首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This research deals with the effects of soil amendment with sewage sludge compost (SSC) on long–term quantitative changes of available microelements [iron (Fe), zinc (Zn), manganese (Mn), copper (Cu)] in two types of soils using various extraction solutions [diethylenetriaminepentaacetic acid (DTPA) and hydrochloric acid (HCl)]. These changes were visualized using principal component analysis (PCA) and hierarchical cluster analysis. A 3-year pot experiment was conducted in a randomized, factorial design with two soils (light vs. medium) and a treatment with SSC at the rate of 6 Mg ha?1. The application of SSC to the light soil increased the HCl-extractable Cu, Zn, Mn, and Fe. The effect of SSC application on the microelement quantitative changes was lower in the medium soil, as shown primarily by DTPA extraction. The results of the PCA highlighted that one can correctly conclude on the basis of the limited collection of data without loss of information, which is incorporated by individual microelements.  相似文献   

2.
孟庆华 《土壤》2008,40(4):622-625
研究了山东省3大土类2个产量水平土壤表层的5种主要微量元素(Zn、Fe、Mn、Cu、B)含量及其与土壤主要理化指标的相关性.结果表明:不同土类的微量元素含量有明显差异,其特征是棕壤严重缺B,富含Fe和Mn.高产农田的有效Fe含量为13.10mg/kg,显著高于中低产田:有效Mn、有效Zn、有效Cu和有效B的含量分别为16.5、1.63、1.40、0.92mg/kg,也高于中低产田,但差异不显著.高产农田缺Mn、轻缺Zn比例分别为9%和33%,略大于中低产田,而缺B比例为28%,则略低于中低产田,其他微量元素不缺.  相似文献   

3.
The content of microelements (Mn, Zn, Cu, Co, Ni, Cr, Pb, and Cd) and Fe is determined in the soils and plants of the Lake Kotokel’ basin. Their content in the soils is proved not to exceed the regional background and the existing MPC and APC. The content of Cd is revealed to exceed its clarke value for the world soils, which is related to the natural origin of this element. The concentrations of Mn, Co, and Pb are close to their clarke values, and those of Zn, Cu, Ni, and Cr are lower than their clarkes. The studied soils are specified by the maximal amount of the mobile forms of microelements. The profile distribution of the microelements differs depending on the genetic soil type. For Mn, Zn, and Cu, a significant biogenic accumulation is pronounced in the organic soil horizons. The content of microelements in the aboveground phytomass exceeds the maximal permissible levels for Mn, Co, Cr, and Fe. The intensity of the microelements absorption by the plants varies widely, being specified by the high coefficient of the biological adsorption (except for Fe). Mn, Zn, and Cu are accumulated in the plant phytomass the most intensely.  相似文献   

4.
Iron (Fe) availability is low in calcareous soils of southern Iran. The chelate Fe-ethylenediamine di (o-hydroxy-phenylacetic acid) (Fe-EDDHA), has been used as an effective source of Fe in correcting Fe deficiency in such soils. In some cases, however, its application might cause nutritional disorder due to the antagonistic effect of Fe with other cationic micronutrients, in particular with manganese (Mn). A greenhouse experiment was conducted to evaluate the influence of soil and foliar applications of Fe and soil application of manganese (Mn) on dry matter yield (DMY) and the uptake of cationic micronutrients in wheat (Triticum aestivum L. var. Ghods) in a calcareous soil. Results showed that neither soil application of Fe-EDDHA nor foliar application of Fe sulfate had a significant effect on wheat DMY. In general, Fe application increased Fe uptake but decreased that of Mn, zinc (Zn), and copper (Cu). Application of Mn increased only Mn uptake and had no significant effect on the uptake of the other cationic micronutrients. Iron treatments considerably increased the ratio of Fe to Mn, Zn, Cu, and (Mn + Zn + Cu). Failure to observe an increase in wheat DMY following Fe application is attributed to the antagonistic effect of Fe with Mn, Zn, and Cu and hence, imbalance in Fe to (Mn + Zn + Cu) ratio. Due to the nutritional disorder and imbalance, it appears that neither soil application of Fe-EDDHA nor foliar application of Fe-sulfate is appropriate in correcting Fe deficiency in wheat grown on calcareous soils. Hence, growing Fe-efficient wheat cultivars should be considered as an appropriate practice for Fe chlorosis-prone calcareous soils of southern Iran.  相似文献   

5.
Adamo  Paola  Dudka  S.  Wilson  M. J.  McHardy  W. J. 《Water, air, and soil pollution》2002,137(1-4):95-116
The sequential extraction procedure proposed by the European Commission Measurement and Testing Programme, combined with Scanning Electron Microscopy and Energy Dispersive X-ray Analysis(SEM/EDS), was applied to identify and quantify the chemical andmineralogical forms of Cu, Ni, Fe, Mn, Zn, Pb, Cr and Cd presentin the topsoil from a mining and smelting area near Sudbury (Ontario, Canada). The possible mobility of the chemical forms was also assessed. The metal fractions: (1) soluble and exchangeable, (2) occluded in manganese oxides and in easily reducible iron oxides, (3) organically bound and in form of sulphides, (4) residual mainly present in the mineral lattice structures were separated. Cu and Ni were the major metallic contaminants, occurring in soils in broad ranges of concentrations: Cu 11–1890 and Ni 23–2150 mg kg-1. Cu was uniformly distributed among allthe extracted fractions. Ni was found associated mainly withthe residual forms, accounting for 17–92%, with an averageof 64%, of the total Ni present in the soils. Fe, Mn, Zn,Pb, Cr and Cd, while occurring in most analysed samples innormal soil concentrations, were primarily held in theresidual mineral fraction (on average >50%). The solubleand exchangeable forms made a small contribution (≤8.1%)to the total content of metals extracted. At least 14% ofthe total Cd, Mn and Pb was mobilised from the reducibleforms. The oxidizable fraction assumed mean values higher than10% only for Pb and Zn. Statistical treatment of the experimental data showed significant correlations between totalmetal content of the soils, some soil properties such as pH value, clay and organic matter content, and metal concentrationsin the various fractions. SEM/EDS analysis showed Fe in form ofoxides and sulphides in soils and Cu, Ni, Mn, Zn and Cr in association with iron oxides. Numerous black carbonaceous particles and precipitates of aluminium fluoride salts, observedin the solid residue left after `total’ digestion, were found tocontain Fe, Ni and Cr.  相似文献   

6.
The enrichment factor, multivariate analysis and metal speciation studies were used to identify degree, source and dispersal of metal contamination in Khli Ti watershed, Thailand. Topsoil samples were collected throughout the watershed, analyzed for total metal concentration. Sequential extraction was also carried out to determine geochemical phases of metals which were identified as exchangeable and bound to carbonates, Fe–Mn oxides, organic matter and residuals. Soil characteristics including pH, total organic carbon, redox potential, cation exchange capacity and texture were also analyzed. Principal component analysis yielded three metal groups which explained 83% of the variance. The concentrations of metals which were derived from lithogenic origin, such as Co, Cr, Fe, Ni and V were in natural background levels and were mostly bound to the residual phase. The remaining elements (i.e. Ba, Cd, Cu, Pb, Sb and Zn) were associated with the contamination from previous activities of the Pb-ore concentrator and Zn–Pb mining. Anthropogenic contamination mainly increased Pb and Zn bound to Fe–Mn oxides at the expense of residual fraction. Even though low exchangeable Pb contents in Khli Ti soils indicated low availability to plants, Pb bound to Fe–Mn oxides fraction might increase its mobility under reducing conditions.  相似文献   

7.
The extractability and slow reactions of copper (Cu) and zinc (Zn) in a weathered savanna soil under Brachiaria decumbens, Digitaria smutsii, and Stylosanthes guianensis pastures were determined in a laboratory incubation study using a sequential extraction to remove operationally defined fractions of the metals, consisting of exchangeable, organically bound, precipitate [occluded in aluminum (Al) and iron (Fe) oxides], and residual metal fractions. The soils from the pasture fields were spiked with 100 mg Cu kg–1 soil and 200 mg Zn kg–1 soil for 24 weeks. Copper and Zn extractable with 1 N potassium nitrate (KNO3) solution decreased exponentially with time but reached a steady state after 2–3 weeks. The concentrations of Cu and Zn exchangeable with potassium (K) were greater in the Digitaria smutsii field soil than Brachiaria decumbens and Stylosanthes guianensis field soils. The exchangeability of added Cu and Zn (indexed Mn+ (exch)) with time was described by a simple exponential decay equation: Mn+ (exch) = αeβt, where α is a constant, β is a coefficient that defines the rate of transformation of added Cu and Zn from the exchangeable to nonexchangeable pools, and t is time. The β values for Cu (0.040–0.076 mg kg–1 d–1) were almost 10 times greater than those of Zn (0.005–0.007 mg kg–1 d–1). Sequential extraction of added Cu and Zn indicated that between 26 and 30% of the total Cu and between 19 and 30% of the total Zn were associated with organic matter. Similarly, between 35 and 38% of total Cu and between 47 and 60% of total Zn were associated with Fe, Al, and manganese (Mn) oxides. The differential capacity of the pasture fields to transform added Cu and Zn from exchangeable and labile form to nonlabile and nonexchangeable form appears to be governed by organic matter (OM), pH, and active Fe ratio in the pasture field soils.  相似文献   

8.
乔依娜  刘洪斌 《土壤》2019,51(2):399-405
为深入研究土壤有效态微量元素的影响因素,以重庆市江津区农田土壤为研究对象,利用1 265个样点数据,加入种植制度和母岩类型数据,构建土壤微量元素的虚拟变量回归预测模型,采用随机森林算法,定量分析了分类变量对土壤有效态微量元素影响的相对重要性。结果表明:加入种植制度和母岩的回归模型的拟合度高于普通线性回归模型,对土壤有效铁、锰、铜和锌变异的解释度分别提高了9.20%、38.99%、20.75%和29.96%,并且提高了对土壤有效铁的预测精度,但对提高土壤有效锰、铜和锌的预测精度作用不明显。土壤养分和种植制度是影响土壤有效态微量元素含量的重要因素,种植制度和母岩中,种植花椒、种植水稻和遂宁组发育的土壤对农田有效态微量元素含量的影响相对较大。  相似文献   

9.
本文对甘肃省主要农业土壤中Cu、Zn、Mn、Fe的形态及其有效性进行了研究。结果表明,供试土壤的全Cu含量范围为22-24mg/kg,全Mn为542-772mg/kg,全Fe为35685-38355mg/kg。四种元素均以灌漠土的含量最低,褐土最高。土壤中Cu、Zn、Mn、Fe的大部分以残留矿物态和氧化铁结合态存在。生物试验和统计分析表明,Cu、Zn、Mn、Fe的交换态和松结有机态对植物最为有效,  相似文献   

10.
山东典型植烟土壤微量元素有效态含量研究   总被引:7,自引:3,他引:4  
为摸清山东典型植烟区土壤微量元素有效态含量分布情况,采集和分析了临朐、蒙阴、诸城、费县、五莲、莒县6个主要植烟县的烟田耕层和剖面土样。结果表明:①耕层土壤有效Fe和Mn含量丰富,有效Cu含量适中,有效Zn含量较低。②石灰性砂页岩发育的土壤中微量元素有效态含量相对较低。③有效态Fe、Mn和Zn主要为表层富集型,有效Cu垂直分布相对均匀。④土壤有效态Fe、Mn、Cu和Zn含量随pH升高而降低,随有机质增加而增加;pH是影响有效态Fe和Mn的重要因素,而有机质是影响有效态Cu和Zn的重要因素。  相似文献   

11.
长期施肥对菜田土壤微量元素有效性的影响   总被引:23,自引:5,他引:23  
利用田间试验研究了长期定位施用有机肥和氮、磷、钾化肥对菜田土壤重要微量元素有效性的影响。结果表明,长期施用氮肥会提高土壤有效态铁、锰、锌、铜含量,随着氮肥用量增加,土壤酸化程度加重,土壤中铁、锰、锌、铜有效性亦随之增强。磷、钾化肥能够提高土壤有效铁、锰含量,对土壤锌有效性不会产生明显影响,在一定范围内可以提高土壤有效性铜含量,但效果不明显。长期施用有机肥对土壤微量元素的影响与配施的化肥种类有关。土壤有效铁、锰、铜含量与土壤pH呈极显著负相关,而有效锌含量与pH相关性不明显,而且关系比较复杂。总之,影响微量元素有效性的首要因素是土壤酸碱度。  相似文献   

12.
The geochemical behavior of metals, including Fe, Mn, Pb and Zn, in contaminated paddy soils was investigated during the cultivation of rice crops through laboratory microcosm experiments. From the two paddy fields contaminated by mine tailings, Siheung and Deokeum in Korea, paddy soils were collected and analyzed for their geochemical characteristics. The Siheung paddy soil showed higher levels of heavy metals, whereas the higher potential for the release of metals was anticipated due to the extremely acidic conditions at Deokeum. In microcosm experiments of flooded paddy soils over 18 weeks, Fe and Mn were released in subsurface pore waters by reductive dissolution, and Pb and Zn were dissolved in high amounts at the surface by oxidation of sulfides. Although amorphous Fe oxide-rich layers were formed at the surface of both paddy soils, the release of Pb and Zn were controlled at the surface by these layers only under slightly alkaline conditions at Siheung. Lead and Zn were associated with the reducible and carbonate fractions at the surface paddy soil of Siheung from the sequential extraction on core samples collected during the flooded period. In the acidic conditions at Deokeum, Pb and Zn were continuously released until the late stage of flooding. A great increase in the exchangeable fraction of metals was observed after the soils had drained. The bioavailability of metals for rice crops would be high under acidic conditions at Deokeum, despite the lower levels of heavy metal contamination.  相似文献   

13.
Abstract

Experiments were conducted to seek a better basis for soil testing of rice paddy soils. Soils were incubated under variable conditions of simulated flooding, and then extracted with DTPA5 . The amounts of Cu, Zn, Mn and Fe extracted were sensitive to the imposed soil conditions. Good correlations between Zn extracted from simulated flooded soils and Zn uptakes by rice from flooded soils in pots, suggest that this approach to soil testing may be more useful for paddy soils than existing tests on air dried soils.  相似文献   

14.
施肥结构对砂质潮土中微量营养元素空间变化的影响   总被引:11,自引:0,他引:11  
本文通过长期定位施肥试验 ,分析了不同施肥结构对砂质潮土交换性钙、镁及有效硫、锌、锰、铜、铁等在 0~ 1 2 0cm土体中空间分布变化的影响 .结果表明 ,磷肥明显提高土壤交换性钙的含量 ,而有机肥与氮肥对土壤钙含量无明显影响 .但有机肥显著增加土壤交换性镁含量 ,各层镁含量与有机肥用量呈显著或极显著正相关 ,磷肥同样对土壤镁有提高作用 ,但氮肥无论是否与有机肥配施均降低了土壤各层交换性镁含量 .土壤 0~ 4 0cm有效锌、锰、铁均随有机肥增加而增加 ,并与有机肥用量呈极显著正相关 .而化肥无论是否与有机肥配施均降低土壤有效锌含量 ,但却增加了有效铁含量 .氮肥单施降低土壤有效锰含量 .在无有机肥情况下 ,施磷提高土壤有效铁含量 ,而在施有机肥条件下磷肥则降低耕层有效铁含量 .磷肥只在单施化肥时增加土壤有效锰含量  相似文献   

15.
Contents of major and trace elements in concretions of surface samples from marsh soils – Electron microprobe analysis The amounts of 14 elements (Ti, Fe, Mn, Si, Al, Ca, and P, S, Co, Ni, Cu, Zn, Cd, Pb) in concretions of four A horizons of marsh soils were determined by electron microprobe analysis on thin sections. According to the major element compositions the following types of concretions can be distinguished: Ti-Fe(-Mn) concretions (31–39% Ti; 18–29% Fe; 0,3–5,5% Mn); Fe(-Mn) concretions (31–58% Fe; ≤ 1,8% Mn); Fe-Si(-Mn) concretions (6–28% Fe; 8–42% Si; ≤ 5% Mn); Mn-Fe and Mn-Fe-Si concretions (16–40% Mn; 2–9% Fe; 2–15% Si). The formation of Ti-Fe(-Mn) concretions can be explained by adsorption of Fe2+ ions under reducing conditions on surfaces of Ti minerals followed by oxidation to Fe(III) oxide. In this way pseudorutile may be formed. Concretions with high Fe and/or Mn content often contain occlusions of carbonates, silicates and/or SiO2 (bioopal) which may act as nuclei for their growth. Redox processes in marsh soils result in the formation of concretions with dominating Fe or Mn accumulation. Among the group of trace elements, P and S (like Ti and Si) reach their highest concentrations in Fe rich concretions (up to 54.000 mg P/kg and 4.200 mg S/kg). The accumulation of these elements is obviously influenced by anion competition, especially of P and Si, and probably also Ti. Likewise, high amounts of Pb were found in Fe(-Mn) concretions (up to 12.000 mg/kg). Co, Ni, Zn, and Cd show the highest amounts in Mn rich concretions (Co up to 3.400; Ni 1.800; Zn 13.200; Cd 1.000 mg/kg). Cu is also accumulated in some concretions (up to 1140 mg/kg) but no clear affinity to one of the different types of concretions was found.  相似文献   

16.
西昌市土壤Fe、Mn、Cu、Zn有效性评价及其影响因素分析   总被引:6,自引:2,他引:6  
在分析西昌市土壤微量元素Fe、Mn、Cu、Zn有效含量状况及其分布特征的基础上,从成土母质、土地利用方式、有机质和pH等4个方面探讨其对土壤微量元素有效含量的影响。结果表明:西昌市土壤有效Fe含量丰富,有效Cu和Zn略低且分布不均,有效锰有32.18%的土壤缺乏。成土母质是重要的影响因素,第四纪紫色洪冲积物发育的土壤Fe、Mn、Zn有效含量较高,二迭纪岩浆岩洪冲积物发育的土壤有效Cu含量较高,坡残积物发育的土壤4种微量元素有效态含量均较低;水田土壤各元素有效含量均大于旱地;有机质与有效Fe、Cu间显著正相关;pH值在中性偏碱时,有效Cu和Zn含量较低。  相似文献   

17.
黑龙江北部土壤中主要重金属和微量元素状况及其评价   总被引:18,自引:0,他引:18  
以黑龙江省北部地区的嫩江市、五大连池市和克山县土壤中重金属和微量元素为研究对象,评价了该地区土壤中全量锌、铜、铅、镉和有效态锌、铜、锰、铁的分布状况、污染程度和丰缺程度。研究结果表明:土壤重金属含量在克山、五大连池和嫩江地区存在一定的差异,表现出一定的地域变化特点。除了全锌含量低于黑龙江省土壤背景值外,其它3种元素(铜、铅和镉)都高于背景值,按当地标准已达轻度污染程度;根据国家标准,这3个地区土壤中有效锌和和有效铜含量均达适中和丰富水平,有效铁和有效锰达到丰富和很丰富水平。但尚需根据该地区的气候、作物和土壤的具体情况制订适合当地的土壤微量元素评价标准。  相似文献   

18.
田秀平  李玉梅 《土壤》2009,41(2):196-200
在三江平原上,测定 42 个小区中玉米、大豆、小麦籽实 Fe、Mn、Cu 和 Zn 含量和土壤中各形态 Fe、Mn、Cu 和Zn含量.通过相关分析和通径分析,探讨了土壤中各形态Fe、Mn、Cu 和 Zn 的生物有效性,旨在为该地区合理施用微量元素提供科学依据.试验结果表明,玉米、大豆和小麦籽实含 Fe、Mn、Cu 和 Zn 量与土壤中有效态和交换态 Fe、Mn、Cu和Zn含量呈显著或极显著正相关.有机态 Fe、Mn、Cu 和 Zn含量与玉米、大豆和小麦籽实Fe、Mn、Cu 和 Zn含量也有很好的相关关系.交换态对有效态 Fe、Mn、Cu 和 Zn 影响最大,其次是有机质结合态.铁锰氧化物结合态 Fe、Cu 对有效态 Fe、Cu 及碳酸盐结合态 Mn、Zn 对有效态 Mn、Zn 具有一定正效应.而残留态 Fe、Cu 对有效态 Fe、Cu 和铁锰氧化物结合态 Mn 对有效态 Mn 产生负效应.  相似文献   

19.
Abstract

A compost of high copper (Cu) and zinc (Zn) content was added to soil, and the growth of barley (Hordeum vulgare L.) was evaluated. Four treatments were established, based on the addition of increasing quantities of compost (0, 2, 5, and 10% w/w). Germination, plant growth, biomass production, and element [nitrogen (N), phosphorus (P), potassium (K), calcium (Ca), sodium (Na), magnesium (Mg), iron (Fe), Cu, manganese (Mn), and Zn] contents of soil and barley were determined following a 16‐week growing period. Following harvesting of the barley, analysis of the different mixtures of soil and compost was performed. Micronutrient contents in soils as affected by compost additions were determined with diethylene–triamine–pentaacetic acid (DTPA) (Cu, Mn, Fe, and Zn) or ammonium acetate [Ca, Na, Mg, K, cation exchange capacity (CEC)] extractions, and soils levels were compared to plant uptake where appropriate. Increasing rates of compost had no affect on Ca, Mg, or K concentration in barley. Levels of Cu, Zn, Mn, and Na, however, increased with compost application. High correlations were found for DTPA‐extractable Cu and Zn with barley head and shoot content and for Mn‐DTPA and shoot Mn content. Ammonium acetate–extractable Na was highly correlated with Na content in the shoot. High levels of electrical conductivity (EC), Cu, Zn, and Na may limit utilization of the compost.  相似文献   

20.
Knowledge of spatial variability of soil properties is critical for precision farming and identification of pollution hot spots. This study examined the spatial dependence and variability of microelements to produce nutrient maps for site-specific nutrient management and for environmental modeling. A total of 94 grid samples (50 × 50 m2) were collected and analyzed for available zinc (Zn), copper (Cu), manganese (Mn), iron (Fe), nickel (Ni), cadmium (Cd), and lead (Pb) using an atomic absorption spectrometer. Coefficient of variation (CV) indicated that all the microelements were high in heterogeneity (CV > 35%). Available Zn was found deficient in 66.4% of soil samples and might be one of the limiting nutrients for crop growth, Cu and Ni were in medium, and Fe and Mn in very high range. Pb and Cd were lower than standard values, but careful management will avoid toxicity. Significant correlation was found between Zn with Fe (r = 0.377); Ni with Mn and Fe (r = 0.350 and 0.205, respectively); and Pb with Mn and Ni (r = 0.298 and 0.221, respectively). Spatial variability of soil microelements was mapped by ordinary kriging using exponential model for Fe, Mn, Ni, Cd, and Pb; Gaussian model for Cu, and spherical model for Zn. Semivariogram showed strong to weak degree of spatial dependence for all microelements. The study highlighted the importance for the creation of nutrient management zones for Zn availability. The spatial variability maps generated could be used as a guide for precise and site-specific micronutrient management in the study region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号