首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Erratum     
Abstract

Influences of moisture, temperature (T), and photon flux density (L), on the concentrations and contents of macronutrients in 21‐day‐old tissue of four warm‐season perennial grasses were studied. Highest mean concentrations of N, P, and K occurred in dallisgrass (DAL). Lowest N, K, and S concentrations occurred in bahiagrass (BAH). Coastal bermudagrass (COA) was consistently lowest in P concentration. Concentrations of Mg were higher in the Paspalum than the Cynodon species, averaging 4.5 vs. 2.6 g/kg, respectively. Yields generally increased with increasing levels of moisture, T and L. Nutrient concentrations were generally higher at the higher moisture level. Increased growth temperatures most frequently lowered nutrient concentrations, although T was positively related to K, Mg, Ca and S concentrations in BAH and DAL. Linear T effects indicated that N concentrations decreased 0.5 to 1.2 g/kg for each 1°C increase. Photon flux density caused less variation in nutrient concentrations and less consistent effects than did T. Nutrient concentrations most frequently increased with increased L. Effects of T and L were about equally important at the two moisture levels. Nutrient contents generally increased as yield increased even in situations where T and L had negative influences on nutrient concentrations.  相似文献   

2.
This study examines the influence of different amounts of potassium chloride (KCl) fertilization on plant growth, nutrient accumulation and content, nutrient ratios, and root colonization by indigenous arbuscular mycorrhizal (AM) fungi in maize (Zea mays L.). KCl was applied at the rate of 0, 0.25, 0.50, 1.00, 1.50, and 1.75 mg/kg of soil. Effect of KCl on indigenous AM formation and function was evaluated in terms of the extent of root length colonization, plant growth, and nutrient uptake. Increasing concentration of KCl fertilization proportionately limited the total root length colonized by AM fungi as well as the root length with different AM fungal structures. Maize plants raised on soils amended with different concentrations of KCl were significantly taller than those raised on unamended soils. KCl application also significantly increased the total root length and root dry weight. Nevertheless, KCl fertilization did not significantly alter the root/shoot ratios. Higher concentrations of nitrogen (N), phosphorus (P), and potassium (K) were evident in shoot and root tissues of maize (except shoot N) raised on KCl-amended soils. Phosphorus concentrations in shoots and roots significantly influenced mycorrhization and root length colonized by different AM fungal structures, and such an effect was evident for root N. KCl fertilization increased the efficiency of N and P accumulation. No significant change was evident in the K:N ratios of shoots or roots, whereas the K:P ratios were significantly altered in shoots or roots in response to KCl application.  相似文献   

3.
Mesotrione is a carotenoid biosynthesis inhibiting herbicide, which is being evaluated for use in turfgrass. Carotenoids are important light harvesting and photoprotecting pigments that dissipate and quench excess light energy. The effects of mesotrione on carotenoid concentrations in turf and weed species, such as perennial ryegrass (Lolium perenne L.), are poorly understood. Mesotrione injury to perennial ryegrass has been reported, and symptomology may differ due to postapplication environmental factors such as irradiance and temperature. Research was conducted to investigate the effects of mesotrione on perennial ryegrass under varying irradiance (600, 1100, or 1600 micromol/m (2)/s) at three different temperatures (18, 26, and 34 degrees C). Postapplication irradiance and temperature levels did not affect visual injury symptoms in perennial ryegrass. Bleaching of treated plants was highest 7 days after treatment (DAT; 8%) and recovered to nontreated levels by 21 DAT. Mesotrione applications did not decrease perennial ryegrass foliar biomass accumulations. Carotenoid concentrations of nontreated plants were similar to those reported in creeping bentgrass and many green leafy vegetable crops. However, chlorophyll a and b, beta-carotene, lutein, and violaxanthin concentrations decreased due to mesotrione applications, while phytoene and zeaxanthin, a photoprotecting carotenoid, increased. The photochemical efficiency (F v/ F m) of treated plants was lower than nontreated plants at 3 and 7 DAT; however, treated plants recovered to nontreated levels 21 DAT. Results indicate that postapplication irradiance and temperature levels may not affect mesotrione efficacy in perennial ryegrass. Preferential accumulation of zeaxanthin following mesotrione applications may be a stress-related response, which may reduce light harvesting complex size and directly quench excess light energy.  相似文献   

4.
Nutrient supply is important for yield and quality of canola (Brassica napus L.) crop production. A controlled study was conducted to determine the effects of nitrogen (N), phosphorus (P), and zinc (Zn) supply and their interactions on yield and accumulation of four microelements in canola grain. Results showed that seed yield increased 1.45 to 5 times by increasing N and up to 24.4% by increasing P supply, with significant N-by-P interactions. Nitrogen-by-Zn interaction also exhibited large effects on grain metal concentrations, with increased iron (Fe) and copper (Cu) as increasing N supply, and decreased Mn concentration at all N supply levels above 0 N. Zinc concentration was decreased at low N and increased at high N levels compared to 0 N. Increasing P supply reduced grain Fe and Zn accumulations, but had no effect on Mn and Cu. Overall, this study revealed that canola yield and micronutrient accumulations can be improved by appropriate nutrient supply.  相似文献   

5.
Abstract

White Rose potato plants (Solanum tuberosum, L.) were grown outdoors, without tuber formation, in a modified Hoagland's nutrient solution with 9 treatments of KH2PO4 ranging from 0 to 4.0 mmoles per liter. Deficiency symptoms ranged from very severe to none at harvest after 27 days of growth. Growth of the potato plants increased with increased P supply and was associated with an increased P content of the plant tissues. The critical H2PO4‐P concentration at a 10% reduction of top growth, based on a second leaf analysis, was about 1,000 ppm for the petiole and terminal bladelet and about 1,200 ppm for the lateral bladelet, dry weight basis.

Phosphorus nutrition had only a slight effect on the K, Na, Mg and NO3‐N concentrations of the root tissues but Ca increased as phosphate increased which suggests a calcium phosphate precipitation. Phosphorus stress lowered the K, Na, Ca, Mg and NO3‐N concentrations of the petiole tissues of the recently matured leaf which suggests that P increases salt accumulation. Phosphorus nutrition had only a slight effect on the concentrations of K, Na, Mg and Ca of the blade tissues of the recently matured leaf but NO3‐N increased greatly with P supply.  相似文献   

6.
Nutrient sufficiency ranges are useful for diagnosing and correcting plant nutritional status in order to optimize yield and protect the environment. This study was conducted to determine nutrient sufficiency ranges for nitrogen (N), phosphorus (P), potassium (K), calcium (Ca), magnesium (Mg), iron (Fe), manganese (Mn), zinc (Zn), and copper (Cu) in mango trees grown in El-Salhiya, Egypt, through boundary-line approach (BLA) and compositional nutrient diagnosis (CND) technique. For this purpose, foliar samples from 310 mango trees were collected during two successive years from the study area and fruit yields were recorded. The nutrient sufficiency ranges generated by BLA were 0.744–1.430% for N, 0.074–0.142% for P, 0.543–1.045% for K, 1.366–2.653% for Ca, 0.155–0.305% for Mg, 389–1148 ppm for Fe, 23.1–60.5 ppm for Mn, 28.4–56.3 ppm for Zn, and 2.37–12.10 ppm for Cu. The CND-derived nutrient sufficiency ranges were 0.917–1.215% for N, 0.066–0.106% for P, 0.585–0.943% for K, 1.003–2.077% for Ca, 0.112–0.378% for Mg, 277.5–849.2 ppm for Fe, 27.9–82.4 ppm for Mn, 29.2–44.6 ppm for Zn, and 2.42–11.37 ppm for Cu. The optimum nutrient concentrations generated from BLA were in general comparable to those obtained using CND technique. Only Ca and Fe optimum concentrations showed poor match. Seven significant nutrient interactions were strongly evidenced through principal component analysis of the computed CND indexes. The positive interaction was P-K, while the negative interactions were P-Mg, K-Mg, Ca-Zn, P-Fe, K-Fe, and Zn-Cu.  相似文献   

7.
为探究冬小麦科学施肥技术,明确养分专家系统推荐施肥对冬小麦产量、养分积累转运与利用的影响,于2018—2019年分别在河南省鹤壁市和新乡市以冬小麦(鹤壁、新乡试验品种分别为‘郑麦7698’和‘郑麦366’)为试验材料,设置7个处理[农民习惯施肥(FP)、当地推荐施肥(ST)、养分专家系统推荐施肥(NE)、在NE基础上配施缓控释氮肥(RNE)、在NE基础上不施氮肥(NE-N)、在NE基础上不施磷肥(NE-P)、在NE基础上不施钾肥(NE-K)],探究不同施肥处理对冬小麦氮、磷、钾养分转运分配规律和肥料利用效率的影响。结果表明,冬小麦氮、磷、钾施肥量NE较FP处理分别降低16.2%、43.3%、-13.2%(鹤壁)和19.5%、48.0%、-57.9%(新乡);冬小麦产量NE与FP处理无显著性差异,RNE与FP处理存在显著性差异;NE、RNE较FP处理分别增产4.7%~6.6%、5.5%~9.6%(P0.05)。进一步研究表明,NE、RNE处理可显著增加地上部植株养分含量和积累量(P0.05),其花后干物质积累量较FP处理增加9.2%~14.0%、11.9%~18.6%;花前氮、磷素转运量和钾素转运对籽粒钾素积累贡献率均有提高,基于养分专家系统推荐施肥的氮、磷、钾肥平均利用效率分别为42.1%、19.2%、46.6%,平均农学效率分别为11.5kg·kg~(-1)、13.2 kg·kg~(-1)、13.3 kg·kg~(-1)。综上可知,小麦养分专家系统指导优化了氮、磷、钾肥的施用量和施用方法,促进了小麦对氮、磷、钾养分的吸收利用,提高了肥料利用率,具有良好的增产效果,可以在河南地区推广应用。  相似文献   

8.
Increasing plant phosphorus (P) supply can increase or decrease salt tolerance of many plants. Barley (Hordeum vulgare L., cv. ACSAD 176) was grown in nutrient solution under controlled conditions to determine effects of P level on detrimental effects of sodium chloride (NaCl). Increasing level of P improved tolerance of barley to NaCl. At 3, 30, and 60 μM P, the NaCl concentrations to reduce shoot dry matter (DM) by 50% were 158, 193, and 260 mM, respectively. Increased NaCl levels reduced shoot P concentrations. Plants grown with NaCl had higher Internal P requirements. When NaCl in solution was 10, 150, and 300 mM, the corresponding concentrations of P in shoots required to obtain 50% DM were 1.6, 4.2, and 4.7 mg‐g‐1 dry weight, respectively. Increasing solution P level from 3 to 60 μM P decreased sodium (Na) and increased potassium (K) concentrations in shoots. Accumulation of mineral ions for osmotic adjustment and restriction of Na accumulation in shoots was involved in P enhancement of salt tolerance of barley.  相似文献   

9.
Abstract

Dendrobium nobile Lindl. is one of the most cultivated and distributed orchids around the world; however, information on its nutrition is scarce. Our objective was to study the plant development and nutrient accumulation in plants of D. nobile weekly fertilized with 100?mL Sarruge nutrient solution at 75% concentration. One plant per replication was randomly collected every month, along 12 months, totaling four plants. Dry matter (DM) and nutrient accumulation were determined for the different plant parts. Plants had already accumulated nearly 50% of total DM up to the flowering stage (240 days after first fertilization, DAFF). Order and amount of accumulated nutrients, at 360 DAFF, was, in mg per plant: K (701.07)?>?N (339.44)?>?Ca (289.03)?>?Mg (135.44)?>?P (118.83)?>?S (23.56); in µg per plant, it was Fe (14,122.35)?>?Zn (5,277.82)?>?Mn (3,216.87)?>?B (1,253.02)?>?Cu (271.25).  相似文献   

10.
减氮控磷稳钾施肥对水稻产量及养分积累的影响   总被引:26,自引:8,他引:18  
氮、 磷用量偏大,钾肥用量不足不仅影响水稻的正常生长发育,而且导致养分利用率偏低。本文通过田间试验,研究减量施用氮、 磷肥,稳定钾肥投入对水稻产量、 养分积累量和肥料利用率的影响。试验设14个处理,每个处理重复2次。结果表明,氮钾、 磷钾、 氮磷钾配施处理的水稻秸秆生物量和籽粒产量均显著高于不施肥处理(P0.05); 减氮控磷稳钾处理(N 225 kg/hm2、 P2O5 60 kg/hm2、 K2O 90 kg/hm2)与常规施肥处理相比(N 300 kg/hm2、 P2O5 150 kg/hm2、 K2O 60 kg/hm2)能显著增加水稻秸秆生物量(P0.05),明显提高千粒重和籽粒产量; 试验还得出,减氮控磷稳钾处理分蘖期地上部氮、 钾含量和秸秆氮、 钾含量显著高于常规施肥处理(P0.05); 收获期地上部氮、 钾的积累量和氮、 磷的表观利用率显著大于常规施肥处理(P0.05)。适当减少氮、 磷用量, 增加钾肥用量能改善氮、 钾营养状况,促进地上部干物质的积累,提高籽粒产量和氮、 磷表观利用率。N 196.2 kg/hm2、 P2O5 46.5 kg/hm2、 K2O 90 kg/hm2的配施方案具有实际推广应用价值。  相似文献   

11.
Abstract. To evaluate the effect of sea salmon sludge on soil and ryegrass yield and quality, five treatments were tested (30, 60 and 90 t ha−1 of sludge, inorganic fertilizer and control). The sludge contained 16% dry matter (DM), 0.13% total N and 1.6% P. The sludge increased ryegrass DM yield, P and Na content, but decreased K concentrations in soil and plants. Sludge can be applied successfully on to land, but its addition should be complemented with inorganic nutrients (N, K). The high Na content of the sludge may limit repeated application, but the main benefit is its P content.  相似文献   

12.
The effect of shade and fertilizer application on nutrient uptake and dry matter (DM) partitioning in cocoyam was evaluated by growing the plant under different levels of shade and fertilizer application at Forest and Horticultural Crops Research Centre, Kade, within a period of 9 months. The shade levels used were 80%, 70%, and 50% shade, and full sunlight exposure. The fertilizer rates used were 112 kg/ha nitrogen, phosphorus and potassium (NPK) (15-15-15 120 kg/ha NPK (15-15-15) in a form) of mineral fertilizer, 112 kg/ha NPK organic fertilizer and no fertilizer (control). The split-plot design was used with shade levels as the main plot factor and fertilizer levels as the sub plot factor. The interaction effect of shade and fertilizer had a significant effect (p ≤ 0.05) on DM of cocoyam leaves, petioles, corm, and cormels as well as nutrient accumulation in plant parts. Cocoyam leaves of plants grown under 50–70% shade stored significantly higher (p ≤ 0.05) quantities of nutrients (1.51 ppm of N, 6.61 ppm of P, and 53.10 ppm of K) and accumulated more DM (71.30 g) than leaves of plants grown under full sunlight exposure which accumulated 1.37 ppm of N, 4.31 ppm of P, 26.06 ppm of K, and 30.7 g DM, at the two rates of the chemical fertilizer application. Under full sunlight exposure, significantly higher amounts of DM were accumulated in the corms and cormels at mineral fertilizer level of 112 kg/ha. At mineral fertilizer rate of 120 kg/ha, nutrient accumulation was significantly higher (p ≤ 0.05) in the corm and cormels (1.72 ppm of N and 7.72 ppm of P) of plants grown under full sunlight exposure than those grown under 70% shade level (0.6 ppm of N and 2.94 ppm of P). Nitrogen and phosphorus accumulation was significant in the petioles of plants grown under the 70% shade level at fertilizer rate of 120 kg/ha. It is recommended that cocoyam be grown under 50–70% shade at a fertilizer rate of 112–120 kg/ha for leaf production and under full sunlight exposure at 112 kg/ha (NPK) for cormel production.  相似文献   

13.
[目的]作物体内磷与其他矿质养分之间存在复杂的交互作用.分析不同供磷水平对作物体内养分转运相关基因(启动子中含P1BS顺式调控元件)的表达水平,从基因水平深入理解磷与其它养分间交互作用的机理.[方法]设置砂培试验,供试烟草品种为K326?(Nicotiana tabacum?L.?cv.?K326),营养液中设低磷(0...  相似文献   

14.
In an open woodland in Portugal, the nature of interactions between Quercus ilex trees and herbaceous plants was assessed during 2 years by studying how manipulation of incident solar radiation, water and nutrient supply affect the herbaceous biomass and N, K, P, Ca, Mg, and Mn concentrations. Measurements were carried out in three environments consisting of (1) open grassland, (2) beneath the tree canopy, and (3) under artificial shade. Each of these environments was subjected to two regimes of fertilization and two water levels in a factorial design. The fertilizer treatment consisted of application of no fertilizer or a combination of 200 kg calcium ammonium nitrate ha–1 (26% N) and 350 kg superphosphate ha–1 (8% P), while the water‐supply treatment consisted of either no irrigation or irrigation fortnightly from February 1 to April 30. Grasses showed significantly lower nutrient concentrations than forbs. However, nutrient concentrations of the whole herbaceous community were within the recommended ranges for cattle nutrition. A negative effect of shade on herbaceous biomass production was observed. The effect of watering on herbaceous biomass was less prominent than the effect of fertilization, irrespective of the environment, suggesting that Q. ilex does not compete for soil‐water resources with herbaceous biomass in this ecosystem. Fertilization increased total biomass by 106%, 49%, and 97% in the open grassland, beneath the tree canopy, and under artificial shade, respectively. During the first and second year, fertilization increased herbaceous P concentrations by 24% and 83%, respectively, if compared with concentrations obtained at the unfertilized plots. Higher K and Mg concentrations were observed in herbaceous plants beneath the tree canopy than in the open areas, indicating a positive effect of trees on pasture quality. The positive and negative effects of trees on understory forage are discussed.  相似文献   

15.
【目的】明确旱地条件下高产小麦品种籽粒锌含量差异与氮磷钾吸收利用的关系,为品种选育和科学施肥提供依据。【方法】于2013—2016年连续三年在黄土高原旱地进行田间试验,试验采用裂区设计,主处理为不施肥(CK)和施肥(NP),副处理为来自我国主要麦区的123个品种。施肥处理为N 150 kg/hm^2 (尿素,含N46%)、P_2O_5 100 kg/hm^2 (过磷酸钙,含P_2O_5 16%)。成熟期在每个品种中间2行随机抽取30穗小麦,连根拔起后,从根茎结合处剪断弃去根系,分为茎、叶、颖壳(含穗轴)和籽粒,称风干重。分析了样品中氮、磷、钾、锌含量,计算了养分的吸收量及转移量。【结果】施肥条件下高产小麦品种籽粒锌含量存在显著差异,高锌品种比低锌品种显著高54%。高锌品种的籽粒氮、磷含量分别比低锌品种显著高9%、7%,钾含量无显著差异,施肥使两组品种的氮含量显著提高,磷钾含量降低。高产高锌品种具有更高的籽粒和地上部氮、磷吸收能力,钾吸收能力与低锌品种相比无显著差异,施肥可使高锌品种的氮磷钾吸收量增幅高于低锌品种;两组品种间的氮、磷转移能力无显著差异,而高锌品种的钾转移能力较低,且两组品种的氮磷钾转移能力因施肥降低幅度一致。【结论】旱地条件下土壤养分供应充足时,高产高锌小麦品种的氮磷吸收能力强,钾转移能力弱,籽粒氮磷含量高,与低锌品种相比钾含量无显著差异。通过品种选育可同时提高旱地高产小麦籽粒锌和蛋白质含量,并提高磷含量。考虑到磷含量高时会降低籽粒锌的生物有效性,生产中通过施肥措施,适当调控磷肥,增加氮肥,在提高小麦籽粒氮锌含量的同时提高籽粒锌的生物有效性。  相似文献   

16.
An experiment was conducted to evaluate the effect of soybean (Glycine max L.) cultivar, Cd rate, and cultivar x Cd rate interaction upon nutrient concentrations in the plant. Cultivars rated as T (tolerant) or S (susceptible) to Cd were included in the study. A factorial combination of 10 cultivars and 4 levels of Cd were randomized in 4 replications of a completely randomized design. Additions of CdCl2 dissolved in distilled water were made to weighed quantities of dry soil. The soil was a Flanagan silt loam (Aquic Argiudoll). Four weeks after planting, plants were harvested, air dried and dry ashed. Chemical determinations of Zn, Fe, Mn, Cu, K, Ca, Mg and P in plants were made by emission spectroscopy.

Nutrient concentrations were affected by cultivar and rate of Cd and generally, nutrient concentrations decreased as rate of Cd increased. The Cd linear x cultivar interaction significantly affected plant concentration of each element except P indicating that the linear effect of Cd was not consistent among all cultivars. A comparison of “susceptible”; cultivars with “tolerant”; cultivars showed significant differences in nutrient concentration of each element except K. Plant K concentration was significantly associated with a Cd linear x T (tolerant) vs. S (susceptible) interaction indicating that the linear trend due to Cd rate differed between cultivars rated S or T to Cd.  相似文献   

17.
吉林春玉米氮磷钾养分需求与利用效率研究   总被引:3,自引:0,他引:3  
【目的】 明确吉林春玉米的氮、磷、钾养分需求和利用效率,为区域春玉米的高效合理施肥提供技术参数。 【方法】 整理2005—2013年国家测土配方施肥项目在吉林省开展的680个 “3414”田间试验,选取N0P0K0、N0P2K2、N2P0K2、N2P2K2和N2P2K0 5个处理,研究氮、磷、钾肥对春玉米籽粒产量、植株养分吸收量的影响,明确产量、养分吸收量与土壤基础养分供应能力的关系,评估春玉米的氮、磷、钾养分需求量和利用效率。 【结果】 吉林春玉米在氮磷钾配施处理 (N2P2K2) 获得最高的籽粒产量和植株养分吸收量,平均产量达9.6 t/hm2,玉米氮、磷、钾养分平均吸收量分别为N 190.8 kg/hm2、P2O5 87.0 kg/hm2和K2O 215.1 kg/hm2。与不施肥处理相比,氮磷钾配施处理平均增产42.5%,植株氮、磷、钾养分吸收量平均分别提高57.5%、64.2%和49.5%。在其他养分充分供应基础上,增施氮、磷、钾肥平均分别增加吸收N 57.2 kg/hm2 (42.9%)、P2O5 19.2 kg/hm2 (28.4%) 和K2O 32.1 kg/hm2 (17.5%)。以缺素处理植株养分吸收量表征土壤养分基础供应能力,发现氮磷钾配施处理玉米产量和养分吸收量均随土壤基础养分供应能力的提高而逐渐上升,变化趋势均符合显著的对数关系。经测算,吉林春玉米氮磷钾配施处理生产百公斤籽粒平均需吸收N 1.98 kg、P2O5 0.90 kg和K2O 2.24 kg,比例为1∶0.45∶1.13。减氮、减磷和减钾处理的百公斤籽粒氮、磷、钾素需求量平均分别为N 1.69 kg、P2O5 0.79 kg和K2O 2.11 kg,与氮磷钾配施处理相比均显著下降,而且试验点间变异也明显增大。目前,吉林春玉米生产中氮、磷、钾肥的平均养分回收利用效率分别为33.7%、27.5%和45.3%,而平均生理利用效率分别为28.8、52.8和28.3 kg/kg。 【结论】 吉林春玉米对肥料养分的依存度较高,合理施肥是保持高产高效的重要前提。   相似文献   

18.
Abstract

Nitrogen fertilization and tillage practices may influence the availability and uptake of essential plant nutrients other than N. This study was conducted to assess the interactive effects of N rate and timing and tillage practices on uptake and concentration of P, K, Ca and Mg in corn grown under dryland conditions. Potassium accumulations in no till (NT) soils were greater than in conventional till (CT) near the surface and lower than CT in the subsoil. Phosphorus and Ca levels decreased with soil depth, while Mg tended to accumulate in the subsoil. Phosphorus uptake and concentration of 5‐leaf stage corn was increased as tillage intensity decreased. Nitrogen rate at planting increased 5‐leaf P uptake but reduced P concentration; however, by silking no effect of tillage or N fertilization practice on ear leaf P concentration was obtained. Increases in 5‐leaf corn K uptake and concentration as tillage intensity decreased may have reduced Mg and Ca concentrations via cation antagonism. Ear leaf Mg and Ca concentrations were increased by N rate, probably as a result of solubilization of Ca and Mg and improved crop growth. Distribution of essential elements in the soil due to tillage in combination with varying N fertilization practices can influence temporal nutrient uptake, thereby altering plant nutrient diagnosis.  相似文献   

19.
The dry weight accumulation per male and female flower as well as the concentration per gram of dry weight and the accumulation of nitrogen (N), phosphorus (P), potassium (K), calcium (Ca), magnesium (Mg), iron (Fe), manganese (Mn), zinc (Zn), and copper (Cu) were determined in walnut tree (Juglans regia L.) catkins and female flowers at the stage of flower bud and during the flower development. Catkin emergence was accompanied by a very fast hydration of the tissues. After the catkin matured, the fresh and dry weights were reduced. The female flower development period was accompanied by the dry and fresh weight increase. Total N, P, K, Fe, Mn, Cu and Zn concentrations in catkin buds were detected at lower levels, Mg in equal levels, and Ca at higher levels as compared to the nutrient concentrations in young growing leaves. The estimated values of the ratio NCmfb/NCygl were: total N = 0.54, P = 0.83, K = 0.56, Ca = 1.5, Mg = 1.0, Fe = 0.46, Mn = 0.71, Cu = 0.85, and Zn = 0.60. Nutrient concentration in female flower buds was detected in almost equal levels with the exception of total N and Fe. The estimated values of the ratio: NCffb/NCygl were: total N = 0.57, P = 1.1, K = 1.17, Ca = 1.06, Mg = 0.9, Fe = 0.47, Mn = 1.0, Cu = 0.92, and Zn = 0.85. Total N, P, Mn, Cu, and Zn accumulations in the catkin were increased during the fast growing phase and decreased after catkin maturing. Potassium, Mg, and Fe accumulation continued to increase in the mature catkin. Calcium accumulation decreased at a very late mature catkin phase. Total N, P, and K accumulation rates during the catkin fast growing phase were higher than the dry weight accumulation rate. Calcium, Mg, Fe, Mn, Cu, and Zn accumulation rates at the same period were lower or equal to dry weight accumulation rates. In mature catkins, the total N, P, Mn, Cu, and Zn depletion rates were higher than the dry weight depletion rate. The continual increase of K, Ca, Mg, and Fe accumulation in mature catkin resulted in the increase of nutrients concentration also. Total N and P showed the highest remobilization values from mature catkin of 51.4% and 45%, respectively. Calcium, K, Mg, Cu, Mn, and Zn remobilization values estimated to be 22.1%, 7.5%, 3.2%, 45.3%, 33.4%, and 31.8%, respectively. Iron showed no remobilization at all. Nutrients remobilization from catkins as compared to the leaves had almost similar values for total N, Zn, and Cu, higher for P, Ca, and Mn, and lower for Mg, Fe, and K. Accumulation of all nutrients in female flowers increased after fertilization. The dry weight accumulation rate was higher than the nutrient accumulation rates.  相似文献   

20.
  【目的】  我国植胶区砖红壤钾、镁缺乏现象日益突出,研究钾、镁缺乏对橡胶幼苗根系形态和养分吸收的影响,可为橡胶平衡施肥和优质高产栽培提供理论依据。  【方法】  选用‘热研7-33-97’橡胶 (Hevea brasiliensis) 幼苗为研究材料,在人工气候箱内用营养液培养。采用二因素二水平的析因试验设计,设置4个处理:对照 (CK)、缺钾 (–K)、缺镁 (–Mg) 和缺钾镁 (–K-Mg),培养3个月后,取样测定橡胶幼苗干物质量、根系构型参数、根系活力和养分含量等指标。  【结果】  1) 与CK相比,–K和–K-Mg处理显著降低了单株干物质量和根冠比,干物质量降幅分别为8.4%和27.5%,根冠比降幅分别为20.4%和26.9%,而–Mg处理对干物质量和根冠比均无显著影响;K、Mg交互作用对茎干、根和单株干物质量及根冠比均有显著影响 (P < 0.05)。2) 与CK相比,各缺素处理均显著降低了橡胶幼苗吸收根 (直径 < 2 mm) 的根长、根表面积、根体积、总根尖数及根系活力等根系构型参数,而不同程度增加了平均根粗。方差分析结果表明,K、Mg交互作用对吸收根的根长、根表面积、根体积及总根尖数有极显著影响 (P < 0.01)。3) 各处理下氮和镁、磷和钾以及钙分别在叶片、根系以及茎皮中的平均分配比例高于其他器官。各缺素处理下,地上部的养分占比呈增加趋势。4) 与CK相比,–K处理显著增加了橡胶幼苗单株氮、磷和镁的积累,–K-Mg处理则显著降低了单株氮积累,各缺素处理均显著增加了单株钙的积累;K、Mg交互作用对氮、磷、钙和镁的积累有显著或极显著影响。  【结论】  钾、镁营养显著影响橡胶幼苗对养分的吸收,缺钾、缺镁显著抑制橡胶幼苗特别是根系的生长发育,同时缺钾缺镁加重抑制效果。因此,橡胶生产上不仅要保证培养基质或土壤的矿质营养充足,还要重视钾、镁元素间平衡关系。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号