首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 828 毫秒
1.
Kura clover (Trifolium ambiguum M. Bieb.) is a rhizomatous perennial legume that is native to Caucasia, is extremely persistent in North America, but its performance has not been adequately evaluated in Europe. The objective of this research was to compare forage yield and nutritive value of Kura clover to lucerne (Medicago sativa L.), red clover (Trifolium pretense L.) and white clover (Trifolium repens L.) at two locations in Poland. All clover stands thinned markedly by spring of the second production year because of infection by Sclerotinia crown and stem rot, but lucerne stands remained dense and this legume produced the highest total yield over 3 or 4 production years. Kura clover yields of 7.2–8.3?Mg?ha?1 were second to lucerne by the third production year but long-term performance was diminished by stand thinning. Kura clover and white clover had lower fiber concentrations and greater protein concentrations and forage digestibility than red clover and lucerne. Kura clover can be a source of high-quality forage in Europe, but cannot be recommended for use in areas with known Sclerotinia trifoliorum presence until resistance to this pathogen is developed.  相似文献   

2.
Three perennial legumes (alfalfa, red clover and birdsfoot trefoil) and four cool-season perennial grasses (orchardgrass, tall fescue, Italian ryegrass and red fescue) were grown in legume–grass combinations and in pure stands of individual species, at three locations in the West Balkan region (Novi Sad, Banja Luka and Pristina) in the period from 2012 to 2015. The study evaluated dry matter yield, legume–grass–weed proportion and forage quality. High annual forage yield of legume–grass mixtures can be obtained with proper selection of species and an appropriate legume–grass ratio. However, high and stable yield, particularly in the case of grasses, depends on the amount and schedule of precipitation as well as the cutting time. The mixtures and legume pure stands achieved better forage production both per cutting and on the annual basis and had better forage quality than grass pure stands.  相似文献   

3.
Abstract

Maximum yields of red clover, alfalfa, and birdsfoot trefoil were obtained when 0.25 to 1.0 ppm B was added to the soil. An application of lime to raise the soil pH to 5.8–6.3 improved yields, while at pH 6.8 a decline in yield in the first and second cuts of birdsfoot trefoil was noted. There was a marked B x lime interaction on the yield of all cuts of birdsfoot trefoil and first cut of red clover, with much higher yields with high rates of lime at high rates of added B.

Levels of 4 to 9 ppm B in the leaf tissue of the three crops were in the deficiency range. Boron concentrations of 21 to 45, 39 to 52, and 30 to 45 ppm in the first cuts of red clover, alfalfa, and birdsfoot trefoil were indicative of sufficiency and were associated with maximum yields, while levels of >59, >99, and >68 ppm, respectively, in the three crops were in the toxicity range. Sufficiency levels of soil B for legumes appeared to be related to pH since B deficiency was more severe at higher pH than at lower pH. Liming of soil from pH 5.3 to 6.8 resulted in decreased concentration of B in all the three crops with the smallest decreases in alfalfa. There was a marked B x lime interaction on the B concentrations of the three crops, with much higher B concentrations in high B treatments at low soil pH than at high pH values.  相似文献   

4.
Grain sorghum [Sorghum bicolor (L.)], grown on the often infertile claypan soils of the eastern Great Plains, requires attention to soil fertility. Experimental objectives were to determine the effects of phosphorus (P) and potassium (K) fertility levels, N application, and legume residual on grain sorghum production and stalk rot. Following alfalfa and birdsfoot trefoil, first-year sorghum yield was 7 Mg ha?1 and not affected by N fertilizer. In subsequent years, yield increases due to N were less than 20%. Sorghum yield increased at low P and K rates, especially with nitrogen (N) fertilization and was greater following birdsfoot trefoil than following alfalfa. In 1995 when fertilized with N, lodging and stalk rot severity were increased by P and reduced by K. In 1996, stalk rot severity was reduced by K fertilization. Grain sorghum, grown after legume crops, required minimal levels of P and K, especially when N fertilizer was added.  相似文献   

5.
A major constraint to the renovation of forage legume‐based pastures on acidic soils of the Appalachian hill‐lands is thought to be the absence of effective rhizobia. A growth chamber experiment was done with aluminum (Al) toxic, low pH (≥ 4.2) soils from four series (Berks, Lily, Tate, and Westmoreland) that were planted with alfalfa (Medicago sativa L.), red clover (Trifolium pratense L.), white clover (Trifolium repens L.), or birdsfoot trefoil (Lotus corniculatus L.). These soils, without lime addition, were previously shown not to contain effective, naturalized populations of rhizobia for these plant species. However, a non‐toxic, pH 6.8, Watauga soil was shown to have such rhizobia but only for alfalfa. In the present study, these five soils were reexamined after liming to pH 5.5 for effective, naturalized populations of rhizobia and the efficacy of soil inoculation with commercially available rhizobia. In addition to effective, naturalized R. meliloti for alfalfa in the Watauga soil, similar populations of R. trifolii for red clover, and R. lotus for birdsfoot trefoil, were now found. Such rhizobia were also found for alfalfa in the Lily soil and for red clover in the Lily and Tate soil. Thus, liming allowed the expression of effectiveness of natural rhizobia that otherwise would not have been detected in soil pot experiments without lime. Inoculation of the toxic soils after lime addition with commercial rhizobia was effective in about half of the soil‐plant combinations that did not contain populations of effective, naturalized rhizobia. Asymbiotic shoot growth of all the plant species was significantly (P ≤ 0.05) correlated with soil pH over a range of 5.5–6.6. These results indicate that, in the absence of effective, naturalized populations of rhizobia, improvement of rhizobial inocula could increase forage production by ~34% for some species on some of the toxic soils, even after the pH of the soils is increased to ≥ 5.5.  相似文献   

6.
A field experiment was conducted from 2000 to 2007 on three-year old alfalfa stand near Star City in northeastern Saskatchewan to determine the influence of balanced application of sulfur (S), phosphorus (P), or potassium (K) fertilizers on forage dry matter yield (DMY) and seed yield, protein concentration (PC) in forage, concentration and uptake of total nitrogen (N), P, K, S, and boron (B) in forage and seed, and residual soil extractable P, exchangeable K and sulfate-S. Appropriate application of S, P, or K fertilizer nutrients was required to obtain optimum yield, PC, and nutrient concentration and uptake, especially when alfalfa was grown for hay production. Yield response to fertilization was much more frequent and much higher when alfalfa was managed as hay compared to when managed for seed production. The results suggest the importance of proper fertilization in increasing longevity of alfalfa stands. Under both hay and seed plots, there was only a small increase in residual sulfate-S from S fertilization, but significant accumulation of extractable P mainly in the 0–15 soil layer from P application. There was relatively higher concentration of exchangeable K in soil in the seed plots than in hay plots. In hay plots, concentrations of residual exchangeable K in soil were negatively related to DMY, especially in 2007. The findings suggest that when a soil is testing low (or deficient) in a nutrient and alfalfa growth is reduced, then alfalfa producers should consider applying fertilizers to supply adequate amounts of nutrients that are lacking in the soil, especially for optimum forage production. However, it is still difficult to predict accurately if a profitable alfalfa seed yield response to fertilization would occur, particularly when soils are testing marginal in some nutrient levels and yields are negatively affected by abnormal weather conditions (drought soil moisture conditions reducing plant growth, wet, cloudy and cool weather conditions decreasing pollination activity and late summer and/or early autumn frost damage to seed formation) that often occur in the growing season in this region.  相似文献   

7.
Abstract

Wastes applied to agricultural land can contain significant concentrations of bioavailable molybdenum (Mo). Because Mo uptake by forage crops could lead to hypocuprosis in ruminants, more knowledge is needed about which crops are most efficient in accumulating Mo. At an old sewage sludge‐amended site, the concentrations of Mo, copper (Cu), and several other trace metals were measured in various grass species. Generally, the grasses grown on the sludge site contained higher Mo concentrations than the same species grown on a nearby control site. However, because Cu concentrations were also higher in the sludge‐grown grasses, Cu:Mo ratios in the grasses were frequently higher on the sludge site. In contrast, all legumes tested (alfalfa, birdsfoot trefoil, red clover, pea), as well as canola and beets, had lower Cu:Mo ratios when grown on the sludge site. Sulfur concentrations in the two crops analyzed for this element (canola and pea) were higher on the sludge site than the control. It is concluded that Mo, Cu, and sulfur (S) bioavailability remains elevated in the soil several decades after sewage sludge application.  相似文献   

8.
通过盆栽试验,研究施肥对喀斯特地区植草土壤不同活性有机碳组分和牧草固碳的影响。试验处理包括CK(不施肥)、 N1 (N 150 mg/kg)、 N2 (N 250 mg/kg)、 N1P1 (P2O5100 mg/kg)、 N2P2 (P2O5150 mg/kg)、 N1P1K1 (K2O 70 mg/kg)、 N1P1K2 (K2O 105 mg/kg)和N2P2K1和N2P2K2。结果表明,与对照(不施肥)相比,施肥处理增加植草土壤有机碳、 微生物量碳和易氧化碳,有机碳日矿化量和累积矿化量以及牧草固碳量。其中N1P1K1处理土壤有机碳和易氧化碳最高,N1P1处理土壤微生物量碳最高,N2P2K1处理土壤可溶性碳最高,N2P2K2处理牧草地上部及根系固碳量、 有机碳日矿化量和累积矿化量均最高。综上,低量氮磷钾肥配施有利于土壤活性有机碳的积累,高量氮磷钾平衡配施牧草固碳效果最佳。  相似文献   

9.
Bermudagrass (Cynodon dactylon L.) is a warm season perennial that is well adapted in the southern Great Plains. It is one of the region's most important forage crops used for livestock production, and is commonly grown without legume interseeding. Recent research has investigated ways of improving the quality and quantity of this forage. The objectives of this study were to determine the effect of interseeded legumes and phosphorus (P) fertilizer on bermudagrass pasture forage yield and crude protein content. One experiment was initiated in 1993 in eastern Oklahoma in an established bermudagrass pasture. Red clover (Trifolium pratense L.), ladino clover (Trifolium repens L.), and two varieties of alfalfa (Medicago sativah), ’alfagraze’ and'common’, were interseeded by hand into an established stand of bermudagrass. The effect of P on forage yield and crude protein was evaluated using a 30‐kg P ha‐1 rate applied at establishment versus no applied P. Forage yield was collected three times throughout the growing season each year from 1994 through 1997. When both alfalfa varieties were interseeded into a bermudagrass pasture without applying additional P fertilizer, forage yields for the legume‐grass mixtures decreased below those obtained from the monoculture bermudagrass in the first year of the stand. The alfalfa variety ‘alfagraze’ interseeded into established bermudagrass decreased total forage yield over the entire 4‐yr study. Interseeded red clover and ladino clover increased crude protein of the forage compared with monoculture bermudagrass the first two years of the study, with red clover continuing to increase crude protein in the fourth year. However, when 30 kg P ha‐1 was applied to the bermudagrass prior to establishment of the legumes, no change in yield or protein was observed for both alfalfa varieties’ interseeding treatments versus the unfertilized mixtures. Although forage yield may not be increased, interseeding legumes into established bermudagrass could provide an efficient way to improve pasture crude protein without the use of inorganic fertilizers. However, if alfalfa ('common’ or ‘alfagraze') is interseeded, additional P may need to be applied at legume establishment to prevent possible yield decreases.  相似文献   

10.
A growth chamber experiment was initiated with two field moist, marginal and acidic (pH 5.1–5.2) soils of the Lily series (Typic Hapludults) in order to determine the need for improved legume‐rhizobia symbioses for forage species of current, or potential, use in the renovation of Appalachian hill‐land pastures. One soil was from an abandoned pasture having broomsedge (Andropogon virginicus L.) as the predominant vegetation, whereas the other was from a minimally‐managed pasture dominated by orchardgrass (Dactylis glomerata L.). Treatments included inoculation (or no inoculation) and the addition of aluminum, nil, or lime to provide a range of soil acidities. Both soils contained effective populations of naturalized rhizobia for white clover (Trifolium repens L.) and red clover (Trifolium pratense L.), but low and/or ineffective naturalized populations of rhizobia for alfalfa (Medicago sativa L.), birdsfoot trefoil (Lotus corniculatus L.), bigflower vetch (Vicia grandiflora Scop.), and flatpea (Lathyrus sylvestris L.). Seed inoculation, by lime‐pelleting, was highly beneficial in establishing effective symbioses for all these latter species. The addition of low levels of aluminum or lime (1.5 and 2.0 cmol/kg soil, respectively) had little effect on any of the symbioses, with the exception of those for alfalfa. Thus, an improved legume rhizobia symbiosis would not seem to be a prerequisite for renovating pastures established on chemically similar ultisols with the forage legume species examined in this study, especially if the pasture has at least some history of management.  相似文献   

11.
Abstract

Recent studies showing a lack of response by alfalfa (Medicago sativa L.) to phosphorus (P) fertilization have raised concerns about the efficacy of commonly used P fertilizer materials in the southwestern United States. Studies were conducted between 1982 and 1985 in southeastern New Mexico to evaluate (i) alfalfa yield response to different P sources, (ii) the effect of P fertilizer source on forage total nitrogen (N) content and leafiness, and (iii) the effect of P fertilizer source on soil test P. Nine P sources were applied annually from 1982 through 1984 at a rate of 58 kg P/ha. Alfalfa was grown during 1985 without fertilization to examine the residual effect of P sources. Triple superphosphate (TSP) and monoammonium phosphate (MAP) gave the highest alfalfa forage yields over the 3‐year application period, but no residual fertilizer effects were observed when fertilization was discontinued. Fertilization did not affect forage leafiness. Except for a small N response in forage total N content in 1984, neither P nor concomitant applied N had a significant effect on forage N content over the 3‐year period. Phosphorus fertilization significantly increased average soil test P for the 3‐year period, but there were no significant differences between treatments. Currently used P materials (TSP and MAP) still appear to be the most efficacious for alfalfa production.  相似文献   

12.
Abstract

Birdsfoot trefoil (Lotus tenius), red clover (Trifolium pratense) and white clover (Trifolium repens) were evaluated as potential forage legumes on andic soils. A greenhouse study was used to evaluate the influence of soil pH on: (1) the establishment and growth of these forage legumes, (2) N and P quantity and concentration, and (3) Rhizobium lupini and Rhizobium trifolii survival.

Aluminum sulfate and finely‐ground calcium carbonate were used to adjust soil pH. Soil pH's were 4.8, 5.1, 5.6, 6.2, 6.4, 6.9, 7.0 and 7.4. Birdsfoot trefoil, red clover and white clover were grown in 15 cm pots in the greenhouse and harvested five times at approximately 20‐day intervals. Yield was measured and plant material was analyzed for total N and P. Populations of R. lupini and R. trifolii were monitored using the MPN technique.

Manipulation of pH in the Mission soil was found to have a significant effect on the growth of the three forage legumes, tissue N and P concentration and uptake, and on the survival of R. lupini and R. trifolii in the soil. In general, tested parameters increased with increasing soil pH. Greatest forage yield occurred in the 6.9–7.0 pH range. The andic nature of the Mission soil requires a pH adjustment above pH 6.2 for acceptable establishment and yields of the three forage legumes studied. This is in sharp contrast to non‐andic northern Idaho soils where forage legume yields are usually not adversely affectea above pH 5.5. All three legumes appeared to have good potential ana should be evaluated under field conditions.  相似文献   

13.
 N2O emission rates from a sandy loam soil were measured in a field experiment with 2 years of perennial forage crops (ryegrass, ryegrass-red clover, red clover) and 1 year of spring barley cultivation. Spring barley was sown after the incorporation of the forage crop residues. All spring barley plots received 40 kg N ha–1 N fertiliser. Ryegrass, ryegrass-red clover and red clover plots were fertilised with 350 kg N ha–1, 175 kg N ha–1 and 0 kg N ha–1, respectively. From June 1994 to February 1997, N2O fluxes were continuously estimated using very large, closed soil cover boxes (5.76 m2). In order to compare the growing crops, the 33 months of investigation were separated into three vegetation periods (March–September) and three winter periods (October–February). All agronomic treatments (fertilisation, harvest and tillage) were carried out during the vegetation period. Large temporal changes were found in the N2O emission rates. The data were approximately log-normally distributed. Forty-seven percent of the annual N2O losses were observed to occur during winter, and mainly resulted from N2O production during daily thawing and freezing cycles. No relationship was found between the N2O emissions during the winter and the vegetation period. During the vegetation period, N2O losses and yields were significantly different between the three forage crops. The unfertilised clover plot produced the highest yields and the lowest N2O losses on this soil compared to the highly fertilised ryegrass plot. Total N2O losses from soil under spring barley were higher than those from soil under the forage crops; this was mainly a consequence of N2O emissions after the incorporation of the forage crop residues. Received: 31 October 1997  相似文献   

14.
Kura clover ( Trifolium ambiguum M. Bieb.) is a promising persistent forage legume, whose use is currently limited by establishment difficulties in part attributable to nodulation problems. In this study, we phenotypically characterized 18 Kura clover rhizobia including 12 newly isolated North American strains using 111 growth tests. The symbiotic performances of these 12 strains when used to inoculate hexaploid Kura clover plants were then evaluated in a growth chamber and compared to five strains commonly used in commercial Kura clover inoculants. Non-inoculated plants with or without N fertilization were used as controls. Field evaluations were also conducted in 2001 and 2002 in Montreal, Quebec and Becker, Minnesota. Hexaploid Kura clover was seeded with one of three North American strains or three commercial strains and compared to non-inoculated controls with or without N fertilizer. Phenotypic diversity observed among the 12 North American strains was limited. The North American strains were often more efficient than strains commonly used in commercial rhizobial inoculants in both growth chamber and field trials. In the growth chamber study, 60 days after seeding, shoot dry matter accumulation was overall 205% greater with North American strains than with commercial strains and 45% greater than with the best commercial strain tested. Some of the strains currently used in commercial inoculants failed to nodulate Kura clover plants effectively. North American strains tested in field trials (i.e., CT1-1, CT1-2, and WI4-4) overall increased total and shoot dry matter accumulation, 100 days after seeding, in three of four environments by 27% and 31% respectively, when compared to commercial inoculant strains. While these strains appear to have potential they still produced less dry matter than non-inoculated N-fertilized controls.  相似文献   

15.
Intercropping cereal crops with perennial legumes for forage has been demonstrated as a means to improve nutritive value compared to cereal crops alone. Our objective was to determine whether sowing winter rye (Secale cereale L.) or winter triticale (x Triticosecale Wittmack) into living Caucasian clover (Trifolium ambiguum M. Bieb.) improves yield or nutritive value compared to monoculture cereal crop forage in northern Europe. The experiments were conducted near Moche?ek and Fal?cin, Poland. In autumn 2010 and 2011, winter rye was sown into existing Caucasian clover or in monoculture at Moche?ek, and winter triticale was sown into Caucasian clover or in monoculture at Fal?cin, with monoculture clover as a third crop treatment at both locations. The following spring, first harvest of forage from the three crop treatments was taken at two maturities: when monoculture cereals reached heading (BBCH 51) or grain milk stage (BBCH 71), and two additional harvests were taken from mixture plots and monoculture clover before autumn. First harvest forage yields of mixtures were similar to monoculture cereal at Fal?cin, less than monoculture cereal at Moche?ek, and greater than monoculture clover at both locations. Full season forage yields of mixtures were greater than both monoculture cereal and clover crops at both locations. The proportion of clover in mixtures was 20–31% in the first harvest, resulting in slightly lower neutral detergent fiber concentrations than in monoculture cereal crop at Fal?cin, but no improvement in nutritive value at Moche?ek. By spring 2012, most Caucasian clover had died from Sclerotinia trifoliorum infection at both locations, so forage was not harvested in the second year of the experiment. Although total season forage yields were greater for mixtures than for either monoculture cereal or Caucasian clover, this system cannot be recommended for northern Europe because of failure for Caucasian clover to persist.  相似文献   

16.
Response of alfalfa (Medicago sativa L.), birdsfoot trefoil (Lotus corniculatus L.), and red clover (Trifolium pratense L.) to aluminum was evaluated in a nutrient culture system under controlled conditions. In each of the species, varietal differences were also compared. In the absence of Al stress, varieties of alfalfa and Tensas red clover produced more dry weight than the other legumes. However, among the legumes tested, alfalfa was the most sensitive to Al. Aluminum reduced the uptake of many of essential nutrients. Overall, red clover cultivars experienced the least reduction in elemental uptake, whereas alfalfa cultivars experienced the greatest reduction in uptake of elements under Al stress. The efficiency ratio (ER) assisted in differentiating legumes entries into efficient and inefficient utilizers of absorbed nutrients. The ER is defined as milligrams of dry shoot weight produced per milligram of element in the shoot. The presence of Al in the growth medium reduced the ER for all elements. With a few exceptions, ER for various elements, gave positive correlations with shoot weight. The species and cultivars used in this study showed inter‐ and intraspecific differences in growth, uptake of nutrients and nutrient efficiency ratios in the presence or absence of Al stress.  相似文献   

17.
Kura clover (Trifolium ambiguum M.B.) is a perennial rhizomatous forage legume whose use is currently limited by difficulties in its establishment in part attributable to nodulation problems and very specific rhizobial requirements. A limited number of Kura clover-nodulating rhizobial strains are currently available and many have a limited effectiveness. In this study, 128 rhizobia were isolated from four sites in the center of origin of Kura clover (i.e., two in Azerbaijan, one in Armenia, and one in Northwest Iran) using the three ploidy levels of Kura clover (diploid, tetraploid, and hexaploid), red clover (Trifolium pratense L.), and white clover (Trifolium repens L.) plants as trap hosts. Rhizobia were fingerprinted using repetitive extragenic palindromic polymerase chain reaction (BOXA1R primer) and their genetic diversity was measured using the Shannon-Weaver diversity index. The nodulation specificity and phenotypic diversity of a subset of 13 isolates was determined. Genetic diversity among the 128 isolates was large and similar for rhizobia grouped according to their geographic origin or original host plant. Phenotypic diversity was significant; percentage of similarity among 13 isolates ranging between 38 and 92%. Nodulation specificity of the Kura clover-nodulating rhizobial isolates studied was less complex and not as clearly delineated as previously reported. Some strains originally isolated from Kura clover could effectively nodulate more than one ploidy level of Kura clover and even one or both of two other Trifolium species (i.e., red clover and white clover). Three strains formed effective nodules on both Kura clover and white clover; however, none promoted plant growth of both species to levels currently obtained with commercial inoculants when evaluated in a growth chamber. Rhizobial isolates that are highly effective with both species have yet to be identified.  相似文献   

18.
Abstract

Perennial forages are an important component for the cropping systems of the Parkland region in the Canadian prairies, but only a few studies have reported on direct seeding of forages in northeastern Saskatchewan. The objective of this study was to compare the effects of tillage (conventional tillage, CT, and zero tillage, ZT) for seedbed preparation and different seeding times (October 1993, May 1994, and June 1994) on forage and seed yield of alfalfa (Medicago sativa Leyss) and bromegrass (Bromus inermis Lyess) on Gray Luvisol (Typic Cryoboralf) soils (sandy at Gronlid and clayey at Ridgedale) in northeastern Saskatchewan. Visual inspection of plant stands in the establishment year indicated that plant densities were generally higher under CT than ZT and with spring than autumn seeding. Forage yield in 1994 was greater under ZT than CT for alfalfa at both sites and for bromegrass at Ridgedale. In 1995 and 1996, tillage had no effect on forage yield in most cases. The 3‐year forage production was greater under ZT than CT for alfalfa by 647 and 770 kg ha?1 at Gronlid and Ridgedale, respectively, and for bromegrass at Ridgedale (by 697 kg ha?1), with the opposite result at Gronlid (by 237 kg ha?1). The effect of seeding time on forage production was not consistent. The seed yield in 1995 and 1996 was somewhat greater with ZT than CT, with autumn than spring seeding, and with May than June seeding for alfalfa, whereas the opposite was true for bromegrass, except at Ridgedale when autumn seeding produced greater seed yield than spring seeding. In summary, the lower plant population under ZT than CT in the establishment year did not necessarily result in lower forage and seed yield of alfalfa and bromegrass, suggesting that ZT can replace CT for forage production, and seeding time effect was mainly observed in the first year.  相似文献   

19.
Field experiments were conducted from 2000 to 2007 on three-year or older alfalfa stands grown for seed production at various sites in northeastern Saskatchewan to determine the influence of balanced application of phosphorus (P), sulfur (S), or potassium (K) fertilizers on seed yield and longevity of alfalfa stands. Survey trials were also conducted to determine the possible reasons for low seed yields on some alfalfa seed fields by comparing “bad” (i.e., low alfalfa seed-yielding) and “good” (i.e., high alfalfa seed-yielding) areas within alfalfa seed stands. The results of alfalfa seed field survey trials suggest that poor seed yields in “bad” areas compared to “good” areas in most alfalfa stands were due to nutrient deficiencies and/or a soil fertility imbalance, as evidenced by soil tests for available nutrients. The findings of field research experiments indicated that application of P, K, or S fertilizer nutrients was essential to obtain optimum seed yield in most cases under normal soil moisture conditions. This also suggests the importance of balanced fertilization in increasing longevity of alfalfa seed stands over a number of years. In summary, the findings suggest that when a soil is testing low (or deficient) in a nutrient and alfalfa growth is reduced, then alfalfa seed producers should consider application of fertilizers to supply adequate amounts of nutrients lacking in the soil. However, it is still difficult to predict accurately if a profitable alfalfa seed yield response to fertilization would occur, particularly when the soils are testing marginal in some nutrient levels and alfalfa seed yields are often reduced by dry weather conditions and/or frost damage.  相似文献   

20.
Abstract

Fertilization and harvest frequency affect yield and quality of forages. The purposes of this experiment were to determine (i) the effects of fertilization and frequent harvesting on yield and quality of tall fescue (Festuca arundinacea Schreb.) and smooth bromegrass (Bromus inermis Leyss.) and (ii) the efficiency of N in animal waste as compared with inorganic N fertilizer for forage production of these cool season grasses. ‘Fawn’ tall fescue and ‘Southland’ smooth bromegrass were grown in the greenhouse on Pullman clay loam topsoil (fine, mixed thermic Torrertic Paleustoll) under eleven fertilizer treatments and two harvest regimes. Nitrogen fertilizer increased yields, N and K concentrations and K/(Ca + Mg) ratios and decreased P, Ca, and Mg concentrations. Phosphorus and K fertilizers did not affect yields but applied P increased P and tended to decrease N and Ca concentrations. Applied K tended to increase Ca concentrations. Recovery of N from feedlot manure ranged from 0.8 to 14%, whereas, recovery from NH4NO3 averaged 64%. Harvesting at 3‐week rather than at 6‐week intervals reduced yields 25%; however, N and P removal were higher under the 3‐week harvest regime. Even though forage production was reduced under heavy utilization, the grasses required more N fertilizer under heavy than under lighter utilization. The two grasses produced similar yields under the 3‐week cutting regime and at N rates through 340 kg/ha under the 6‐week cutting regime. Tall fescue yields were higher with the higher N rates under the 6‐week cutting regime. Smooth bromegrass forage was higher than tall fescue forage in N, K, and Ca, whereas tall fescue forage was higher in P and Mg.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号