estimate of N2 fixation under moderate to high salinity levels. N and P concentration and nodule formation increased with the amount of plant-available P or mycorrhizal inoculum in the soil and generally declined as the salinity in the solution culture increased from a moderate to a high level. The mycorrhizal inoculation protected the plants from salt stress more efficiently than any amount of plant-available P in soil, particularly at the highest salinity level applied (43.5 dS m–1). Mycorrhizal inoculation matched the effect on dry matter and nutrition of the addition in the soil of 150 mg P kg–1. Nevertheless the highest saline solution assayed (43.5 dS m–1) affected more severely plants supplemented with phosphorus than those with the addition of mycorrhizal inoculum. Such a saline-depressing effect was 1.5 (biomass), 1.4 (N) and 1.5 (P) times higher in plants supplied with soluble phosphate than with AM inoculum. Mechanisms beyond those mediated by P must be involved in the AM-protectioe effect against salinity. The15N methodology used allowed the determination of N2 fixation as influenced by different P applications compared to mycorrhizal inoculation. A lack of correlation between nodule formation and function (N2 fixation) was evidenced in mycorrhizal-inoculated plants. In spite of the reduced activity per nodule in mycorrhizal-inoculated In spite of the reduced activity per nodule in mycorrhizal-inoculated plants, the N contents determined indicated the highest acquisition of N occurred in plants with the symbiotic status. Moreover, N and P uptake increased while Ca and Mg decreased in AM-inoculated plants. Thus P/Ca ratios and cation/anion balance in general were altered in mycorrhizal treatments. This study therefore confirms previous findings that AM-colonized plants have optional and alternative mechanisms available to satisfy their nutritive requirements and to maintain their physiological status in stress situations and in disturbed ecosystems.  相似文献   

17.
施氮和豌豆/玉米间作对土壤无机氮时空分布的影响   总被引:3,自引:1,他引:3  
为探明甘肃河西走廊绿洲灌区豌豆/玉米间作体系土壤无机氮时空分布现状和过量施用氮肥对环境的影响,2011年在田间试验条件下,采用土钻法采集土壤剖面样品,采用Ca Cl2溶液浸提、流动分析仪测定土壤无机氮含量的方法,研究了不同氮水平[0 kg(N)·hm?2、75 kg(N)·hm?2、150 kg(N)·hm?2、300 kg(N)·hm?2、450 kg(N)·hm?2]下豌豆/玉米间作体系土壤无机氮时空分布规律。结果表明:作物整个生育期内,灌漠土无机氮以硝态氮为主,其含量是铵态氮的7.55倍。在玉米整个生育期内,与不施氮相比,75 kg(N)·hm?2、150 kg(N)·hm?2、300 kg(N)·hm?2和450 kg(N)·hm?2处理的土壤硝态氮含量分别增加29.7%、67.5%、88.2%和134.3%。与豌豆收获期相比,在玉米收获时土壤硝态氮含量平均降低44.2%。间作豌豆和间作玉米分别比对应的单作在0~120 cm土层硝态氮含量降低6.1%和5.1%。豌豆/玉米间作体系土壤无机氮累积量在不同施氮量和不同生育时期都是表层(0~20 cm)最高。豌豆收获后,0~60 cm土层土壤无机氮累积量间作豌豆和间作玉米分别比相应单作降低4.9%和1.9%,60~120 cm土层降低10.8%和9.2%;玉米收获后0~60 cm土层平均降低28.2%和9.4%,60~120 cm土层平均降低23.5%和12.5%。土壤无机氮残留量间作豌豆比单作豌豆在0~60 cm土层降低4.9%,60~120 cm降低10.9%。因此,施用氮肥显著增加了土壤无机氮含量和累积量,且主要影响土壤硝态氮。过量的氮肥投入会因作物不能及时全部吸收而被大水漫灌和降雨等途径淋洗到土壤深层,造成氮肥损失和农田环境污染。间作能显著降低土壤无机氮浓度和累积量,特别在作物生长后期对土壤无机氮累积的降低作用更加明显。  相似文献   

18.
Summary In a series of short-term experiments root systems of young sorghum and millet plants inoculated with N2-fixing bacteria were exposed to 15N2-enriched atmospheres for 72 h. The plants were grown in a normal atmosphere for up to 22 days after the end of the exposure to allow them to take up the fixed N2. Environmental conditions and genotypes of sorghum and millet were selected to maximise N2-fixation in the rhizosphere. Detectable amounts of fixed N (> 16 g/plant) were rapidly incorporated into sorghum plants grown in a sand/farmyard manure medium, but measurable fixation was found on only one occasion in plants grown in soil. N2 fixation was detectable in some experiments with soil-grown millet plants but the amounts were small (2–4 g/plant) and represented less than 1 % of plant N accumulated over the same period. In many cases there was no detectable 15N2 incorporation despite measurable increases in ethylene concentration found during an acetylene reduction assay.Published as ICRISAT Journal Article No. JA 740  相似文献   

19.
小麦蚕豆间作施氮对小麦氮素吸收、累积的影响   总被引:8,自引:2,他引:6  
田间试验研究了小麦蚕豆间作及4种施氮水平(0、90 kg·hm-2、180 kg·hm-2和270 kg·hm-2)对小麦植株体内氮含量、小麦地上部氮素累积及氮素养分吸收速率的影响。结果表明: 间作显著增加了小麦地上部植株的氮含量, 与单作相比, 分蘖期、拔节期、抽穗期和成熟期不同施氮处理间作小麦植株的氮含量平均比单作提高20.0%、21.9%、21.4%和17.1%; 抽穗期和成熟期间作小麦叶、茎和穗中的氮含量均高于单作; 间作显著提高了小麦植株的氮素累积量和氮素吸收速率, 与单作相比整个生育期间作小麦氮素累积量增幅为15.5%~30.4%。无论单作还是间作, 小麦植株氮含量和氮素累积量随氮肥用量的增加而增加, 施氮对单作小麦植株氮含量、氮素累积量和氮素吸收速率的影响大于间作, 随着氮肥用量的增加, 间作优势逐渐减弱; 单作小麦植株的氮素吸收速率随氮肥用量的增加而增加, 间作小麦植株的氮素吸收速率随氮肥用量的增加呈先增后降的趋势。本研究表明, 间作和施氮促进了小麦对氮素的吸收利用, 间作优势与施氮水平密切相关, 间作体系中氮素养分的合理投入是发挥间作优势的关键。  相似文献   

20.
Abstract

The popular and widely used 15nitrogen (N)–isotope dilution method for estimating biological N fixation (BNF) of pasture and tree legumes relies largely on the ability to overcome the principal source of error due to the problem of selecting appropriate reference plants. A field experiment was conducted to evaluate the suitability of 12 non‐N2‐fixing plants (i.e., nonlegumes) as reference plants for estimating the BNF of three pasture legumes (white clover, Trifolium repens L.; lucerne, Medicago sativa; and red clover, Trifolium pratense L.) in standard ryegrass–white clover (RWC) and multispecies pastures (MSP) under dry‐land and irrigation systems, over four seasons in Canterbury, New Zealand. The 15N‐isotope dilution method involving field 15N‐microplots was used to estimate BNF. Non‐N2‐fixing plants were used either singly or in combination as reference plants to estimate the BNF of the three legumes. Results obtained showed that, on the whole, 15N‐enrichment values of legumes and nonlegumes varied significantly according to plant species, season, and irrigation. Grasses and herb species showed higher 15N‐enrichment than those of legumes. Highest 15N‐enrichment values of all plants occurred during late summer under dry‐land and irrigation conditions. Based on single or combined non‐N2‐fixing plants as reference plants, the proportion of N derived from the atmosphere (% Ndfa) values were high (50 to 90%) and differed between most reference plants in the MSP pastures, especially chicory (Cichorium intybus), probably because it is different in phenology, rooting depth, and N‐uptake patterns compared to those of legumes. The percent Ndfa values of all plants studied also varied according to plant species, season, and irrigation in the MSP pastures. Estimated daily amounts of BNF varied according to pasture type, time of plant harvest, and irrigation, similar to those shown by percent Ndfa results as expected. Irrigation increased daily BNF more than 10‐fold, probably due to increased dry‐matter yield of pasture under irrigation compared to dry‐land conditions. Seasonal and irrigation effects were more important in affecting estimates of legume BNF than those due to the appropriate matching of N2‐fixing and non‐N2‐fixing reference plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号