首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 52 毫秒
1.
Abstract

Soil pH can be increased by manure or compost application because feed rations usually contain calcium carbonate. This study was conducted from 1992 to 1996 to evaluate effects of phosphorus (P) and nitrogen (N)‐based manure and compost application management strategies on soil pH level. Composted and uncomposted beef cattle (Bos taunts) feedlot manure was applied to supply N or P needs of corn (Zea mays L.) for either a one‐ or two‐year period. Phosphorus‐based manure or compost treatments also received additional fertilizer N (ammonium nitrate) to provide for a total of 151‐kg available N ha‐1 yr‐1. Fertilized and unfertilized checks also were included. Manure and composted manure contained about 9 g CaCO3kg‐1 resulting in application rates of up to 1730 kg CaCO3 ha‐1 in 4 years. The surface soil (0–150 mm) pH was significantly decreased with ammonium nitrate application compared to soil in the unfertilized check or to soil receiving manure or compost. Soil pH was significantly increased with the N‐based management strategy compared with the soil original level. In contrast, 4 yr of P‐based manure and compost application strategy maintained soil pH at the original level. Nitrogen‐based applications resulted in higher soil pH than P‐based. Beef cattle feedlot manure and compost can be good sources of CaCO3 for soils requiring lime addition.  相似文献   

2.
A field study was conducted to assess the benefits, with respect to soil physical properties and soil organic matter fractions of utilizing composts from a diversity of sources in perennial forage production. A mixed forage (timothy-red clover (Trifolium pratense L.) and monocrop timothy (Phleum pratense L.) sward were fertilized annually with ammonium nitrate (AN) at up to 150kg and 300 N ha?1 yr?1, respectively, from 1998-2001. Organic amendments, applied at up to 600 kg N ha?1 yr?1 in the first two years only, included composts derived from crop residue (CSC), dairy manure (DMC) or sewage sludge (SSLC), plus liquid dairy manure (DM), and supplied C to soil at 4.6 and 9.2 (CSC), 10.9 (SSLC), 10.0 (DMC) 2.9 (DM) Mg C ha?1. Soil samples (0-5cm; 5-10cm;10-15cm) were recovered in 2000 and 2001. Improvements in soil physical properties (soil bulk density and water content) were obtained for compost treatments alone. Composts alone influenced soil C:N ratio and substantially increased soil organic carbon (SOC) concentration and mass (+ 5.2 to + 9.7 Mg C ha?1). Gains in SOC with AN of 2.7 Mg C ha?1 were detectable by the third crop production year (2001). The lower C inputs, and more labile C, supplied by manure (DM) was reflected in reduced SOC gains (+ 2.5 Mg C ha?1) compared to composts. The distribution of C in densiometric (light fraction, LF; >1.7 g cm?3) and particulate organic matter (POM; litter (>2000μm); coarse-sand (250-2000μm); fine-sand (53-250μm) fractions varied with compost and combining fractionation by size and density improved interpretation of compost dynamics in soil. Combined POM accounted for 82.6% of SOC gains with composts. Estimated compost turnover rates (k) ranged from 0.06 (CSC) to 0.09 yr?1 (DMC). Composts alone increased soil microbial biomass carbon (SMB-C) concentration (μg C g?1 soil). Soil available C (Cext) decreased significantly as compost maturity increased. For some composts (CSC), timothy yields matched those obtained with AN, and SOC gains were derived from both applied-C and increased crop residue-C returns to soil. A trend towards improved C returns across all treatments was apparent for the mixed crop. Matching composts of varying quality with the appropriate (legume/nonlegume) target crop will be critical to promoting soil C gains from compost use.  相似文献   

3.
In the European Union, the maintenance of soil quality is a key point in agricultural policy. The effect of additions of dairy cattle (Bos taurus) manure (DCM) during a period of 11 years were evaluated in a soil under irrigated maize (Zea mays L.) monoculture. DCM was applied at sowing, at wet‐weight rates of 30 or 60 Mg ha−1yr−1 (30DCM or 60DCM). These were compared with a mineral‐N treatment (300 kg N ha−1, MNF), applied at six to eight emerged leaves and with a control (no N, no manure). Treatments were distributed in a randomized block design. Factors analysed were stability against wetting stress disaggregation, porosity, soil organic carbon (SOC) fractions and earthworm abundance, studied eight months after the last manure application. The application rate of 30DCM increased aggregate stability and the light SOC fraction, but not the pore volume, nor the earthworm abundance, compared with MNF. The DCM rates did not result in unbalanced agronomic advantages versus MNF, as high yields (12–16 Mg ha−1 yr−1) were obtained. In Mediterranean environments, the use of DCM should be encouraged mainly because of its contribution to the light SOC fraction which protects dry macro‐aggregates from implosion (slaking) during the wetting process. Thus, in intensive agricultural systems, it protects soil from physical degradation. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

4.
The purpose of this research project was to 1) evaluate rate of compost application and 2) to compare compost with uncomposted raw material and inorganic fertilizer N application upon maize and soybean growth and productivity, and upon soil characteristics. During the first three years of the study, the source of uncomposted material and compost was food waste and ground newsprint. During years 4 to 9 of the study, the source of uncomposted material and compost was dairy cow manure and wood chips. Application rates in field site 1 were 0, 11.2, 22.4, 33.6 and 44.8 Mg ha?1 compost, 44.8 Mg ha?1 uncomposted material and 140 kg ha?1 fertilizer N (as urea). Application rates in field site 2 were 0, 22.4, 44.8, 67.2 and 134.4 Mg ha?1 compost, 134.4 Mg ha?1 uncomposted manure and 180 kg ha?1 fertilizer N (dry matter basis). The high rates of compost application significantly raised organic matter levels, and available P and K compared to inorganic fertilizer N. Uncomposted manure and increasing compost application rates significantly increased grain yield, number of kernels per plant and plant weight. Composting significantly reduced pathogen indicator bacteria concentrations. The data of this study suggest that on these high organic matter soils 22.4 Mg ha?1 to 44.8 Mg ha?1 are optimal compost application rates.  相似文献   

5.
ABSTRACT

A meta-analysis of 297 treatment data from the Vezaiciai Branch of the Lithuanian Research Centre for Agriculture and Forestry long-term field experiment published from 2006 to 2015 was used to characterize the changes in SOC under different fertilization treatments and residue management practices in Lithuania’s acid soil. A meta-analysis was performed to quantify the relative annual change (RAC) of SOC content and the average RAC rate of SOC under four fertilization modes (farmyard manure (FYM) (40?t?ha?1)); alternative organic fertilizers (in the manure background (40?t?ha?1)); FYM (60?t?ha?1); alternative organic fertilizers (in the manure background (60?t?ha?1)) in two soil backgrounds (naturally acid and limed soil). The average RAC under four fertilization modes was 1.46 g?kg?1?yr?1, indicating that long-term fertilization had considerable SOC sequestration potential. Incorporation of alternative organic fertilizers in unlimed soil showed negative effects (?0.39 and ?0.66 g?kg?1?yr?1) in the observed long-term experiment. The RAC in the limed soil with incorporated organic fertilizers (FYM and alternative organic fertilizers), compared to the control, and varied from 0.25 g?kg?1?yr?1 in the treatment with incorporated alternative organic fertilizers (in the manure background (40?t?ha?1)) to 0.71 g?kg?1?yr?1 in the soil with FYM (60?t?ha?1). In this study, the average RAC rate of SOC under organic fertilization treatments in limed soil (5.07–6.54%) was longer than organic fertilization in unlimed soil (2.11–3.49%), which might be attributed to the application of organic manure that would result in a slow release of fertilizer efficiency. Our results indicate that the application of manure (40 or 60?t?ha?1) showed the greatest potential for C sequestration in agricultural soil and produced the longest SOC sequestration duration.  相似文献   

6.
An incubation experiment was conducted in the laboratory for 10 weeks to study the changes in some phosphorus (P) fractions in two soil series. Poultry manure was applied at 0, 5, 10, 15, and 20 t ha?1 solely and in combination with single superphosphate (SSP) at 0, 15, 30, 45, and 60 kg P ha?1. Significant increases in all the P fractions were observed to the 6th week of incubation (WAI). Sole application of poultry manure was, however, effective in reducing P occlusion in the two soil series used. An increase in Fe–P which was the largest extractable inorganic P was observed with the application of 10 t ha?1 of poultry manure and 30 kg P ha?1 of SSP in the Iwo series and combination of 20 t ha?1 of poultry manure and 45 kg P ha?1 of SSP in the Alagba series.  相似文献   

7.
ABSTRACT

Grain yield in many soybean experiments fails to respond to fertilizer nitrogen (N). A few positive responses have been reported when soybean were grown in the southern U.S., when N was applied near flowering and when biosolids were added. In a previous study, low N concentrations of soybean forage in north Texas on a high pH calcareous soil were reported and thus, we suspected a N nutrition problem. Consequently, we initiated this study to determine whether selected preplant N sources broadcast and incorporated into a Houston Black clay (fine, smectitic, thermic Udic Haplusterts) might increase forage N concentration, forage yield, or soybean grain yield. In 2003, N was applied as ammonium nitrate (NH4NO3, AN) up to 112 kg N ha? 1 and dairy manure compost (DMC) was applied at rates of 4.9, 9.9, 15.0, and 19.9 Mg ha? 1. The DMC contained 5.9, 2.6, and 6.7 g kg? 1 of total N, P, and K, respectively; thus DMC added 29 to 116 kg N ha? 1. In 2004, AN was applied at rates of 112 and 224 kg N ha? 1 and DMC was applied at 28 and 57 Mg ha? 1; thus, DMC added 168 to 335 kg N ha? 1. In another 2004 test, biosolids, a biosolids/municipal yard waste compost mixture (BYWC), and AN were compared. The biosolids contained 31, 18, and 2.9 g kg? 1 total N, P, and K, respectively. The BYWC mixture contained 8.8, 6.1, and 3.4 g kg? 1 of total N, P, and K, respectively. Biosolids were applied at 10 Mg ha? 1 (310 kg N ha? 1), BYWC was applied at 58 Mg ha? 1 (510 kg N ha? 1), and AN up to 224 kg N ha? 1. None of the soil treatments increased soybean grain yield or forage yield although AN slightly increased forage N concentration in 2003.  相似文献   

8.
Organic amendments recycle nutrients, but N2O emissions are both environmental and agronomic concerns. We conducted a 4-year field experiment to determine no-till barley (Hordeum vulgare L.) yield and nutrient uptake and soil N2O emissions following a single application of six amendment treatments: (1) no amendment (Check); (2) synthetic N fertilizer (Fert); (3) fresh beef cattle feedlot manure (ManureF); (4) beef cattle feedlot manure compost (CompostR); (5) beef cattle feedlot manure composted with cattle mortalities (CompostM); and (6) separated solids from anaerobically digested cattle feedlot manure (ADM). Barley grown in Year 1 (2006), Year 2 (2007), and Year 4 (2009) (with Year 3 (2008) under fallow) had higher grain yields from ManureF (4.73 Mg ha?1) in Year 2 and ADM (6.30 Mg ha?1) in Year 4 (p < 0.05) than other treatments. The grain N and P contents were not affected (p > 0.05), but N uptake over 3 years (112.8 kg N ha?1 yr?1), and P uptake in Year 1 (19.1 kg ha?1 yr?1) and Year 2 (14.3 kg ha?1 yr?1) from ManureF, were higher (p < 0.05×) than other treatments. The cumulative N2O emissions from ManureF in Year 1 (1.488 kg N ha?1) and from ADM in Year 2 (1.072 kg N ha?1) were higher (p < 0.05) than other treatments while the fraction of applied N emitted as N2O was small (0.00 to 0.79%) and not affected by treatment. However, the percentages of applied N emitted as N2O from compost and ADM were similar to synthetic fertilizer and livestock manure.  相似文献   

9.
Repeated application of phosphorus (P) as superphosphate either alone or in conjunction with cattle manure and fertilizer N may affect the P balance and the forms and distribution of P in soil. During 7 years, we monitored 0.5 M NaHCO3 extractable P (Olsen‐P) and determined the changes in soil inorganic P (Pi) and organic P (Po) caused by a yearly dose of 52 kg P ha—1 as superphosphate and different levels of cattle manure and fertilizer N application in a soybean‐wheat system on Vertisol. In general, the contents of Olsen‐P increased with conjunctive use of cattle manure. However, increasing rate of fertilizer nitrogen (N) reduced the Olsen‐P due to larger P exploitation by crops. The average amount of fertilizer P required to increase Olsen‐P by 1 mg kg—1 was 10.5 kg ha—1 without manure and application of 8 t manure reduced it to 8.3 kg ha—1. Fertilizer P in excess of crop removal accumulated in labile (NaHCO3‐Pi and Po) and moderately labile (NaOH‐Pi and Po) fractions linearly and manure application enhanced accumulation of Po. The P recovered as sum of different fractions varied from 91.5 to 98.7% of total P (acid digested, Pt). Excess fertilizer P application in presence of manure led to increased levels of Olsen‐P in both topsoil and subsoil. In accordance, the recovery of Pt from the 0—15 cm layer was slightly less than the theoretical P (P added + change in soil P — P removed by crops) confirming that some of the topsoil P may have migrated to the subsoil. The P fractions were significantly correlated with apparent P balance and acted as sink for fertilizer P.  相似文献   

10.
To efficiently use nitrogen (N) while protecting water quality, one must know how a second-year crop, without further N fertilization, responds in years following a manure application. In an Idaho field study of winter wheat (Triticum aestivum L.) following organically fertilized sugarbeet (Beta vulgaris L.), we determined the residual (second-year) effects of fall-applied solid dairy manure, either stockpiled or composted, on wheat yield, biomass N, protein, and grain N removal. Along with a no-N control and urea (202 kg N ha?1), first-year treatments included compost (218 and 435 kg estimated available N ha?1) and manure (140 and 280 kg available N ha?1). All materials were incorporated into a Greenleaf silt loam (Xeric Calciargid) at Parma in fall 2002 and 2003 prior to planting first-year sugarbeet. Second-year wheat grain yield was similar among urea and organic N sources that applied optimal amounts of plant-available N to the preceding year’s sugarbeet, thus revealing no measurable second-year advantage for organic over conventional N sources. Both organic amendments applied at high rates to the preceding year’s sugarbeet produced greater wheat yields (compost in 2004 and manure in 2005) than urea applied at optimal N rates. On average, second-year wheat biomass took up 49% of the inorganic N remaining in organically fertilized soil after sugarbeet harvest. Applying compost or manure at greater than optimum rates for sugarbeet may increase second-year wheat yield but increase N losses as well.

Abbreviations CNS, carbon–nitrogen–sulfur  相似文献   

11.
Phosphorus (P) inputs (wet deposition and fertilizer P) and outputs (animal product and drainflow) were studied on reseeded grazed grassland swards receiving different nitrogen (N) inputs (100–500 kg N ha?1 year?1) for 10 years (March 1989–February 1999), at an experimental site in Northern Ireland. All plots received the same maintenance application of P fertilizer (8.5 kg P ha?1 year?1) to meet grass requirements, to minimize the P surplus and to quantify the impact on P losses to land drainage water. The annual flow weighted mean total P concentrations in drainflow ranged from 187 to 273 μg P litre?1 and were well above the concentrations believed to trigger eutrophication. Annual total P lost to drainage water ranged from 0.28 to 1.73 kg P ha?1, but was unaffected by N input. As the average annual P balance was zero, there was no significant change in total P in the top 15 cm of soil. However, there was a highly significant redistribution of P to the soil surface from the 10–15 cm depth, possibly as a result of root acquisition and earthworm activity. Total P in the top 5 cm of soil increased from 0.85 g kg?1 to 1.04 g kg?1, over the 10 years of the study, despite there being no net P input. This P accumulation in the top few cm of soil is likely to exacerbate P losses in overland flow and make improvements in water quality difficult to achieve.  相似文献   

12.
Treatment of a soil under permanent pasture with carbaryl (a broad spectrum carbamate biocide) resulted in a 2-fold increase in the volume of surface runoff. This was attributed to a 3-fold reduction in infiltration rate as a result of litter accumulation at the soil surface in the absence of surface-casting earthworm activity. The amounts of dissolved inorganic P (DIP), NH+4-N, and NO?3-N in surface runoff from pasture treated with carbaryl (1.18, 9.53 and 4.25 kg ha?1 yr?1, respectively) were appreciably greater than those from untreated pasture (0.31, 1.63 and 0.52 kg ha?1 yr?1). This was attributed to the large amounts of DIP, NH+4-N, and NO?13-N released from decomposing litter. Following incubation at 4°C for 18 days the release of DIP, NH+4-N and NO?3-N from litter was 160, 1600 and 950 μg g?1, respectively. Losses of particulate P and sediment in surface runoff were lower in the absence (0.31 and 290 kg ha?1 yr?1, respectively) than in the presence (0.56 and 1120 kg ha? yr?1) of surface casts, pointing to the importance of surface casts as a source of sediment. Surface casts accounted for 45 and 75%, respectively, of the annual loading of particulate P and sediment in surface runoff. Nevertheless, the total loss in surface runoff of P and N forms was increased substantially when the production of earthworm casts was eliminated  相似文献   

13.
In order to explore the responses of soil enzyme activities and microbial community compositions to long-term nitrogen (N) addition in both bulk soil and microaggregate of chestnut soil, we conducted a 7-year urea addition experiment with N treatments at 6 levels (0, 56, 112, 224, 392 and 560 kg N ha–1 yr–1) in a temperate steppe of Inner Mongolia in China. Soil properties and the activities of four enzymes involved in carbon (C), nitrogen (N) and phosphorus (P) cycling were measured in both bulk soil and microaggregate, and phospholipid fatty acids (PLFAs) were measured in bulk soil. The results indicated that: 1) in bulk soil, N addition significantly decreased β-1,4-glucosidase (BG) and leucine aminopeptidase (LAP) activities at the treatment amounts of 224, 392 and 560 kg N ha–1 yr–1, and obviously suppressed β-1,4-N-acetylglucosaminidase (NAG) activity at the treatment amount of 560 kg N ha–1 yr–1. N addition enhanced total PLFAs (totPLFAs) and bacterial PLFAs (bacPLFAs) at the treatment amounts of 392 and 560 kg N ha–1 yr–1, respectively, but fungal PLFAs showed no response to N addition. The activities of BG, NAG and LAP were positively correlated with soil pH, but negatively correlated with the concentration of NH 4+-N; 2) in microaggregate (53–250 μm), the activities of BG, NAG and AP showed no response to increased addition of N, but the significantly decreased LAP activity was observed at the treatment amount of 392 kg N ha–1 yr–1. These results suggested that enzyme activities were more sensitive to N addition than PLFA biomarkers in soil, and LAP activity in microaggregate may be a good indicator for evaluating N cycle response to long-term N addition.  相似文献   

14.
In this study, 24 years (1990–2013) of data from a long-term experiment, in Stillwater, Oklahoma (OK), were used to determine the effect of beef manure on soil test phosphorus (STP), soil organic carbon (SOC), and winter wheat (Triticum aestivum L.) yield. Beef manure was applied every 4 years at a rate of 269 kg nitrogen (N) ha?1, while inorganic fertilizers were applied annually at 67 kg N ha?1, 14.6 kg phosphorus (P) ha?1, and 27.8 kg potassium (K) ha?1 for N, P, and K, respectively. Averaged across years, application of beef manure, and inorganic P maintained STP above 38 mg kg?1 of Mehlich-3 extractable P, a level that is far beyond crop requirements. A more rapid decline in SOC was observed in the check plot compared to the manure-treated plot. This study shows that the application of animal manure is a viable option to maintaining SOC levels, while also optimizing grain yield.  相似文献   

15.
In this research, a sequential fractionation procedure coupled with enzyme hydrolysis was used to categorize the phosphorus (P) forms of 18 manure samples collected from in-barn composted bedded pack (beef manure), anaerobic digestion with liquid–solid separation (dairy manure), and liquid–solid separation systems (dairy manure). This research also determined the effects of those P forms on the increase in soil test P (STP) of five soil series. The soils used had initial Bray-1 P ranging from 16 to 43 mg P kg?1. Total dry-ash P (Pt) of the manures ranged from 1.4 to 15.0 g P kg?1; total inorganic P (Pit) accounted for 20 to 81 % of Pt; and enzymatically hydrolysable P (Pet) accounted for 5 to 26 % of Pt. Liquid–solid separation tended to concentrate the manure P in the liquid fractions. In contrast, anaerobic digestion did not affect the manure P distribution compared with the undigested raw manure from the same system. No differences in P distribution were found for the compost bedded pack manure. In the soil incubation study, manure and fertilizer were applied at 40 mg total P kg?1. Separated liquid manure from two systems tended to increase STP more than the separated solid manures from the same systems. Although anaerobic digestion modified some of the physical and chemical properties of the treated manures, it did not clearly impact how digested manure increased STP compared with the raw manures. Overall, the increase in STP after treated manure application was found to be a function of soil clay content and manure Pit?+?Pet applied.  相似文献   

16.
Abstract

Sustainable food production includes mitigating environmental pollution and avoiding unnecessary use of non-renewable mineral phosphate resources. Efficient phosphorus (P) utilization from organic wastes is crucial for alternative P sources to be adopted as fertilizers. There must be predictable plant responses in terms of P uptake and plant growth. An 18-week pot experiment was conducted to assess corn (Zea mays L.) plant growth, P uptake, soil test P and P fractionation in response to application of organic P fertilizer versus inorganic P fertilizer in five soils. Fertilizers were applied at a single P rate using: mono-ammonium phosphate, anaerobically digested dairy manure, composted chicken manure, vegetable compost and a no-P control. Five soils used varied in soil texture and pH. Corn biomass and tissue P concentrations were different among P fertilizers in two soils (Warden and Quincy), with greater shoot biomass for composted chicken manure and higher tissue P concentration for MAP. Plant dry biomass ranged from highest to lowest with fertilizer treatment as follows: composted chicken manure?>?AD dairy?=?MAP?=?no-P control?=?vegetable compost. Soil test P was higher in soils with any P fertilizer treatment versus the no-P control. The loosely bound and soluble P (2.7?mg P kg?1) accounted for the smallest pool of inorganic P fractions, followed by iron bound P (13.7?mg P kg?1), aluminum bound P (43.4?mg P kg?1) and reductant soluble P (67.9?mg P kg?1) while calcium bound P (584.6?mg P kg?1) represented the largest pool of inorganic P.  相似文献   

17.
A simple, sensitive method developed for the analysis of geostandards was used to measure the accumulation of Cd in soils from superphosphate applied annually to grass-land and arable soils for many years. Rates of application were equivalent to 33 kg P and 5 g Cd ha?1 yr?1 for 95 yr in three experiments in England and to 37 kg P and 20 g Cd ha?1 yr ?1 for 30 yr in one experiment in New Zealand. Very little Cd accumulated in the surface horizons (0–22.5cm) of either of the arable soils from England; about one-quarter of the applied Cd was detected in the sub-soil (22.5–45.0 cm) of one experiment (Broadbalk) but none in the second (Barnfield). About one-half of the applied Cd was retained in the 0–22.5 cm horizon of grassland soils from both England and New Zealand. The light (<2.2 gcm?3) organic-rich fraction of Park Grass soil from Éngland contained about three times as much Cd as the heavier, mineral-rich fraction. This suggests that when Cd is incorporated into organic matter its mobility is decreased and soil pH then has smaller effects on its mobility. Uptake of Cd by grass-clover pasture in New Zealand averaged only 0.4 g Cd ha?1 yr?1 or 2% of the amount applied.  相似文献   

18.
Abstract

A study was conducted in the Department of Environmental Sciences, Tamil Nadu Agricultural University, Coimbatore, India, to transform the normal compost into bioactive compost, which has multiple benefits to the crop system. The key players in this transformation process were Azotobacter sp., Pseudomonas sp., Phosphobacteria sp. and the waste materials like poultry litter and spent wash. This enrichment process increases both the quality and nutrient content of the municipal solid waste compost significantly. A study was carried out to evaluate the effect of application of different levels of enriched municipal solid waste compost on the availability of the macronutrient content to the rice field soil. The effect of enriched compost on soil available nutrients was significant. The soil ammonium nitrogen and soil nitrate nitrogen content was found to be high in the plots where the enriched compost was applied along with inorganic fertilizer with the values of 38.87 mg kg?1 and 32.87 mg kg?1, respectively. In addition, the availability decreased towards crop growth. The soil available P and K were also increased with enriched compost application to about 22.46 kg ha?1 and 647 kg ha?1 compared with control values of 19.44 kg ha?1 and 518 kg ha?1, respectively. Both phosphorus and potassium content decreased towards advancement of crop growth.  相似文献   

19.
This study investigated the long-term effects of different composts (urban organic waste compost (OWC), green waste compost (GWC), cattle manure compost (MC) and sewage sludge compost (SSC)) compared to mineral fertilisation on a loamy silt Cambisol, after a 7-year start-up period. The compost application rate was 175 kg N ha?1, with 80 kg mineral N ha?1 and without. Soil characteristics (soil organic carbon (SOC), carbon-to-nitrogen (C/N) ratio and soil pH), nutrients (nitrogen (N), phosphorous (P) and potassium (K)) and crop yields were investigated between 1998 and 2012. SOC concentrations were increased by compost applications, being highest in the SSC treatments, as for soil pH. N contents were significantly higher with compost amendments compared to mineral fertilisation. The highest calcium-acetate-lactate (CAL)-extractable P concentrations were measured in the SSC treatments, and the highest CAL-extractable K concentrations in the MC treatments. Yields after compost amendment for winter barley and spring wheat were similar to 40 kg mineral N ha?1 alone, whereas maize had comparable yields to 80 kg mineral N ha?1 alone. We conclude that compost amendment improves soil quality, but that the overall carbon (C) and N cycling merits more detailed investigation.  相似文献   

20.
The relationship between yields and the Bray I–extractable phosphorous (P) was studied on a 21-year-old experiment with maize (Zea mays) in an acid Ultisol of West Africa. Chemical fertilizer alone decreased soil organic carbon and increased soil acidity. The applications of cattle manure maintained the highest level of soil organic carbon, and soil acidity did not decrease. The extractable P varied from 4 mg kg–1 (original soil) to 25 mg P ha–1 in fertilized treatments. A linear correlation (P < 0.01; r = 0.85) was found between soil extractable P and maize yields. Each unit increase in soil extractable P tallied with 16% of yield increase. A critical limit of soil extractable P of 15.6 mg P kg–1 was identified. Below this limit, maize produced less than 2500 kg ha–1, 80% of the maximum yield. Responses to P fertilizer were not expected above this limit.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号