首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Long-term P Fertiliser application increases soil phosphorus (P) labile fractions, which can be associated with crop P uptake and grain yield and are useful to improve fertilizer recommendations. Research aims were to evaluate in long-term experiments with different P Fertiliser application in a Mollisol and a Vertisol: (a) the changes of soil P fractions and (b) the relationship between soil P fractions with long-term P Fertiliser application, with accumulated apparent P budget, grain P, total P uptake, soybean (Glycine max L.Merr.) and maize (Zea mays L.) grain yield. Soil P fractions were measured after 1 and 9 year since the beginning of the long-term experiments. Experiments included an initial Fertiliser application rate of 200 kg P ha−1 and annual P Fertiliser application rate of 36 kg P ha−1. Bray1-P, total, organic, and inorganic P in fine (<53 μm) and coarse (>53 μm) (CF) soil fractions, and in NaHCO3 extract were measured. Initial P Fertiliser application increased inorganic and total P fractions. However, Bray1-P, total P in NaHCO3 extract and in the CF were the fractions that most increased with continuous long-term P Fertiliser application in both sites. In the Mollisol, maize grain yield was unrelated to long-term P Fertiliser application. In the Vertisol, total P in NaHCO3 extract, and total and organic P in the CF were more closely related to soybean grain yield than Bray1-P. We proposed soil P indices of labile inorganic and organic P that showed close relationships with soybean grain yield and may be useful to improve the diagnosis of P soil fertility.  相似文献   

2.
通过对小麦/玉米轮作不同施磷水平7年14季定位试验土壤养分状况的分析与评价,探讨石灰性潮土有效磷耗竭和积累状况下土壤全磷、无机磷分级形态的变化规律,并运用通径分析和逐步回归分析,研究Olsen法、Mehlich3法、树脂交换法测定的土壤有效磷与各无机磷形态的关系。结果表明:(1)与初始土壤相比,N0P0K0、N2P0K2处理全磷总量分别降低了15.2%,29.7%,无机磷总量降低了13.5%,11.8%,N2P2K2、N2P3K2处理全磷总量分别增加了8.2%,27.2%,无机磷总量增加了11.1%,27.8%。供试土壤无机磷含量以Ca_(10)-P、Ca_8-P为主,施用磷肥可提高Ca_2-P、Ca_8-P、Al-P、Fe-P占无机磷总量的相对比例。(2)磷耗竭状态下,植物利用的无机磷来源于缓效磷源(Ca_8-P、Al-P、Fe-P;75%)、无效磷源Ca_(10)-P(11.5%~14.0%)、速效磷源Ca_2-P(7.5%~8.9%);无机磷盈余状态下,积累的无机磷主要转化为Ca_8-P(50%~70%)、Al/Fe-P(10%~23%)、O-P(8%)、Ca_2-P(0.2%~1.8%)。(3)Ca_2-P、AlP对3种方法测得的有效磷均具有正向作用且贡献率较大。Olsen法测定的无机磷主要是Ca_2-P、Ca_8-P,Mehlich3法主要是Ca_2-P、Ca_8-P、Al-P,阴离子交换树脂法主要是Ca_2-P、Fe-P。(4)Olsen法、Mehlich3法、树脂交换法均适于评价土壤有效磷水平,Olsen法最优。  相似文献   

3.
长期施肥对黑土磷素积累、形态转化及其有效性影响的研究   总被引:30,自引:8,他引:30  
1980年开始,在小麦大豆玉米轮作制中,研究长期定位施用常量的氮、磷、钾(小麦、玉米施肥量为N150、P2O575、K2O75kg/hm2;大豆为N75、P2O5150、K2O75kg/hm2)和有机肥(马粪,折N75kg/hm2,只在玉米后茬上施用),以及二倍和四倍量对土壤磷素积累、形态变化及磷肥后效的影响。23年研究结果表明,长期不施肥,黑土土壤全磷下降37.4%、速效磷下降了60%;施用磷肥土壤全磷增加53.9%~65.7%、速效磷增加6~15倍。积累的磷素大部分以有效性较高的Ca2-P、Ca8-P、Al-P形态积累在土壤中,施用磷肥可使Ca2-P增加4~15倍,Ca8-P增加4~16倍,Al-P增加1.6~11.8倍,Fe-P增加1.4~4.4倍,O-P增加0.6~1.7倍,Ca10-P增加0.3~0.7倍。所积累在土壤中的磷素具有生物有效性。  相似文献   

4.
连续施磷条件下渗育性水稻土无机磷土层分布及移动特征   总被引:1,自引:1,他引:1  
通过3年田间肥料定位试验,采用顾益初、蒋柏藩的石灰性土壤无机磷分级方法,研究了太湖地区砂壤质渗育性水稻土不同无机磷形态在015.cm、1530.cm和3045.cm土层的分布及移动特征。结果表明,太湖地区砂壤质渗育性水稻土中的无机磷以Ca-P为主,其中Ca10-P含量最高。无论施肥与否,各土层中不同形态无机磷的含量都是Ca10-PO-P、Fe-PAl-P、Ca2-P、Ca8-P。3年定位施磷后,随施磷量增大表层(015.cm)土壤中总磷、Olsen磷、无机磷和无机磷各组分含量显著增加,而1530.cm和3045.cm土层中各无机磷组分的增加相对较小。土壤中总磷、无机磷和Olsen磷在土壤剖面中向下移动性随着土层的加深而减弱。其移动性呈Olsen磷无机磷总磷。植物有效无机磷源(Ca2-P、Ca8-P、Al-P)的下移比植物无效或缓效无机磷源(Ca10-P、Fe-P、O-P)的下移更明显。Olsen磷与土壤各层中的Ca2-P、Ca8-P、Al-P的相关性要比Fe-P、O-P和Ca10-P更大。  相似文献   

5.
长期施肥对黑垆土无机磷形态的影响研究   总被引:9,自引:0,他引:9       下载免费PDF全文
王平  李凤民  刘淑英  吴银明  王娟 《土壤》2005,37(5):534-540
对黄土高原旱地黑垆土进行25年长期定位肥料试验,对土壤无机P形态、数量和对作物的有效性进行了研究。结果表明,石灰性土壤无机P的组成以Ca10-P占绝对优势,约占无机P总量的57.7%,其次是闭蓄态P(O-P),占17.9%,而Al-P、Fe-P、Ca8-P分别占5.9%、5.7%、10.1%,最少的为Ca2-P,只有2.8%。所有施肥处理中,各形态无机P均以土粪 NP含量最高;Ca2-P、Ca8-P、Al-P以N处理最低,而Fe-P、O-P、Ca10-P以CK处理最低;长期施肥对无机P各组分相对含量也有影响,耗P处理主要是Ca2-P、Ca8-P、Al-P的降低,而施P处理是Ca10-P的降解和Ca2-P的积累。与1990年比较,CK处理均有下降;N处理除O-P、Ca10-P有增加外,其他各组分含量均下降;而NP、秸杆. NP、土粪、土粪. NP处理均呈增加趋势。不同处理对土壤有效P和缓效态P均有不同程度的影响,而与无效态P关系不大。同时做了各形态无机P与作物产量的相关性分析,在各级无机P与产量的相关性中,Ca2-P、Ca8-P、Al-P都达到了极显著水平,其中以Ca8-P与产量的相关性最高,而Fe-P、O-P、Ca10-P也都达到了显著水平。  相似文献   

6.
制种玉米连作恒量施磷对灌漠土与潮土中磷素利用的影响   总被引:2,自引:0,他引:2  
[目的]研究恒量外源磷施用对玉米种子生产的影响,为合理施磷提供依据。[方法]通过大田定位与实验室分析相结合,选用河西走廊石灰性潮土及灌漠土定位施肥。[结果]制种玉米连作8a,恒量磷二铵525kg/(hm^2·a)施用,除无机态二钙磷(Ca_2-P)外,2种不同土类总磷(T-P)、速效性磷(Av-P)、总无机磷(T-IP)、总有机磷(T-OP),以及其他各分级无机、有机磷组分均显著增加。无机磷占全磷总量65.2%~70.2%,有机磷占全磷总量6.5%~11.4%。无机磷中十钙磷(Ca10-P)>八钙磷(Ca8-P)>铝磷(Al-P)>铁磷(Fe-P)>闭蓄态磷(O-P)。有机磷中活性有机磷(MLO-P)>高稳性(HRO-P)>中稳性有机磷(MROP)>活性有机磷(LO-P)。随连作年限增加,灌漠土Ca10-P在连作第5a达到最大,Al-P,O-P均持续增加;潮土Ca10-P持续增加,Fe-P,O-P在连作第5a达到最大,磷增加量为3.94%~37.28%。0—60cm土层,两种土类无机磷各组分含量均呈现由表层至下层递减特点,但不同分级磷在不同土层所占比例不同,Ca10-P,Al-P,O-P,MRO-P底聚,Ca_2-P,HRO-P表聚,制种玉米连作生产8a,磷肥最大表观利用率为4.89%,磷素活化系数<2%,外源磷肥以174.3kg/(hm^2·a)残余在土壤中。[结论]制种玉米连作,总磷转化率低,磷素移动缓慢,大部分以溶解性较低的磷素形态在土壤表层积累,但随连作年限增加,土壤对磷素的固持及转化率下降,表现底聚趋势,对生态环境健康存在极大风险,应减量或停止施磷。潮土磷肥施用应采取更加合理措施。  相似文献   

7.
以山西省晋城市采煤塌陷区复垦土壤为研究对象,连续3年定位施肥研究施用有机肥(M)、无机肥(NPK)、有机肥+无机肥(NPK+M)对土壤理化性状、土壤磷分级的影响。结果表明:试验结束后,不同施肥处理土壤的pH、容重、全氮、全磷含量差异均不显著;单施有机肥处理的有机质含量显著高于单施化肥处理;有机肥+无机肥处理土壤速效磷含量高于其余处理,但处理间差异不显著。有机肥+无机肥处理能够明显提高土壤无机磷组分Ca_8-P含量;不同施肥处理均显著提高了Fe-P,处理间差异不显著;各处理的O-P、Ca_(10)-P增幅不明显;对照处理的不同无机磷组分含量总体保持下降趋势,其中Ca_8-P、Fe-P降幅较为明显。有机肥处理对活性、中活性组分,有机肥+无机肥处理对活性、中稳性有机磷效果明显,无机肥对有机磷组分效果不显著。相关性分析表明,Ca_2-P、Ca_8-P、Al-P、Fe-P、中活性、中稳性有机磷与速效磷均呈显著正相关性,Ca_8-P、中活性有机磷与速效磷极显著相关。  相似文献   

8.
不同温室蔬菜种植模式下土壤磷素形态分布与转化   总被引:3,自引:0,他引:3  
李婠婠  滕艳敏  李季 《土壤》2020,52(2):271-278
采用蒋柏藩-顾益初无机磷分级浸提法,研究了15a长期有机、综合和常规种植3种温室蔬菜生产体系下石灰性土壤磷形态分布及转化特征。结果表明:种植模式及施肥年限对土壤有机磷含量和各形态无机磷含量均有显著影响,且交互作用显著。随着施肥时间延长,3种种植模式土壤有机磷含量与无机磷形态Ca2-P、Ca8-P、Fe-P含量不断升高,Al-P、O-P、Ca10-P含量呈现不规则变动,差异较小;有机模式土壤有机磷含量与无机磷形态Ca2-P、Ca8-P、Fe-P含量均高于常规和综合模式,O-P、Ca10-P含量略小于常规和综合模式。在各磷素占比中,中等活性磷源(Ca8-P、Fe-P、Al-P)>潜在磷源(O-P、Ca10-P)>有效磷源(Ca2-P)。表层土中有机磷占全磷的8%~23%,亚表层土中有机磷占全磷的6%~13%。有机模式促进了无机磷各形态之间、有机磷和无机磷形态之间的转化过程,0~20 cm土层的磷素转化比2...  相似文献   

9.
长期施肥对石灰性潮土无机磷形态的影响   总被引:14,自引:3,他引:14  
在河北省辛集市马兰农场的肥料长期定位试验点上 ,进行了石灰性土壤在无机磷耗竭和积累状况下 ,无机磷形态的转化及其在土壤剖面中的分步规律和施肥的影响。结果表明 ,在土壤磷处于耗竭的情况下 ,植物主要吸收利用了土壤的Ca8-P、Al-P、Fe-P和Ca2-P ,只有在极度缺磷的情况下 ,植物才利用土壤中的Ca10-P ,而O-P是土壤中极稳定的无机磷形态 ,植物一般不能利用。长期单施无机磷肥 ,土壤无机磷含量有所提高 ,积累的无机磷约 60%转化成Ca10-P和O-P。有机肥与化肥配合施用 ,积累的无机磷约有占积累无机磷的 2/3转化成Ca2-P和Ca8-P ,而且各形态无机磷的含量在土壤表层和下层均有所提高 ,一般随有机肥用量的增加 ,下层土壤无机磷的增加幅度也大 ,且影响的深度也较深。但在本试验条件下 ,施肥深度的影响不会超过50cm。  相似文献   

10.
长期轮作与施肥对农田土壤磷素形态和吸持特性的影响   总被引:10,自引:0,他引:10  
通过对黄土旱塬地区长期定位施肥(26a)条件下的不同轮作系统的土壤磷素形态和吸持参数的测定,研究了轮作和施肥对土壤磷素吸持特性和磷素形态的影响,以及土壤磷素吸持参数与磷素形态之间的关系。结果表明,长期轮作与施肥都可以减低土壤磷素的最大吸附量(Qm),相对于其它轮作和连作,在氮磷(NP)施肥下,小麦-玉米-豌豆轮作可以减低土壤的Qm,在氮磷有机肥(NPM)施肥下,小麦-玉米轮作可以减低土壤的Qm。在施肥相同的条件下,小麦-玉米轮作和小麦-豌豆轮作可以显著增加土壤中各形态无机磷的含量,长期轮作比连作可以增加土壤中的有效磷养分,尤其对Ca2-P的提高效果更为显著。相关分析表明,Qm和磷吸持指数(PSI)与全磷(T-P)、Olsen-P、CaCl2-P、Ca2-P、Ca8-P、Fe-P、Ca10-P和有机磷呈极显著负相关(p<0.01),与闭蓄态磷(O-P)呈显著负相关(p<0.05),与Al-P关系不显著。土壤有机质(SOM)与Qm、PSI和磷最大缓冲能力(MBC)之间存在极显著负相关关系,与磷吸持饱和度(DPSS)存在显著正相关。通径系数和逐步回归分析表明,在石灰性黑垆土土壤的无机磷形态中,Ca2-P对Olsen-P的贡献最大。  相似文献   

11.
在黄土旱塬区长期试验(1985-1997年)中,选取对照(不施肥,CK)、磷肥(P2O5.60.kg/hm2,P)、氮肥(N.120kg/hm2,N)、氮磷(N,120.kg/hm2,P2O5,60.kg/hm2,NP)、氮磷有机肥(N.120.kg/hm2,P2O560.kg/hm2,有机肥75.t/hm2,NPM),种植方式为冬小麦连作的5种有代表性的施肥处理,研究了石灰性土壤磷素吸附特性的演变及其与土壤磷素形态、土壤有机碳(SOC)含量的关系。结果表明,P素的最大吸附量(Qm),1997年对照(CK)、N处理比1985年分别提高了18%和14%;而P、NP和NPM处理分别降低了26%、13%和24%。吸附能常数(k值)随时间延长,对照和N处理相对稳定,P和NP处理呈升高趋势,而NPM处理有降低趋势。土壤磷素吸附饱和度(DPS)和零净吸附磷浓度(EPC0)对照和N处理随时间延长呈降低趋势,P、NP和NPM处理呈升高趋势。Qm与Ca8-P、Al-P存在极显著相关关系(P0.001),与Ca2-P、Pe-P存在显著相关关系(P0.05)。Ca2-P、有机磷含量变化与土壤DPS的相关性达到显著水平(P0.05)。EPC0只与有机磷间存在显著的相关关系(P0.05)。Qm、DPS和EPC0变化与SOC存在显著或极显著的线性相关关系(P0.001)。  相似文献   

12.
Phosphorus (P) deficiency is one of the main problems limiting crop growth in red soils of southern China. The primary objective of this study was to examine P availability as a function of soil acidity. Soils were sampled from a long-term fertilization experiment and are referred as low-P (No P fertilization) and high-P (120 kg P2O5 ha–1). Both low-P and high-P treatments were incubated adjusting soil pH to seven levels from 3.0 to 6.5 for 10, 20, 30 and 45 days. The pH, DIP, and Olsen-P were determined after each incubation period, and inorganic P fractions were measured at the end of incubation. For both low-P and high-P treatments, DIP decreased with rising pH value and increased with decreasing soil pH. Olsen-P, Ca-P (Ca2-P, Ca8-P, and Ca10-P) and Al-P increased significantly with soil pH in low-P treatment. In high-P, Olsen-P increased with pH between 3.4 and 5.0 and was stable at higher pH. Moreover, Ca-P and Al-P increased significantly but Fe-P decreased with soil pH increase. The redundancy analysis showed that Ca-P, Al-P, and pH had positive effects on Olsen-P, but Occluded-P showed a negative correlation with Olsen-P in both soils. Our results confirmed that soil P availability was influenced by pH and that the changes in DIP and Olsen-P were linked to changes of inorganic fractions from occluded to Ca- and Al-bound forms. Managing soil acidity is a key issue regarding the availability of P in red soils of China and our results suggest that at least a pH of 5.0 should be targeted.  相似文献   

13.
Massive exploration of coal in China has resulted in a significant loss of agricultural land throughout the country. To relieve this increasing shortage, reclamation of abandoned coal mine areas has been prioritized. This study aims to identify the limiting factor(s) affecting the restoration of the soil fertility in a coal-mined area. The work was carried out in a typical area, the Xuzhou coalfield in northern Jiangsu province. Soil fertility parameters showed that the tested soil was very poor, especially in phosphorus. By using soil-pot experiments, it was demonstrated that application of nitrogen and potassium, but without phosphorus fertilizers, did not result in increase in crop yields, while the rational application of organic and inorganic fertilizers improves soil fertility significantly as shown by yields of rice, wheat and green vegetables. By comparing the effectiveness of different treatments, soil phosphorus was identified as the limiting factor in restoring the fertility of this newly reclaimed land. Study on the soil phosphorus speciation further revealed that Ca2-P was the main source of variation in the supplying capacity of soil phosphorus, whereas Ca10-P remained unchanged. © 1998 John Wiley & Sons, Ltd.  相似文献   

14.
Abstract

Information on the availability of different soil phosphorus (P) forms is useful for crop production. Phosphorus contents of 12 Iranian calcareous soils from upper‐, mid‐, and lower‐slope positions of two arid and two semiarid toposequences were fractionated to various organic and inorganic pools, and correlations of the P fractions with wheat responses were investigated. Among the inorganic P (IP) fractions, apatite type (Ca10‐P) and dicalcium phosphate equivalents (Ca2‐P) possessed the highest and the lowest amounts of P reserve in the soils, respectively. On average, about 20% of the total P was found in organic form (OP), of which 32% was labile (LOP), 51% was moderately labile (MLOP), and 17% was nonlabile (NLOP). The amounts of the soil P fractions were considerably influenced by the positions of the soils on the landscapes. The maximum contents of soil IP, Ca2‐P, Fe‐P (iron‐bound P), and Ca10‐P were observed in the lower‐slope positions. The amount of soil available [0.5 M sodium bicarbonate (NaHCO3) extractable] P was significantly correlated with Ca2P (r=0.895), Fe‐P (r=0.760), and Occl‐P (iron‐occluded P) (r=0.897). Direct correlation studies, however, showed that wheat shoot dry‐matter yield (DMY) was significantly affected by the amounts of Ca2‐P, Fe‐P, OP, LOP, and MLOP fractions both at early (4 weeks) and late (10 weeks) stages of growth. All organic and inorganic P fractions, except Al‐P (aluminum‐bound P), Ca8‐P (octacalcium phosphate equivalents), and NLOP, also showed significant relations to the amount and/or concentration of P in wheat tissues at 4 and 10 weeks after sowing. Among the measured soil properties, the amount of organic carbon was the most affecting factor on the size of the P fractions.  相似文献   

15.
Plants have diverse strategies to cope with phosphorus (P) deficiency. To better understand how maize responds to P deficiency, a field experiment with two P levels, 0 and 100 kg P2O5 ha-1 (P0 and P100, respectively), was carried out as a part of a long-term Pfertilizer field trial. Plant and soil analyses showed that P-deficient maize reduced its growth rate, increased P use efficiency, and formed more thin roots with the diameter less than 0.6 mm at jointing and silking stages, compared to the plants treated with P100. Further, there were no differences in major inorganic P fractions (Ca 2 -P, Ca 8 -P, Al-P, Fe-P, occluded P and Ca 10 -P) between the rhizospheric and bulk soils at each harvest, even when soil Olsen-P was only 1.38 mg kg-1 . These results suggested that maize responded to P deficiency by reducing the internal P demand for growth and increasing P acquisition ability by favorable root morphological alteration at low carbon cost.  相似文献   

16.
Phosphorus (P) fertilizers have long been applied in agriculture. However, the influence of long-term P addition on the evolution of soil P fertility and legacy P characteristics have not been well-documented. Herein, literature data were collected from the Chinese National Knowledge Infrastructure Database (CNKI) to explore the evolution of soil P fertility after 33 years of application of P fertilizer; different soil samples were collected from cropland and adjacent uncultivated land to analyse the distribution of P fractions at different soil depths (0–0.8 m) using Guppy's sequential P extraction method. We found that soil Olsen-P significantly increased by 3.6-fold (from 7.2 mg kg−1 in 1981 to 25.9 mg kg−1 in 2013) after 33 years of P application, while total P increased slightly. The ratios of inorganic P fractions in cropland to those uncultivated land followed NaHCO3-P (1.47) > NaOH-P (1.38) > resin-P (1.37) > residue-P (1.17) > HCl-P (1.11), suggesting that long-term P addition contributed more to labile and moderately labile P rather than non-labile P. Moreover, a principal component analysis could distinguish between cropland and uncultivated land, indicating that long-term application of P fertilizer changed soil P characteristics. Compared to uncultivated land, soil NaHCO3-P in cropland was closely associated with soil organic C, total nitrogen and carbonate. Collectively, our findings highlight that soil legacy P was notably increased after long-term of P application, and a large portion of the applied P remained in labile and moderately labile forms. Therefore, soil legacy P can be recommended as a useful P management tool.  相似文献   

17.
为探究在全球气候变化敏感区的干旱区高寒湿地上,氮添加对土壤无机磷形态的影响。在保护良好的巴音布鲁克高寒湿地沼泽(S)、沼泽草甸(SM)和草甸(M)布设野外原位试验,依据巴音布鲁克草原氮沉降量,设置0(CK),8(N1),16(N2) kg·N/(hm2·a)的施氮量,研究短期氮添加对高寒湿地土壤无机磷形态的影响。结果表明:(1)高寒湿地土壤全磷含量平均为1.09 g/kg,总无机磷平均为492.71 mg/kg,而总无机磷平均占全磷的45.67%。(2)3种湿地类型土壤无机磷主要以Ca—P形态存在,在Ca—P中以Ca10—P为主,占无机磷含量的50.27%~64.69%。S区土壤Al—P、Fe—P含量显著高于SM和M区,SM区Ca2—P、Ca8—P、O—P含量显著高于S和M区,M区土壤Ca10—P含量显著高于S和SM区。(3)氮添加显著影响高寒湿地土壤各形态无机磷的含量,氮添加下,S和SM区土壤Al—P含量较CK显著增加了9.92%~17.35%,而Ca8—P含量显著降低3.18%~9.36%。[JP]S和M区土壤Fe—P含量显著降低了3.18%~9.36%,S区土壤Ca2—P含量显著降低了10.31%。氮添加下3种湿地类型土壤O—P含量均显著增加,较CK显著增加21.83%~25.94%。(4)土壤pH、有机碳、碱解氮和速效钾均是影响无机磷形态的重要因子。不同湿地类型土壤无机磷形态含量存在显著差异,氮添加显著改变了土壤各无机磷形态含量,主要是通过增加土壤中难利用无机磷(O—P)含量,使高寒湿地土壤的供磷潜力降低。研究结果有助于预测未来氮沉降持续增加背景下全球高寒湿地土壤无机磷形态的变化趋势。  相似文献   

18.
《Journal of plant nutrition》2013,36(8):1427-1439
Abstract

Phenolic acids (caffeic, CAF; protocatechuic, PCA; p-coumaric, COU; and vanillic, VAN), catechol (CAT), poly-galacturonic acid (PGA), and citric acid (CIT) were compared for their effectiveness in phosphorus (P) mobilization in three soils differing in chemical properties. The addition of organic ligands at 100 μmol g? 1 soil increased the concentrations of resin P (Pr), water-extractable P (Pw), and bicarbonate-extractable inorganic P (Pbi), thus improving the phosphorus availability. The magnitude of P mobilization in the calcareous soil can be expressed in the following order: CAF > CAT > PCA = CIT > VAN > COU > PGA, which was consistent with the number of phenolic hydroxyl groups they contained and the position of carboxyl on the benzoic ring. In the two acid soils tested, the order of P mobilization was CIT > CAT > PCA > CAF after 24 h incubation, and CIT > PCA > CAF > CAT after a 14 d incubation. The mobilized P originated partly from the organic P fractions, which could be extracted by 0.5 M NaHCO3. In addition, Pr decreased and Pw increased during incubation. The exceptions were that the CAF treatment increased Pr and the CIT treatment did not affect Pw. Calcium extraction from the soils after a 1 d or 14 d incubation could not fully account for the P mobilization. The results suggest that the inorganic P dissolution by the organic ligands was not the only mechanism of P mobilization in the calcareous soil, while in acid soils the chelation of metal cations by organic ligands is likely an important factor in P mobilization.  相似文献   

19.
A major challenge in sustainable crop management is to ensure adequate P supply for crops, while minimizing losses of P that could negatively impact water quality. The objective of the present study was to investigate the effects of long‐term applications of different levels of mineral fertilizers and farmyard manure on (1) the availability of P, (2) the relationship between soil C, N, and P, and (3) the distribution of inorganic and organic P in size fractions obtained by wet sieving. Soil samples were taken from the top 20 cm of a long‐term (29 y) fertilization trial on a sandy Cambisol near Darmstadt, SW Germany. Plant‐available P, determined with the CAL method, was little affected by fertilization treatment (p < 0.05) and was low to optimal. The concentration of inorganic and organic P extracted with a NaOH‐EDTA solution (PNaOH‐EDTA) averaged about 350 mg (kg dry soil)–1, with 42% being in the organic form (Po). Manure application tended to increase soil C, N, and Po concentrations by 8%, 9%, and 5.6%, respectively. Across all treatments, the C : N : Po ratio was 100 : 9.5 : 2 and was not significantly affected by the fertilization treatments. Aggregate formation was weak due to the low clay and organic‐matter content of the soil, and the fractions > 53 μm consisted predominantly of sand grains. The different fertilization treatments had little effect on the distribution of size fractions and their C, N, and P contents. In the fractions > 53 μm, PNaOH‐EDTA ranged between 200 and 300 mg kg–1, while it reached 1260 mg kg–1 in the fraction < 53 μm. Less than one third of PNaOH‐EDTA was present as Po in the fractions > 53 μm, while Po accounted for 70% of PNaOH‐EDTA in the smallest fraction (< 53 μm). Therefore, 16% and 28% of PNaOH‐EDTA and Po, respectively, were associated with the smallest fraction, even though this fraction accounted for < 5% of the soil mass. Therefore, runoff may cause higher P losses than the soil P content suggests in this sandy soil with a weak aggregate formation. Overall, the results indicate that manure and mineral fertilizer had similar effects on soil P fractions.  相似文献   

20.
北方耕地和蔬菜保护地土壤磷素状况研究   总被引:29,自引:0,他引:29  
以北方一般耕地和蔬菜保护地为供试土壤 ,研究了不同种植条件下土壤磷素状况 ,蔬菜保护地土壤磷素的空间分布特性。结果表明 ,蔬菜保护地土壤全磷、无机磷、有机磷、Olsen-P的平均含量是一般耕地土壤的 2.7~14.0倍 ,土壤Olsen P占全磷的比率 ,Ca2-P ,Ca8-P ,Al-P占土壤无机磷的比率显著高于一般耕地土壤。蔬菜保护地土壤各形态磷素主要积累在 0~20cm土层 ,并随土层深度的增加各形态磷素的含量逐渐降低 ,各土层Olsen-P ,Ca2-P ,Ca8-P ,Al-P含量降低幅度明显高于Fe-P ,O-P ,Ca10-P含量的降低值  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号