首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Rice is a main food crop for about half of the world's population, and phosphorus (P) is the main limiting nutrient in rice production in tropical lowlands. A greenhouse experiment was conducted to evaluate P requirements of lowland rice grown on a lowland soil (Inceptisol). Dry matter, grain yield, and yield-attributing characteristics were significantly (P < 0.01) influenced by P fertilization. Based on quadratic response, maximum shoot dry weight and grain yield were obtained with the application of 190 mg P kg?1 of soil. Maximum panicle, tiller number, and plant height were obtained with the application of 177 192, and 175 mg P kg?1 of soil, respectively. Mehlich 1–extractable P for maximum grain yield was 15.6 mg kg?1 of soil. Variability in grain yield with plant growth and yield parameters was in the order of tiller > shoot dry weight > panicle number > spikelet sterility > plant height > grain harvest index > panicle length > weight of 1000 grains. Phosphorus uptake in shoot and concentration and uptake in grain significantly (P < 0.01) increased grain yield. However, variability in grain yield was greater with concentration and uptake of P in the grain. Similarly, P harvest index was also significantly associated with grain yield. Agronomic P-use efficiency, apparent P-recovery efficiency, and P-utilization efficiency decreased quadratically with increasing P rates, whereas physiological P-use efficiency increased quadratically and agrophysiological P-use efficiency decreased linearly with increasing P rates. Agrophysiological and utilization P-use efficiencies had significant positive correlation with grain yield.  相似文献   

2.
Rice is a staple food for about 50 percent of the world’s population. Potassium (K) is absorbed in large amounts by rice plants and adequate amounts of this element are fundamental to improve productivity and maintain sustainability of the cropping systems. A greenhouse experiment was conducted to determine the adequate rate of K for lowland rice grown on a Brazilian Inceptisol. The K rates used were 0, 50, 100, 200, 400, and 600 mg K kg?1 soil. Most of the growth, yield, and yield components were significantly and quadratically increased with increasing K levels. Based on a quadratic equation, maximum grain yield was obtained with the addition of 371 mg K kg?1 soil. Maximum plant height and shoot dry weight were obtained at 414 and 398 mg K kg?1 soil, respectively. Root growth (maximum length and dry weight) was also significantly increased in a quadratic fashion with the increasing K rate in the growth medium. Maximum root length was achieved at 58 mg K kg?1 whereas maximum root dry weight was obtained with the addition of 394 mg K kg?1 soil. Plant height, shoot dry weight, 1000-grain weight, root length, and root dry weight were significantly associated with grain yield. Hence, manipulation of these growth and yield components with the addition of K fertilizer can improve yield of lowland rice in varzea soils of central part of Brazil. Potassium uptake increased significantly in a quadratic fashion with increasing K rate. However, K-use efficiency (mg grain per mg K applied) decreased significantly with increasing K rate in a quadratic fashion. Maximum grain yield was obtained with 117 mg kg?1 Mehlich 1–extractable K, base saturation of 53 percent, Mg saturation of 9 percent, K saturation of 2 percent, and Ca/Mg ratio of 4.  相似文献   

3.
Abstract

Use of adequate rates of phosphorus (P) in crop production on high‐P‐fixing acid soils is essential because of high crop response to P fertilization and the high cost of P fertilizers. Information on lowland rice response to thermophosphate fertilization grown on Inceptisols is limited, and data are also lacking for soil‐test‐based P fertilization recommendations for this crop. The objective of this study was to evaluate response of lowland rice to added thermophosphate and to calibrate P soil testing for making P fertilizer recommendations. A field experiment was conducted for two consecutive years in central Brazil on a Haplaquept Inceptisol. The broadcast P rates used were 0, 131, 262, 393, 524, and 655 kg P ha?1, applied as thermophosphate Yoorin. Rice yield and yield components were significantly increased with the application of P fertilizer. Average maximum grain yield was obtained with the application of 509 kg P ha?1. Uptake of macro‐ and micronutrients had significant quadratic responses with increasing P rates. Application of thermophosphate significantly decreased soil acidity and created favorable macro‐ and micronutrient environment for lowland rice growth. Across 2 years, soil‐test levels of Mehlich 1–extractable P were categorized, based on relative grain yield, as very low (0–17 mg P kg?1 soil), low (17–32 mg P kg?1 soil), medium (32–45 mg P kg?1 soil), or high (>45 mg P kg?1 soil). Similarly, soil‐test levels of Bray 1–extractable P across 2 years were very low (0–17 mg P kg?1 soil), low (17–28 mg P kg?1 soil), medium (28–35 mg P kg?1 soil), or high (>35 mg P kg?1 soil). Soil P availability indices for Mehlich 1 extractant were slightly higher at higher P rates. However, both the extracting solutions had highly significant association with grain yield.  相似文献   

4.
Seventeen Mollisols having pH(1:2) in the range of 6.00 to 8.42 were analyzed with five extractants, and the extractable zinc (Zn) ranges were 0.84 to 2.75 mg Zn kg?1 soil for diethylenetriaminepentaacetic acid (DTPA) (pH 7.3), 0.91 to 2.72 mg Zn kg?1 soil for DTPA + ammonium bicarbonate (pH 7.6), 1.82 to 7.18 mg Zn kg?1 soil for Mehlich 3, 1.22 to 3.83 mg Zn kg?1 soil for ethylenediaminetetraacetic acid (EDTA) + ammonium carbonate, and 0.88 to 1.18 mg Zn kg?1 soil for 1 mol L?1 magnesium chloride (MgCl2) (pH 6.0). Zinc extracted by DTPA (pH 7.3) and Mehlich 3 showed significant positive correlation with sand content, whereas only Mehlich 3 showed negative correlation with soil pH. All extractants showed significant positive correlation with each other except for 1 mol L?1 MgCl2‐extractable Zn, which had significant positive correlation with only Mehlich 3– and EDTA + ammonium carbonate–extractable Zn. A greenhouse experiment showed that Bray's percentage yield of rice was poorly correlated to extractable soil Zn but had a significant and negative linear correlation with soil pH (r = ?0.662, significant at p = 0.01). Total Zn uptake by rice had a significant positive correlation with 1 mol L?1 MgCl2– and Mehlich 3–extractable Zn. A proposed parameter (p extractable Zn + p OH?) involving both soil extractable Zn and pH terms together showed significant and positive correlation with Bray's percentage yield and total Zn uptake of rice. The calculated values of critical limits of soil Zn in terms of the proposed parameter were 14.1699 for DTPA (pH 7.3), 13.9587 for DTPA + ammonium bicarbonate, 13.7016 for Mehlich 3, 13.9402 for EDTA + ammonium carbonate, and 14.1810 for 1 mol L?1 MgCl2 (pH 6.0). The critical limits of Zn in rice grain and straw were 17.32 and 22.95 mg Zn kg?1 plant tissue, respectively.  相似文献   

5.
Phosphorus (P) deficiency is one of the most yield limiting factors for dry bean (Phaseolus vulgaris) production in tropical acid soils. Dry beans are invariably grown as mono-crops or as inter-crops under the perennial tropical crops. Information is limited regarding the influence of phosphorus fertilization on dry bean yield and yield components and P use efficiency in tropical acid soils. A greenhouse experiment was conducted to evaluate the influence of phosphorus fertilization on dry bean growth, yield and yield components and P uptake parameters. Phosphorus rates used were 0, 50, 100, 150, 200, and 250 mg P kg?1 of soil. Soil used in the experiment was an acidic Inceptisol. Grain yield, shoot dry weight, number of pods, and 100 grain weight were significantly (P < 0.01) increased with phosphorus fertilization. Maximum grain yield, shoot dry matter, number of pods, and 100 grain weight were obtained with the application of 165, 216, 162, and 160 mg P kg?1 of soil, respectively, as calculated by regression equations. Grain yield was significantly and positively associated with shoot dry weight, number of pods, P concentration in grain and total uptake of P in shoot and grain. Phosphorus use efficiency defined in several ways, decreased with increasing P rates from 50 to 250 mg P kg?1 of soil. Maximum grain yield was obtained at 82 mg kg?1 of Mehlich 1 extractable soil P. Results suggest that dry bean yield in Brazilian Inceptisols could be significantly increased with the use of adequate rates of phosphorus fertilization.  相似文献   

6.
Zinc (Zn) deficiency in annual crops is very common in Brazilian Oxisols. Data are limited on Zn uptake and use efficiency during crop growth cycles. A field experiment was conducted during two consecutive years with the objective to determine shoot dry weight and Zn uptake and use efficiency in upland rice, dry bean, corn, and soybean during growth cycles. Shoot dry weight of four crops was significantly increased in an exponential quadratic fashion with increasing plant age. Rice and corn had higher shoot dry weights and grain yields than dry bean and soybean. Zinc concentration in rice and corn decreased in a quadratic fashion with increasing plant age. However, in dry bean and soybean, Zn concentration had a quadratic increase. Zinc uptake followed an exponential quadratic response in four crops, and it was higher in corn and upland rice than in dry bean and soybean. Zinc use efficiency in shoot dry‐weight production had significant quadratic responses in upland rice and soybean with increasing plant age. In corn, Zn use efficiency for shoot dry‐weight production was linear as a function of plant age. Zinc use efficiency for grain production was maximum for corn and minimum for soybean. Hence, cereals had higher Zn use efficiency than legumes.

Zinc concentration in grain of dry bean and soybean was higher than in upland rice and corn, which is a desirable quality factor for human consumption so as to avoid Zn deficiency.  相似文献   

7.
Heavy metal uptake, translocation and partitioning differ greatly among plant cultivars and plant parts. A pot experiment was conducted to determine the effect of cadmium (Cd) levels (0, 45 and 90 mg kg?1 soil) on dry matter yield, and concentration, uptake and translocation of Cd, Fe, Zn, Mn and Cu in seven rice cultivars. Application of 45 mg Cd kg?1 soil decreased root and shoot dry weight. On average, shoot and root Cd concentrations and uptake increased in all cultivars, but micronutrients uptake decreased following the application of 45 mg Cd kg?1. No significant differences were observed between 45 and 90 mg kg?1 Cd levels. On average, Cd treatments resulted in a decrease in Zn, Fe and Mn concentrations in shoots and Zn, Cu and Mn concentrations in roots. Differences were observed in Cd and micronutrient concentrations and uptake among rice cultivars. Translocation factor, defined as the shoot/root concentration ratio indicated that Cu and Fe contents in roots were higher than in shoots. The Mn concentration was much higher in shoots. Zinc concentrations were almost similar in the two organs of rice at 0 and 45 mg Cd kg?1. A higher Cd level, however, led to a decrease in the Zn concentration in shoots.  相似文献   

8.
Phosphorus deficiency is main constraints for lowland rice production in various rice producing regions of the world. A greenhouse experiment was conducted using lowland (Inceptisol) soil with the objective to determine response of seven lowland rice (Oryza sativa L.) genotypes to phosphorus fertilization and to evaluate their phosphorus (P) use efficiency. Phosphorus treatments included control (0 mg P kg?1) and 200 mg P kg?1 of soil. Plant height and shoot dry weight were significantly (P < 0.001) influenced by P treatments. Phosphorus X genotypes interaction was significant for shoot dry weight, indicating different response of genotypes under two P levels. At low P level, none of the genotypes produced grain yield, indicating original P level in the soil was too low for lowland rice yield. However, genotypes differed significantly in grain yield at high P level. Panicle number, panicle length, and thousand grains weight had a significant quadratic association with grain yield. However, spikelet sterility had a significant linear negative association with grain yield. The P use efficiency expressed as agronomic efficiency (AE), physiological efficiency (PE), agro-physiological efficiency (AP), apparent recovery efficiency (ARE), and utilization (UE) were significantly different among genotypes. These efficiencies were having significantly positive association with grain yield, with exception to ARE, indicating improving grain yield with improved P use efficiencies in rice.  相似文献   

9.
ABSTRACT

Nitrogen is one of the most yield–limiting nutrients in lowland rice in Brazil. A field experiment was conducted for two consecutive years to evaluate nitrogen (N) uptake by five lowland rice genotypes and its association with grain yield. The nitrogen rate used was 0, 50, 100, 150, and 200 kg ha?1. The genotypes evaluated were CNAi 8886, CNAi 8569, BRSGO Guará, BRS Jaburu, and BRS Biguá. Grain yield and dry matter yield of shoot were significantly influenced by N rate. However, response varied from genotypes to genotypes. Genotype BRSGO Guará, BRS Bigua, and BRS Jaburu were having linear response, whereas genotypes CNAi 8886 and CNAi 8569 were having quadratic response with the N application rate in the range of 0 to 200 kg ha?1. Overall, genotypes BRSGO Guará and CNAi 8886 were the best because they produced higher yield at low as well as at higher N rates. Nitrogen uptake in shoot was having quadratic relationship with grain yield, whereas nitrogen uptake in the grain was linearly associated with grain yield.  相似文献   

10.
Rice, dry bean, corn, and soybean are important food crops. Phosphorus (P) deficiency is one of the most yield-limiting factors for these crops grown on highly weathered Brazilian Oxisols. Four greenhouse experiments were conducted to determine P requirements of these four crops. The P levels used were 0, 50, 100, 200, and 400 mg kg?1. Growth, yield, and yield components evaluated of four crop species were significantly increased with the application of P fertilization. Most of the responses were quadratic in fashion when the P was applied in the range of 0 to 400 mg kg?1. Maximum grain yield of upland rice was obtained with the application of 238 mg P kg?1 of soil, maximum dry bean grain yield was obtained with the application of 227 mg P kg?1 of soil, and maximum grain yield of soybean was obtained with the application of 224 mg P kg?1 of soil. Maximum shoot growth of corn was obtained with the addition of 323 mg P kg?1 of soil. Most of the growth and yield components had significant positive association with grain yield or shoot dry weight. Phosphorus concentration and uptake were greater in the grain compared to straw in upland rice and dry bean plants. Overall, P-use efficiencies decreased with increasing P rates.  相似文献   

11.
Nitrogen (N) deficiency is one of the most yield-limiting nutrients in upland rice growing regions word wide. A greenhouse experiment was conducted with the objective to evaluate nineteen upland rice (Oryza sativa. L.) genotypes for N use efficiency. The soil used in the experiment was an Oxisol and two N levels used were without N application (low level) and an application of 400 mg N kg?1 of soil (high level). Grain yield and yield components and N uptake parameters were significantly affected by N and genotype treatments. Regression analysis showed that plant height, shoot dry weight, number of panicles per pot, number of grains per panicle, grain harvest index, N uptake in shoot and grain were having significant positive relation with grain yield. Nitrogen concentration of 6.4 g kg?1 in the shoot is established as deficient level and 9.5 g kg?1 as sufficient level at harvest. Agronomic efficiency of N (grain yield/unit of N applied) and N utilization efficiency (physiological efficiency X apparent recovery efficiency) were significantly different among genotypes. These two N use efficiencies were having significant quadratic relationship with grain yield. Soil pH, exchangeable soil Ca and base saturation were having significantly positive association with grain yield. However, soil extractable phosphorus (P), potassium (K), hydrogen (H+), aluminum (Al) and cation exchange capacity were having significantly negative association with grain yield.  相似文献   

12.
Zinc application is generally recommended to enrich wheat grains with Zn; however, its influence on Zn bioavailability to humans has not received appreciable attention from scientists. In this pot experiment, seven Zn rates (from 0 to 18 mg kg?1 soil) were applied to two wheat cultivars (Shafaq-2006 and Auqab-2000). Application of Zn significantly increased grain yield, grain Zn concentration and estimated Zn bioavailability, and significantly decreased grain phytate concentration and [phytate]:[Zn] ratio in wheat grains. The response of grain yield to Zn application was quadratic, whereas maximum grain yield was estimated to be achieved at 10.8 mg Zn kg?1 soil for Shafaq-2006 and 7.4 mg Zn kg?1 soil for Auqab-2000. These estimated Zn rates were suitable for increasing grain Zn concentration and Zn bioavailability (>2.9 mg Zn in 300 g grains) to optimum levels required for better human nutrition. Conclusively, Zn fertilization for Zn biofortification may be practiced on the bases of response curve studies aimed at maximizing grain yield and optimum Zn bioavailability. Moreover, additive Zn application progressively reduced the grain Fe concentration and increased the grain [phytate]:[Fe] ratio. However, a medium Zn application rate increased grain Ca concentration and decreased the grain [phytate]:[Ca] ratio. Hence, rate of Zn application for mineral biofortification needs to be carefully selected.  相似文献   

13.
Lowland rice significantly contributes to world as well as Brazilian rice production and information on genotypes potassium-use efficiency is limited. A greenhouse experiment was conducted with the objective to evaluate lowland rice genotypes for potassium (K)–use efficiency. Ten genotypes were evaluated at 0 mg K kg?1 (low) and 200 mg K kg?1 (high) of soil. Grain yield and shoot dry weight were significantly affected by K as well as genotype treatments. Genotypes CNAi 8860, CNAi 8859, BRS Fronteira, and BRS Alvorada were the best in relation to K-use efficiency because they produced best grain yield at low as well as at higher K levels. Shoot dry weight, number of panicles per pot, and 1000-grain weight had highly significant (P < 0.01) association with grain yield. Spikelet sterility, however, had significant negative association with grain yield. These plant parameters were mainly influenced by genotypes, indicating importance of selecting appropriate genetic material for improving grain yield. Soil K depletion was significant at harvest, suggesting large amount of K uptake by lowland rice genotypes.  相似文献   

14.
 ZnSO4, Zn-enriched farmyard manure (Zn-FYM), Zn-tetraammonia complex sorbed on FYM [Zn(NH3)4-FYM] and Zn-ethylenediaminetetraacetate (Zn-EDTA) were compared as Zn sources for rice production under lowland conditions. The amount of Zn supplied by Zn-EDTA was one-tenth of that supplied by the other Zn sources. Zn application to a Zn-deficient soil corrected the visual symptoms of Zn deficiency and significantly increased the total biomass, grain yields and the harvest index of rice, as well as the Zn concentration in the grain and the uptake of Zn by the straw and the grains. Even with lower rates of application (0.25 and 0.5 mg Zn kg–1 soil), Zn-EDTA treatments gave comparable values for these parameters, and the highest "Zn-mobilization efficiency" compared to the other Zn sources. The content of diethylenetriaminepentaacetate (DTPA)-extractable Zn in the soil of the different treatments after the harvest of rice was in the order; ZnSO4=Zn-FYM>Zn(NH3)4-FYM=Zn-EDTA. The application of Zn also significantly increased the number of panicles that emerged between 80 to 93 days after transplanting, though the total number of panicles at harvest remained unaffected. The calculated panicle-emergence index had a positive correlation with the grain yield of rice. The Zn-EDTA treatment, inspite of supplying the lowest amount of Zn, as well as leading to the lowest rate of Zn uptake, produced the highest yields. Therefore, we concluded Zn-EDTA to be the most efficient source of Zn for lowland rice production. Received: 20 October 1998  相似文献   

15.
Nitrogen (N) is one of the most yield limiting nutrients in lowland rice production. Improving N use efficiency is essential to reduce cost of crop production and environmental pollution. A greenhouse experiment was conducted with the objective to compare conventional and polymer coated urea for lowland rice production. Grain yield, straw yield, panicle density, maximum root length, and root dry weight were significantly increased in a quadratic fashion with the increase of N rate from 0 to 400 mg kg?1 soil. Nitrogen source X N rate interactions for most of these traits were not significant, indicating that lowland rice responded similarly to change in N rates of two N sources. Based on regression equations, maximum grain yield was obtained with the application of 258 mg N kg?1 soil and maximum straw yield was obtained with the addition of 309 mg N kg?1 soil. Nitrogen use efficiency (grain yield per unit of N applied) was maximum for polymer coated urea compared to conventional urea. Root length and root dry weight improved at an adequate N rate, indicating importance of N fertilization in the absorption of water and nutrients and consequently yield. Polymer coated urea had higher soil exchangeable calcium (Ca) and magnesium (Mg), Ca saturation, Mg saturation, base saturation, and effective cation exchange capacity compared to conventional urea. There was a highly significant decrease in soil exchangeable potassium (K) with increasing N rates at harvest of rice plants.  相似文献   

16.
Application of glyphosate herbicide in genetically modified (GM) soybean [Glycine max (L.) Merrill] in soils with low zinc (Zn) concentration may interfere in the uptake of this and other nutrients, with negative impact on productivity. Thus, an experiment was conducted in greenhouse conditions on Ustoxix Quatzipsamment soil to investigate the effects of the interaction of glyphosate with Zn for the yield, photosynthesis, soil fertility and nutritional status of soybean. The treatments consisted of two soybean varieties [BRS 133 (conventional—NGM) and its essentially derived transgenic line BRS 245RR (GM) with and without glyphosate application] and five Zn rates (0, 5, 10, 20 and 40 mg kg?1, source zinc sulfate (ZnSO4)), with four replicates. Except for the copper (Cu) and iron (Fe) concentrations, the introduction of the herbicide-resistant gene is the predominant factor reducing nutrient uptake, photosynthetic (A) rate, stomatal conductance (Gs), leaf chlorophyll and ureide concentrations. The administration of Zn rates lowered the leaf phosphorus (P) concentration, and there was significant increase in Zn concentration in the soil and in the plant. Except for the 20 mg kg?1 of Zn rate, the use of the herbicide did not affect the shoot dry weight (SDW) and seed yield, and on average, the maximum seed yield was obtained with Zn concentrations of 26.4 and 18.7 mg kg?1 extracted by Mehlich 1 and diethylenetriaminepentaacetic acid-triethanolamine (DTPA-TEA), respectively.  相似文献   

17.
Rice is important crop for world population, including Brazil. Nitrogen (N) is one of the most yield limiting nutrients in rice production under all agro-ecological conditions. A greenhouse experiment was conducted to evaluate N responses to 12 lowland rice genotypes. Soil used in the experiment was a Gley humic according to Brazilian soil classification system and Inceptisol according to USA soil taxonomy classification. The N rates used were 0 mg kg?1 (low) and 300 mg kg?1 (high) of soil. Plant height, straw yield, grain yield, panicle density, 1000 grain weight, and root dry weight were significantly increased with the addition of N fertilization. These growth, yield, and yield components were also significantly influenced by genotype treatment. Grain yield had significant linear or quadratic association with shoot dry weight, panicle number and 1000 grain weight Based on grain efficiency index genotypes were classified as efficient, moderately efficient and inefficient in N use. The N efficient genotypes were ‘BRS Tropical’, ‘BRS Jaçanã’, ‘BRA 02654’, ‘BRA 051077’, ‘BRA 051083’, ‘BRA 051108’, ‘BRA 051130’ and ‘BRA 051250’. Remaining genotypes fall into moderately efficient group. None of the genotypes were grouped as inefficient in N use efficiency.  相似文献   

18.
Zinc (Zn) deficiency is very common in annual crops grown on Brazilian Oxisols. A greenhouse experiment was conducted to evaluate Zn-use efficiency of 20 upland rice genotypes. The Zn levels used were 0 mg kg?1 (natural level of the soil) and 20 mg kg?1 of soil applied with zinc sulfate (ZnSO4). Zinc × genotype interactions were significant for grain yield, panicle number, panicle length, root dry weight, and specific root length, indicating different responses of genotypes with the variation of Zn levels and that selection for Zn-use efficiency is necessary at low as well as at high Zn rates. Based on Zn-use efficiency index, 11 genotypes were classified as efficient and nine were classified as moderately efficient. The most Zn-efficient genotypes were BRA 01596, BRA 042156, BRA 052053, BRA Primavera, and BRA 01506. The most inefficient genotypes in Zn-use efficiency were BRA 042094, BRA 052045, BRA 052034, and BRA 052023. Grain yield and most of the yield attributing characteristics have significant Zn × genotype interactions, which indicate that genotypes respond differently under different Zn levels. Thus, genotype selection is an important strategy for upland rice production in Brazilian Oxisols.  相似文献   

19.
Lowland or flooded rice is mainly responsible for about 76% of total rice production at global level, yet information on micronutrient requirements for this crop is limited. Six greenhouse experiments were conducted at the National Rice and Bean Research Center of EMBRAPA, Santo Antônio de Goiás, Brazil, to determine requirements of zinc (Zn), copper (Cu), boron (B), molybdenum (Mo), manganese (Mn), and iron (Fe) for lowland rice grown on a Brazilian Inceptisol. The levels of micronutrients used were Zn (0, 10 20, 40, and 80 mg kg?1), Cu (0, 5, 10, 20, and 40 mg kg?1), B (0, 5, 10, 20, and 40 mg kg?1), Mo (0, 2, 4, 8, and 16 mg kg?1), Mn (0, 50, 100, 300, and 600 mg kg?1), and Fe (0, 250, 500, 1000, and 2000 mg kg?1). Grain yield was significantly increased in a quadratic fashion with the addition of Zn, Cu, B, Mo, Mn, and Fe. The adequate rates of micronutrients for maximum grain yield were Zn 33 mg kg?1, Cu 25 mg kg?1, B 26 mg kg?1, Mo 10 mg kg?1, Mn 250 mg kg?1, and Fe 1269 mg kg?1. In addition to grain yield, plant height, straw yield, panicle density, and root growth of lowland rice were also improved with the addition of most of these micronutrients. Improvement in root growth has special significance in improving nutrient-use efficiency under nutrient-stress conditions. Micronutrient-use efficiency (grain yield per unit nutrient applied) was in the order of Cu > Zn > Mn > Fe > Mo > B.  相似文献   

20.
Rice (Oryza sativa L.) is the staple food for more than 50% world population and nitrogen (N) is one of the most yield-limiting nutrients for rice production worldwide. A greenhouse experiment was conducted to evaluate the efficiency of three N sources for lowland rice production. The N sources used were ammonium sulfate, common urea, and polymer-coated urea. There were three N rates, i.e. 100, 200, and 400 mg N kg?1 applied with three sources plus one control treatment (0 mg N kg?1). Growth, yield, and yield components were significantly increased either in a linear or quadratic fashion with the addition of N fertilizers in the range of 0–400 mg kg?1 soil. Maximum grain yield was obtained with the addition of ammonium sulfate at 100, 200, and 400 mg kg?1 of soil. Common urea and polymer-coated urea were more or less similar in grain production at 100 and 200 mg N kg?1. However, at 400 mg N kg?1 treatments, polymer-coated urea produced the lowest grain yield. Most of the growth and yield components were positively related to grain yield, except spikelet sterility which was negatively related to grain yield. Nitrogen use efficiency decreased with increasing N rate in all the three N sources. Maximum N use efficiency was obtained with the addition of ammonium sulfate at lower as well as at higher N rates compared with other two N sources.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号