首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

The profile distribution of total, DTPA‐ and 0.1 N HC1‐extractable Zn was determined in 11 Nigerian soil profiles formed on various parent Materials including the coastal plain sands, shales, basalt, granite and banded gneiss.

The total content ranged from 9 to 84 ppm. Generally soils developed on igneous rocks contained more Zn than those on sedimenatary deposits. Among the soils on sedimentary rocks, those on shale had more total Zn than those on sandstones. Total Zn was weakly correlated with organic matter but strongly associated vith clay content and free oxides of iron and manganese.

The amounts of Zn extracted by DTPA and 0.1 N HC1 ranged from 0.01 to 10.98 and from 0.23 to 6.25 ppm, respectively. The dilute acid generally removed more Zn from the soils than did the DTPA. The amounts extracted generally decreased vith depth especially vith DTFA extractant. Soils developed on basalt and shales contained the highest amounts of 0.1 N HCl‐extractable Zn while those on basement complex rocks gave the highest values of DTPA‐extractable Zn. Extractable Zn from soils on coastal plain sands remained relatively lev. The extractable Zn was more associated vith organic matter than vith clay content.  相似文献   

2.
Abstract

Zinc availability was studied using five soils from Hawaii which had histories of massive phosphorus applications. Heavy phosphate fertilization usually increased extractable Zn, irrespective of the extractant used. The extra extractable Zn associated with the added P probably came from Zn as an accessory element in the fertilizer. Treble superphosphate commonly used in Hawaii contains about 1400 ppm Zn. The Zn content of phosphate fertilizers must be considered before making statements about the effect of fertilizer P on Zn solubility and availability in soils.

Two solutions (0.1N HCl and 0.005M DTPA) were compared as Zn extractants for Hawaii soils. DTPA extracted less Zn than 0.1N HCl. Zinc extracted by repeated HCl treatment was more closely related to the labile Zn pool (E‐values and L‐values) than was DTPA‐extractable Zn. The results suggest that 0.1N HCl extractable Zn, Zn E‐value and Zn L‐value measured the quantity of a single fraction of soil Zn.

Repeated extraction of soil with 0.1N HCl seems to be a suitable procedure for evaluating the Zn status of acid, highly weathered soils of Hawaii.  相似文献   

3.
Abstract

The available (0.1M HCl‐ and DTPA‐extractable) and total forms of copper (Cu) and zinc (Zn) were determined in soils developed on various groups of basalts, namely, the Newer, Older, Lateritized‐Older, and Biu (undifferentiated) basalts. The HCl‐, DTPA‐extractable, and total Cu in the soils ranged from 0.40 to 5.60, 0.15 to 2.64, and 15 to 65 mg Cu kg‐1, respectively, with corresponding means values of 2.06, 0.89, and 41 mg Cu kg‐1. Similarly, HCl‐, DTPA‐extractable, and total Zn varied from 3.00 to 6.20, 0.14 to 2.15, and 25 to 265 mg Zn kg‐1 with respective mean values of 4.65, 0.52, and 89 mg Zn kg‐1. The soils were high in the total forms of Cu and Zn, generally sufficient in available Cu, but deficient in available Zn. Both the total and available forms of Cu and Zn were little correlated with soil properties in soils of the Lateritized‐Older and Biu basalts, while only the available forms were related mainly to silt, clay, pH, and organic carbon in soils of the Newer and Older basalts. Furthermore, the available forms were correlated with each other, but not with the total forms.  相似文献   

4.
Desilication and leaching are processes that accompany plinthilization, leading to nutrient depletion. Soils from 12 profiles in a plinthitic landscape were analyzed for extractable micronutrients [iron (Fe), zinc (Zn), manganese (Mn), and copper (Cu)]. Soils of the landscape from crestal to lower‐slope position contain plinthite in the profile, whereas those of the valley floor are devoid of plinthite. The micronutrients were extracted using diethylenetriaminepentaacetic acid (DTPA) and 0.1 M hydrochloric acid (HCl). The results showed that 0.1 M HCl extracted more of the micronutrients than DTPA. The DTPA‐extractable Fe, Zn, Mn, and Cu in all the soils ranged from 1.15 to 12.44 (mean, 3.69); 0.71 to 2.75 (mean, 1.86); trace 12.44 (mean, 3.35), and trace 3.76 (mean, 0.63) mg kg?1, respectively. The DTPA‐extractable micronutrient contents were generally greater than the critical available level (4.5 mg kg?1 for Fe, 0.8 mg kg?1 for Zn, 1.0 mg kg?1 for Mn, and 0.2 mg kg?1 for Cu). The 0.1 M HCl‐extractable micronutrients in the landscape ranged from 8.00 to 30.40 (mean, 15.19); 0.30 to 6.49 (mean, 1.35); 1.00 to 27.20 (mean, 7.74); and 0.26 to 15.0 (mean, 2.77) mg kg?1 for Fe, Zn, Mn, and Cu, respectively. Both DTPA‐ and 0.1 M HCl‐extractable micronutrients were generally lower in the plinthitic horizons than in the nonplinthitic horizons and higher in the Ap than the subsoil horizons. Correlation analysis showed a significant relationship between DTPA‐Fe and DTPA‐Mn, Cu, and organic carbon (r = 0.913**, 0.411**, and 0.385**). There was a significant and positive relationship between 0.1 M HCl‐extractable Mn and organic carbon (C), total nitrogen (N), and available phosphorus (P) (r = 0.413**, 0.337**, and 0.350**, respectively).  相似文献   

5.
Abstract

The contents of 0.1 M HCl and DTPA extractable and total iron (Fe) and manganese (Mn) were determined in soil profiles developed on four groups of basaltic parent materials, namely, the Newer‐, Older‐, Lateritized‐Older‐, and Biu‐basalts. HCl‐and DTPA‐extractable and total Fe in the soils ranged from 15.0 to 66.3 mg/kg, 1.1 to 26. 7 mg/kg, and 4.50 to 10.50%, respectively, with corresponding means of 37.5 mg/kg, 9.5 mg/kg, and 7.33%. The corresponding forms of Mn ranged from 1.1 to 89.0 (mean, 39.8) mg/kg, 0.3 to 114.7 (mean, 24.3) mg/kg and 34 to 1010 (mean, 346) mg/kg, respectively. The soils were high in total Fe and Mn and sufficient in the available forms (HCl‐and DTPA‐extractable forms). Total Fe and Mn were neither related to the available forms or to soil properties tested. The available forms were, however, related one with another and largely associated with organic matter.  相似文献   

6.
Abstract

An Investigation was conducted to determine the content and distribution of total and DTPA‐extractable Zn in the genetic horizons of 72 agriculturally important soils from the six major mineral soil areas in Louisiana.

The concentration of total Zn appeared to vary more with the clay constituents of the soils and the amount of the element in the parent materials than with soil depth. The majority of the soils had the largest amounts of total Zn in the subsurface horizons. The range in total Zn for all soils and horizons was from 7.0 to 150.0 ppm.

The DTPA‐extractable Zn in all of the soils and horizons ranged from 0.08 to 4.22 ppm. In the majority of the soil profiles the highest concentration of extractable Zn was in the surface horizons. There was a decrease in the extractable Zn with increasing soil depth. The alluvial soils along the Ouachita and Mississippi Rivers, and the Mississippi Terrace soil areas contained relatively large amounts of DTPA‐extractable Zn.

In some soils the extractable Zn significantly correlated with total Zn. There was also a close relationship between extractable Zn and organic matter content, especially in the Ap horizons.  相似文献   

7.
Abstract

Alfisols, Vertisols, Inceptisols, Aridisols, Mollisols, and Entisols were sampled (0–30 cm) from 32 locations across Ethiopia. The soils were analyzed for copper (Cu), zinc (Zn), manganese (Mn), and iron (Fe) contents using 0.005 M diethylene triamine pentaacetic acid (DTPA), 0.05 M hydrochloric acid (HC1), and 0.02 M ethylene diamine tetraacetic acid (EDTA) extractants. EDTA extracted more of each micronutrient than DTPA, which extracted greater amounts than HC1. The quantities of EDTA and DTPA‐extractable micronutrients were significantly correlated, and were in the order: Mn>Fe>Cu>Zn. The order of HCl‐extractable micronutrients was Mn>Fe>Zn>Cu. Micronutrient contents of Mollisols, Vertisols, and Alfisols were usually greater than those of the other soils, and Entisols usually had the lowest micronutrient contents. The contents were mostly positively correlated with clay and Fe2O3 contents, but negatively correlated with soil pH and A12O3contents. While comparison of DTPA‐ and EDTA‐extractable micronutrients with critical levels showed that most soils had adequate amounts of the micronutrients for crops, the amounts extracted by HC1 were below critical levels in most soils. Since the critical levels that were used in the comparisons were not established in Ethiopia, calibration of the soil contents of these micronutrients with crops grown in Ethiopia is required to identify the most suitable extractant(s).  相似文献   

8.
Profiles of semi-arid-zone soils in Punjab, northwestern India, were investigated for different forms of copper (Cu), including total Cu, diethylenetriaminepentaacetic acid (DTPA)–extractable Cu, soil solution plus exchangeable Cu, Cu adsorbed onto inorganic sites, Cu bound by organic sites, and Cu adsorbed onto oxide surfaces. When all soils were considered, total Cu content ranged from 7 to 37 mg kg?1, while DTPA-extractable and soil solution plus exchangeable Cu contents ranged from 0.30 to 3.26 mg kg?1 and from 0.02 to 0.43 mg kg?1, respectively. Copper adsorbed onto inorganic sites ranged from 0.62 to 2.6 mg kg?1 and that onto oxide surfaces ranged from 2.0 to 13.2 mg kg?1. The Cu bound by organic sites ranged from 1.2 to 12.2 mg kg?1. The magnitudes of different forms of Cu in soils did not exhibit any consistent pattern of distribution. Organic matter and size fractions (clay and silt) had a strong influence on the distribution of different forms of Cu. The content of all forms of Cu was generally greater in the fine-textured Alfisols and Inceptisols than coarse-textured Entisols. Soil solution plus exchangeable Cu, Cu held onto organic sites, and and Cu adsorbed onto inorganic sites (crystalline) had significant positive correlations with organic carbon and silt contents.The DTPA Cu was positively correlated with organic carbon, silt, and clay contents. Total Cu content strongly correlated with silt and clay contents of soils. Among the forms, Cu held on the organic site, water soluble + exchangeable Cu, and Cu adsorbed onto oxide surface were positively correlated with DTPA-extractable Cu. The DTPA-extractable Cu and soil solution plus exchangeable Cu seems to be good indices of Cu availability in soils and can be used for correction of Cu deficiency in the soils of the region. The uptake of Cu was greater in fine-textured Inceptisols and Alfisols than coarse-textured Entisols. Among the different forms only DTPA-extractable Cu was positively correlated with total uptake of Cu.  相似文献   

9.
Abstract

Vertisols of India are developed over isohyets of 600 to 1500 mm, and their chemical cycles are set by drainage, landforms, and particle size, which results in variable pedogenic development within the otherwise homogeneous soils. The purpose of this study was to identify pedogenic processes in the distribution of total and DTPA‐extractable zinc (Zn), copper (Cu), manganese (Mn), and iron (Fe). The soils are developed over basaltic parent material of Cretaceous age. Soil samples were drawn from genetic horizons of the 13 benchmark profiles and analyzed by using HF–HClO4 acid for total and DTPA extraction. Correlation coefficients were calculated taking all samples together. The total concentration varied from 24 to 102 mg kg?1 for Zn, 21 to 148 mg kg?1 for Cu, 387 to 1396 mg kg?1 for Mn, and 2.36 to 9.50% for Fe. Their variability was proisotropic and haplodized, and their concentrations increased with advancing isohyets. Within the isohyets, hindrance in drainage caused retention of Zn and Cu but loss of Fe. The piedmont soils had more Fe than alluvium soils. The spatial distribution of total contents of Zn, Cu, and Fe was influenced by the pedogenic processes associated with Haplusterts but not with provenance materials. Surface concentrations of the elements by biotic lifting and/or harvest removal were negated by the pedoturbation that further contributed to the irregular distribution of the elements in the profiles. Total Zn and total Cu had positive coefficients of correlations with coarse clay, whereas total Mn and total Fe were positively correlated with fine clay. The DTPA‐extractable forms were functions of isohyets and drainage and showed association with organic carbon content and coarse clay.  相似文献   

10.
Abstract

To examine the distribution of DTPA‐extractable Fe, Zn, and Cu in clay, silt, and sand fractions; surface soils were collected from cultivated fields of North Dakota, South Dakota, West Virginia, Iowa, Ohio, and Illinois. Clay, silt, and sand fractions were separated after sonic dispersion of soil water suspension and analyzed for DTPA‐extractable Fe, Zn, and Cu. In general, clay had the highest and sand the lowest amount of DTPA‐extractable metals. Consequently, clay had the highest and sand the lowest intensity and capacity factors for these metals since DTPA micronutrient test measures both these factors.  相似文献   

11.
Field experiments were conducted on rice (cv ‘IET 4094’) in an Aeric endoaquept (pH 7.2) to evaluate the various zinc (Zn) extractants in lowland rice soil under the influence of Zn sulfate and chelated Zn. The diethylenetriaminepentaacetic acid (DTPA), 0.1 N hydrochloric acid (HCl), and 0.05 N HCl‐extractable Zn concentrations in soil increased initially up to the Z29 stage of crop growth when Zn was applied as a single basal source, being greater with Zn ethylenediaminetetraacetic acid (Zn‐EDTA) compared to zinc sulfate (ZnSO4) application. Among the various extractants, the performance of 0.1 N HCl in extracting Zn was better than the other two extractants and followed the trend 0.1 N HCl > 0.005 M DTPA > 0.05 N HCl. The greatest increase in grain and straw yield of rice was 37.8 and 20.4%, respectively, over the control in the treatment T7 (1 kg Zn ha?1 as Zn‐EDTA at basal).  相似文献   

12.
Abstract

A study was carried out to investigate the status of four micronutrients, iron (Fe), copper (Cu), manganese (Mn), and zinc (Zn), and five other trace elements, cobalt (Co), chromium (Cr), nickel (Ni), lead (Pb), and strontium (Sr), in paddy soils of Bangladesh. Soil samples were digested by hydrofluoric acid (HF)‐nitric acid (HNO3)‐perchloric acid (HClO4) for determination of total contents of the nine elements, while DTPA, ASI and 0.1 Mhydrochloric acid (HC1) methods were used for determination of available Fe, Cu, Mn, and Zn. Total trace element contents were found to vary with physiography on which soils are distributed. In general, Ganges Tidal Floodplain soils had the highest content, whereas terrace soils had the lower content. Among the soil properties examined, clay content had a good relation with total trace element contents in the topsoil, except for Sr. Based on the variation with physiography or clay content, the nine trace elements could be grouped into six groups: Cu, Fe and Zn, Pb, Co and Cr and Ni, Mn, Sr. According to the extractable levels of four micronutrients, Bangladesh paddy soils had the medium to optimum amounts of Fe and Cu, but were deficient sporadically in Mn and extensively in Zn. It was indicated that paddy soils of Bangladesh are yet to be polluted with heavy metals.  相似文献   

13.
Abstract

Relative suitability of different extraction procedures for estimating available zinc (Zn) and copper (Cu) in soils was assessed using DTPA, 0.1 N HCl, ammonium acetate+EDTA, and double acid (HCl+ H2SO4) as extractants and rice as a test crop in Neubauer experiment. The relationships between Zn concentration and uptake of Zn by rice plants and Zn extracted by the different methods showed that DTPA‐TEA, pH 7.3, could very suitably be used to assess Zn availability in soils. However, 0.1 N HCl was better for assessing the Cu availability in soils to the rice plants. Water‐soluble and exchangeable fractions of Zn and Cu had significant positive correlations with Zn and Cu concentrations, respectively obtained by all the four extractants tested. The results also showed that DTPA and ammonium acetate+EDTA extracted organically bound Zn, whereas DTPA, 0.1 N HCl and ammonium acetate+EDTA extracted organically bound Cu. Water‐soluble, exchangeable and organic matter bound fractions exhibited significant relationships with Zn and Cu concentrations, their uptake and rice dry matter yield.  相似文献   

14.
Abstract

Lowland rice plants were sampled at two growth stages and analyzed for Zn, Cu, Mn, and Fe. Most of the sites were deficient in Cu and one‐third of the sites were rated deficient in Zn. All sites were in the adequate range with respect to Mn. Many Fe values were in the excess to toxic range. Average content of micronutrient cations in rice plants was uniformly greater 30 days after the rice was transplanted than 60 days after transplanting.

Correlations between extractable Mn in lowland soils and Mn in associated rice plants were highly significant with the DTPA extractant and significant with the HCl method, both 30 and 60 days after the rice was transplanted. With HCl, extractable Fe in lowland soils was highly correlated with Fe in associated rice plants, but this relationship was not as close with the DTPA extractant.

In lowland soils, extractable Zn increased significantly and consistently with increases in Cu and Mn extracted with DTPA and HCl. Extractable Zn also increased significantly with increases in Fe when the HCl extractant was used, but not with DTPA.  相似文献   

15.
Abstract

Soil pot culture experiment was conducted on 22 soils of Balewal‐Phaguwala‐Narike (BPN) and 24 soils of Isri‐Langrian‐Narike (ILN) associations using rice (PR 106) as test crop at 0 and 7.5 ppm Zn levels. Chelating extractants 0.005M DTPA, 0.01M EDTA‐(NH4)2CO3 and 0.05M EDTA, extracted more soil Zn than double‐acid and were significantly correlated with each other as well as with soil pH and clay in BPN and only with clay in ILN soil association. Soil CaCO3 governed the double‐acid extractable Zn in these soils. Dry matter yield and Zn uptake by rice significantly increased with 7.5 ppm Zn application. The response was higher in ILN than BPN soil association, The DTPA method gave the highest correlation with Bray's yield and Zn uptake (r =0.72 and 0.55) followed by 0.05M EDTA (r ‐ 0.75 and 0.61) or EDTA‐(NH4)2CO3 (r =0.70 and 0.61). The predictability of rice yield improved from 18–27 to 27–35, 32–43, 34–44 and 51–55 percent as a result of stepwise inclusion of pH, CaCO3, organic carbon (OC) and clay respectively in the regression equation alongwith Zn extracted by chelating agents.

The critical levels of DTPA, EDTA‐(NH4)2CO3 and EDTA extractable Zn significantly differed in the two associations and were 0.69, 0.82 and 1.24 ppm in BPN and O.BC, 1.09 and 1.42 ppm in ILN soil association. Soil properties further affected the critical levels. This for DTPA available Zn was 0.80 and 1.03 ppm in soil containing less and greater than 2% CaCO3, 1.03 and 0.80 ppm in soils containing less and greater than 0.25% OC. These values for EDTA‐(NH4)2CO3 available Zn were 1.09 and 0.91 ppm Zn in soils containing less and greater than 15% clay suggesting that critical levels of Zn for each category of soil properties should be considered while making recommendations of Zn fertilization of crops.,  相似文献   

16.
Behaviour of heavy metals in soils. 1. Heavy metal mobility 158 soil samples with widely varying composition were analysed for their total, EDTA, DTPA and CaCl2 extractable contents of Cd, Zn, Mn, Cu and Pb. By means of single and multiple regressions the relations between the different heavy metal fractions and the pH, organic carbon and clay content were considered. The correlations between the total, EDTA and DTPA extractable contents are very close, whereas the CaCl2 extractable contents are not or only weakly correlated with these fractions. According to these statistical results the former fractions are considered to be the total quantity (total content) and the reactive quantity (EDTA and DTPA extractable contents) of the heavy metals, whereas the CaCl2 extractable fraction represents the mobile fraction of the heavy metals in soils. The multiple regressions show that the mobile content of heavy metals is closely correlated with each of the quantity fractions and with soil pH. In the same way the proportion of the mobile fraction (in %) of the total, EDTA and DTPA extractable heavy metal content of the soil samples is closely related to the soil pH. Hereby the proportion of the mobile content of the various elements increases in the pH range 6,5 - 3 below element-specific threshold pH values (in brackets) in the order Cd (6,5) > Mn (5,7) > Zn (5,3) > Cu (4,5) > Pb (3,5). In the pH range 6,5 - 7,5 mainly Cu and to a lesser degree also Pb show an increasing mobility due to the influence of soluble organic substances.  相似文献   

17.
Abstract

Zinc (Zn) adsorption in mollisols conformed to the linear form of Freundlich equation. The log K values were positively correlated with silt, clay, and carbonate contents and soil pH, but negatively correlated with sand content. Sequential desorption of adsorbed Zn in 0.05M Ca(NO3)2, 0.1M Mg(NO3)2, 0.005M DTPA, and 0.1M HCl revealed that weakly and specifically bound fractions of added Zn, which could easily equilibrate with soil solution, were low and decreased with silt and carbonate contents and soil pH. Weakly bound fraction increased with sand content. Strongly bound and complexed fraction of applied Zn was the maximum and increased with clay, soil organic carbon and carbonate contents and specific surface area, but decreased with sand content. The mineral bound fraction of applied Zn was intermediate and increased with silt, clay and carbonate contents, and soil pH and specific surface area. Zinc uptake due to added Zn fertilizer by rice crop (Y) negatively correlated with log K, but positively related to Zn content in the equilibrium soil extract and Zn desorbed in 0.05M Ca(NO3)2. Both log K and l/n values together explained 59.5% of the total variation in Y, while Zn content in the equilibrium soil extract, Zn desorbed in 0.05M Ca(NO3)2, 0.005M DTPA and 0.1M HCl collectively accounted 79.6% of the total variation in Y.  相似文献   

18.
Abstract

Water treatment residuals (WTR) can adsorb tremendous amounts of phosphorus (P). A soil that had biosolids applied eight times over 16 years at a rate of 6.7 Mg ha?1 y?1 contained 28 mg kg?1 ammonium–bicarbonate diethylenetriaminepentaacetic acid (AB‐DTPA), 57 mg kg?1 Olsen, 95 mg kg?1 Bray‐1, and 53 mg kg?1 Mehlich‐III extractable P. To 10 g of soil, WTRs were added at rates of 0, 0.1, 1, 2, 4, 6, 8, and 10 g, then 20 mL of distilled deionized H20 (DI) were added and the mixtures were shaken for 1 week, filtered, and analyzed for soluble (ortho‐P) and total soluble P. The soil–WTR mixtures were dried and P extracted using DI, AB‐DTPA, Olsen, Bray‐1, and Mehlich‐III. Results indicated that all methods except AB‐DTPA showed reduced extractable‐P concentrations with increasing WTR. The AB‐DTPA extractable P increased with increasing WTR rate. The water‐extractable method predicted P reduction best, followed by Bray‐1 and Mehlich‐III, and finally Olsen.  相似文献   

19.
Abstract

This study was carried out to determine if ammonium bicarbonate‐DTPA soil test (AB‐DTPA) of Soltanpour and Schwab for simultaneous extraction of P, K, Zn, Fe, Cu and Mn can be used to determine the availability index for Se. Five Mollisols from North Dakota were treated with sodium selenate and were subjected to several wetting and drying cycles. These soils were extracted with hot water and with ammonium bicarbonate‐DTPA (AB‐DTPA) solution for Se analysis. Alfalfa plants were grown in these soils in a growth chamber to determine plant uptake of Se. In addition to the above experiment, coal mine soil and overburden materials from Western Colorado were extracted and analyzed as mentioned above.

It was found that hot water and AB‐DTPA extracted approximately equal amounts of Se from Mollisols. A high degree of correlation (r =0.96) was found between Se uptake by plants and AB‐DTPA extractable Se. Extractable level of Se in treated soils was decreased with time due to change of selenate to less soluble Se forms and plant uptake of Se. An AB‐DTPA extractable Se level of over 100 ppb produced alfalfa plants containing 5 ppm or higher levels of Se that can be considered toxic to animals. Soils with about 2000 ppb of extractable Se were highly toxic to alfalfa plants and resulted in plant concentrations of over 1000 ppm of Se. The high rate of selenate (4ppm Se) was less toxic to alfalfa plants in soils of high organic matter content. This lower toxicity was accompanied with lower extractable levels of Se.

The AB‐DTPA solution extracted on the average about 31% more Se than hot water from the mine and overburden samples and was highly correlated with the latter (r =0.92). The results indicated the presence of bicarbonate‐exchangeable Se in these materials.  相似文献   

20.
Abstract

Agrostis capillaris ’Parys’, Beta vulgaris cicla ’Fordhook Giant’ (Swiss chard), Brassica oleracea ’Lion Heart’ (cabbage), Cineraria ’Miranda White’, Festiica rubra litoralis ‘Merlin’, Matthiola incana ‘Austral Apricot’ (stock), Phaseolus vulgaris ’Hawksbury Wonder’ (bean), and Polycarpaea spirosrylis (Copper Weed) were grown in pine bark‐based soilless media of pH 4.5, 5.5, and 6.5 amended with copper or zinc sulfate or composts containing high concentrations of either copper (Cu) or zinc (Zn). Growth responses ranged from none, through iron (Fe) deficiency, to symptoms of severe Cu or Zn toxicity. Correlations between growth and shoot Cu or Zn concentration on the one hand and total metal content of the medium and several measures of extractable metal content on the other were obtained. Medium pH had to be included in regressions to obtain high correlation coefficients. Total metal content and DTPA‐ and NH4OAc‐extractable metals were about equally well correlated with growth response in these experiments, but when the results were combined with those from an experiment in which sewage sludge was the source of Cu and Zn, DTPA‐and NH4OAc‐extractable metals gave better correlations than did total content.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号