首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
Abstract

Matching biosolids application rates to crop phosphorus (P) needs requires quantifying the P fertilizer replacement value of biosolids. Neutral ammonium citrate (NAC) extraction of P, used for assessing available P in mineral fertilizers, was evaluated for 35 different biosolids. Biosolids NAC‐P was not statistically different (p=0.05) from total P using strong acid digestion (EPA 3051‐P). High P recovery by NAC was attributed to dissolution of P‐containing iron (Fe)/aluminum (Al) oxides under the aggressive extracting conditions (0.88 M citrate at 65°C). Citrate effectively dissolves P‐binding Fe/Al hydrous oxides, the very components that reduce phytoavailability when biosolids are land applied. Greenhouse studies with pasture grass (Paspalum notatum Flugge) grown in P‐deficient soils amended with biosolids revealed P phytoavailability was not correlated (r2=0.10) with biosolids NAC‐P. Phytoavailability was inversely correlated (r2=0.66) with biosolids total Al+Fe content. The NAC extraction, designed for commercial fertilizers, is inappropriate for quantifying biosolids phytoavailable P.  相似文献   

2.
Abstract

The co‐disposal of papermill sludge with biosolids is seen as an alternative soil amendment to papermill sludge and inorganic fertilizer. The objectives of this study were to assess the suitability of co‐disposal of papermill sludge and biosolids by measuring changes in the soil physicochemical properties and the phytoavailability of cadmium (Cd) and zinc (Zn). Biosolids were applied with papermill sludge as an alternative source of N to inorganic fertilizers at rates calculated on the basis of C:N ratios of the amendments and common papermill sludge disposal practices. Perennial ryegrass (Lolium perenne L.) was grown on amended soils for 6 months under glasshouse conditions. The papermill sludge amendment alone increased soil pH and the rate of carbon degradation compared to the control (no amendment) and biosolid co‐disposal amendment. There was no difference in dry matter yield per pot of ryegrass between the treatments. Cadmium concentrations in plant tissue increased through the trial with the application of biosolids and papermill sludge. These findings were correlated well with the sorption properties of the soils for Cd as derived from isotherms. However, Zn uptake was unaffected by the application of the papermill sludge and biosolids.  相似文献   

3.
Negative impacts of land‐applied aluminum (Al)–rich water treatment residuals (WTRs), which have been suggested to improve soil phosphorus (P) sorption, could include excessive immobilization of plant‐available P and Al phytotoxicity. We studied the impacts of an Al‐rich WTRs on agronomic returns and plant Al concentrations in glasshouse and field studies. The glasshouse study was a 4 × 2 × 3 factorial experiment with one control in a randomized complete block design and three replicates. Four sources of P were each applied at two agronomic rate [44 kg P ha?1, P‐based rate; and 179 kg plant‐available nitrogen (PAN) ha?1, N‐based rate] to topsoil (0–15 cm) of a sandy, siliceous, hyperthermic Arenic Alaquods. Three WTR rates (0, 10, and 25 g kg?1 oven‐dry‐weight basis) were further applied, whereas the control received neither P source nor WTRs. Bahiagrass (Paspalum notatum Fluggae), ryegrass (Lolium perenne L.), and a second bahiagrass crop were continuously grown in succession for 18 months. Applied WTRs increased soil Al but not plant Al concentrations (22–80 mg Al kg?1), which fell within the normal concentration range for pasture plants. In the glasshouse, when WTRs were incorporated with the soil, bahiagrass dry matter (DM) accumulation was reduced, but ryegrass DM was not affected even at 25 g kg?1 WTR. A 2‐year field study, with same treatments but two rates of WTRs (0 and 10 g kg?1 WTR) surface applied to established bahiagrass on the same soil type (Spodosols) showed neither reduced yields nor increased plant Al phytoavailability in the WTR treatments. The studies show no increase in plant Al is associated with Al‐WTRs applied to reduce excess soil‐soluble P and P losses but plant DM accumulation may be reduced.  相似文献   

4.
The nature of organic phosphorus (Po) in animal waste and in soil is important from both plant nutrition and environmental perspectives. The objectives of this study were (1) to monitor the nature of Po in different animal wastes and biosolids using solution state 31P NMR spectroscopy and (2) to understand the nature of Po as affected by crop P removal in soil amended with different animal wastes and biosolids under greenhouse conditions. Two types of stockpiled cattle (Bos taurus) manure (CM1 and CM2), solid turkey (Meleagris gallopava) litter (TL), solid hog (Sus scrofa) manure (HM), and aerobically digested biosolids (SS) were used. Two kg of Wabash silt loam soil was amended with 0 or 150 mg P kg?1 from the P sources. Seven harvests of corn (Zea mays L.) were collected, each 35 days after sowing. Organic P was extracted with 0.4 M NaOH from soil samples collected before cropping and after the seventh harvest, as well as from each P source. 31P NMR analysis suggested that sugar phosphomonoester was present in all P sources and was the dominant constituent of both CM1 and CM2. Phosphomonoester was detected in large amounts in TL, HM, and SS. Prior to crop P removal, the application of all P sources caused the relative content of sugar phosphomonoester to be greater than the control. Crop P removal resulted in reductions in the relative content of sugar phosphodiesters and phosphodiester in CM1‐ and CM2‐amended soils, respectively. Phosphomonoester was also decreased in TL‐, HM‐, and SS‐amended soils in response to cropping.  相似文献   

5.
Summary The influence of the water regime on mineralization and immobilization of N and P was investigated in a calcareous sandy loam incubated with cattle, poultry and green manure (Sesbania aculeata), and wheat and rice straw in a pot experiment. At field capacity, N released from poultry and green manure during the first 4 weeks of incubation was 45% and 59%, respectively. During the next 12 weeks, only around 40% more organic N was mineralized from both sources. In contrast, addition of cattle manure resulted in a period of net N immobilization lasting up to 4 weeks. By the end of 16 weeks of incubation only about 19010 of the added N was mineralized. High rates of N immobilization were observed during the first 4 weeks of incubation of rice or wheat straw with C/N ratios of 78 and 85, respectively. The N mineralization kinetics of poultry and green manure and of untreated soil showed an initial fast reaction followed by a slow release of inorganic N and could be described by two simultaneous first-order reactions. Under waterlogged conditions mineralized N was lost simultaneously in significant amounts possibly through nitrification — denitrification reactions. At field capacity, the largest amount of Olsen P was accumulated in the soil amended with poultry manure, followed by cattle manure. Results from other treatments did not differ much from those of the untreated soil. About 15% of P from poultry manure was mineralized during the 1st week of incubation. In contrast to the field-capacity moisture regime, marked increases in Olsen P in the soils amended with green manure and crop residues were observed under water-logged conditions.  相似文献   

6.
Phosphorus (P) is a non-renewable resource highlighting the significance of developing and using alternative P sources for a sustainable agriculture. The work aims to compare the effects of different organic amendments (OA) and a mineral P fertiliser as reference on P use efficiency by the crop, and on P losses to runoff waters and eroded sediments. A two-year field trial was conducted in a Dystric Regosol with Lolium sp. Treatments were: cattle manure compost (CM), solid fraction of swine (SS) and duck (DS) slurries and triple superphosphate (TSP), each applied at 50 kg P ha?1 year?1. Olsen P (mg P kg?1) increased from ≈ 19 at the beginning to ≈ 30 (TSP, CM), 45 (SS) and 62 (DS) after the experiment. Most of applied P remained in soil, between 92% (SS) and 96% (TSP), plant uptake ranged from 5% (CM) to 3.5% (TSP) and total P loss in runoff and sediments ranged between 0.2% (CM) and 4% (SS). OA increased P-use efficiency by the ryegrass crop compared with mineral P fertilizer. Composted cattle manure showed the best agronomic and environmental behaviour, simultaneously increasing P-use efficiency and decreasing P losses by runoff and erosion.  相似文献   

7.
The revitalisation of wild vegetables by consuming and cultivating them in home gardens is one of the strategies that agriculturalists have recently identified to combat food insecurity. However, data on mineral uptake with maturity are not available for a larger majority of wild vegetables. S. nigrum, one of the popular wild vegetables consumed in the Eastern Cape Province of South Africa, was cultivated both on the field and glasshouse to gain a better understanding of the uptake of some macrominerals as the plant matures. Five treatments (control; 100 kg N/ha; 8.13 t manure/ha; 100 kg N/ha + 8.13 t manure/ha and 50 kg N/ha + 4.07 t manure/ha) were set up in a Randomised Complete Block Design in both trials. The data were subjected to analysis of variance using MINITAB statistical software package. K (%) ranged between 3.11–6.98 in the glasshouse and 3.88–6.98 on the field; Ca (%) between 1.23–3.72 in the glasshouse and 1.39–3.98 on the field; Mg (%) between 0.31–0.93 in the glasshouse and 0.48–0.82 on the field; P (mg/kg) between 0.23–0.80 in the glasshouse and 0.29–0.77 on the field and Na (mg/kg) ranged between 749–3070 in the glasshouse and 187–3070 on the field. The application of 50 kg N/ha + 4.07 t manure/ha increased the uptake of a majority of the minerals. K, P and Na decreased with maturity while Ca increased and Mg varied. Although the current results indicate that for K, P and Na nutritional interventions, the leaves of S. nigrum are best harvested during the early phase of growth and the final phase for Ca, the concentration of these minerals has the potential to supply sufficient quantities of the minerals in human physiology at all stages of the plant's growth. This wild vegetable is therefore recommended for both consumption and cultivation.  相似文献   

8.
ABSTRACT

In order to reduce bulkiness and concentrate its nutrients, manures were burnt to ashes, and the effect of manures and their ashes on soil phosphorus fractions and maize performance in laboratory incubation, screenhouse, and field experiments was evaluated. Treatments were control, dried poultry manure (DPM), poultry manure ash, dried cattle manure (DCM), cattle manure ash (CMA), dried goat manure, goat manure ash and NPK 15-15-15, each applied at 120 kg P ha?1. Periodic data were taken from soil P fractions, maize yield, and P uptake. Results showed that manures and their ashes increased soil P fractions in incubation, screenhouse, and field experiments. Available P and Ca-P increased with application of DPM while CMA only increased labile P, Al-P, and Fe-P at later weeks. Dry matter yield and P uptake increased with the application of manures and ashes while available P was positively correlated with P uptake. The impact of manure ashes was comparable to manures, hence recommended for use as alternatives, thereby getting rid of the problems of manure bulkiness and offensive odors.  相似文献   

9.
Abstract

Two lysimeter experiments were conducted to evaluate the impacts of biosolids and drinking water treatment residual nanoparticles (nWTRs) on phosphorus and aluminum phytoavailability and yield of corn plants. Two consecutive experiments were conducted with different application rates of biosolids (0% and 3%) and nWTRs (0%, 0.1%, 0.2%, and 0.3%). The results revealed that the total biomass production (grain plus stover) increased significantly (p?<?.05) as a result of nWTRs application at 0.1% rate. Application of nWTRs to biosolids-treated soil slightly decreased yield at 0.2% and 0.3% application rates. The best combination ratio between nWTRs and biosolids at which high corn yield is 0.1% nWTRs to 3% biosolids. Application of 3% biosolids significantly increased bioavailable P in the studied soil, but application of 0.3% nWTRs significantly decreased the bioavailable P concentrations in soil in the two seasons of cultivation. Application of nWTRs at 0.1% and 0.2% rates decreased soil pH in the soil treated with 3% biosolids in first and second seasons of cultivation in comparison with control treatment. The application of nWTRs greatly and significantly (p?<?.05) increased the water-holding capacity of studied soil treated with and without biosolids.  相似文献   

10.
An experiment was conducted to investigate the effects of integrated nitrogen (N) management on soil fertility and crop productivity. Application of N sources in different proportions significantly (P ≤ 0.05) enhanced soil total N, organic matter, grain N uptake, straw N uptake, and grain yield. Maximum grain yield, total soil N (%), and organic matter (%) were recorded from the treatment of poultry manure as compared with other sole N sources. Among integrated application of N sources, 25% poultry manure + 75% mineral N source produced the greatest grain yield. Maximum total soil N and organic matter were observed in the combined application of 75% poultry manure + 25% mineral N. Maximum grain N and straw N uptake was recorded from the treatment applied with farmyard manure as sole N source. However, among integrated application of N sources, 25% poultry manure + 75% mineral N source resulted in the greatest grain N and straw N uptake.  相似文献   

11.
Improving phosphorus (P) fertility is challenging in tropical soils because of the fixation of P by soil components. The trial investigated the effect of the sequential application of poultry manure extract (tea) and P fertilizer on maize agronomy and P uptake, through screen house and field experiments. Results indicated that poultry manure tea is rich in nutrients but low in P and could be applied with phosphorus fertilizer to enhance P availability and reduce fixation. Application of P before manure tea produced taller maize plant on the field and the highest P uptake in the screen house and on the field. Manure tea also increased maize dry matter and grain yield. Combined application of poultry manure tea and P fertilizer had positive complementary and synergistic effects. It was concluded that manure tea enhances P availability and reduces P fixation by soil aluminum (Al) and iron (Fe) oxides irrespective of the sequence of application.  相似文献   

12.
A glasshouse study, using soil collected from two sites, was undertaken to compare how 30‐day‐old seedlings of canola (Brassica napus) and wheat (Triticum aestivum) utilized phosphorus (P) from freshly‐applied (current) triple superphosphate (TSP), and TSP and rock phosphate [North Carolina and Queensland (Duchess) apatites] (RP) applied in field experiments 11 years previously (previous P). The P was applied to the soil surface and incorporated into the top 10 cm of soil with a rotary hoe. After application of the current P in the field, samples of the <2‐mm fraction of the top 10 cm of soil were collected for the glasshouse study. Both canola and wheat produced poor yields without P but responded strongly to applied P. Regardless of the source of P (current and previous TSP, previous RP), canola required less P than wheat to produce the same percentage of the maximum yield of dried tops. For each amount of applied P, the concentration of P in dried tops was from about 30 to 120% higher for canola than wheat, indicating that canola roots were better able than wheat roots at accessing P from the soil, regardless of the source of P.  相似文献   

13.
Use of aluminum (Al)–rich water treatment residuals (Al‐WTR) has been suggested as a practice to immobilize excessive phosphorus (P) in Florida soils that could represent an environmental hazard. Fertilizer P requirements can differ in WTR‐amended and unamended soil, so careful selection of soil‐testing methodology is necessary. Acidic extractants can dissolve WTR sorbed P and overestimate plant‐available P. We evaluated the suitability of the Mehlich 1 P (M‐1P) and other agronomic soil‐test procedures in an Al‐WTR‐treated Florida soil. Bahiagrass (paspalum notatum Fluggae), ryegrass (Lolium perenne L.), and a second bahiagrass crop were grown in succession in a Florida topsoil amended with four sources of P at 44 kg P ha?1 (P‐based rates) and 179 kg PAN ha?1 [nitrogen (N)–based rates] and three WTR rates (0, 10, and 25 g kg?1 oven‐dry basis). Both water‐extractable P (WEP) and iron (Fe) strip P (ISP), but not M‐1P, values of soil sampled at planting of each grass were greater in the absence than in the presence of WTR. Total plant P uptake correlated with WEP (r2 = 0.82***) and ISP (r2 = 0.75***), but not M‐1P (r2 = 0.34***). Correlations of the dry‐matter yield, P concentration, and P uptake of the first bahiagrass were also better with WEP and ISP than with M‐1P values. However, regression of plant responses with M‐1P improved after the first crop of bahiagrass. Both WEP and ISP values were better predictors of available soil P than M‐1P in a field study with same four P sources surface applied to established bahiagrass at the same two P rates, with and without WTR. Both WEP and ISP are recommended as predictors of P adequacy in soils treated with WTR, especially for soils recently (< 5 months) treated with Al‐WTR.  相似文献   

14.
We studied the effect of amendment of sewage sludge biosolids on enzyme activity in soil and earthworm (Lumbricus terrestris) casts. Enzyme activities and contents of nutrients and organic matter of surrounding soil were compared with the corresponding properties of earthworm casts. This short time experiment was conducted at 20 ± 0.5 °C in the laboratory, simulating field conditions of biosolid treatments. In general, all of doses of biosolid treatments influenced the enzyme activity and contents of nutrients and organic matter of earthworm casts and surrounding soil. Enzyme activity such as urease (UA), alkaline phosphatase (APA), and arylsulfatase (ASA) and the contents of organic matter and nutrients N and P in earthworm casts and surrounding soil increased with increasing biosolid application. Without biosolid additions, enzyme activities in cast of L. terrestris exceeded those in the soil. In contrast, when biosolid was added, DHA in casts was lower than the soil. Activities of UA and APA were consistently higher in L. terrestris casts than in soil of all biosolid treatments. Biosolid amendments generally increased ASA at low doses, but at higher doses, ASA decreased. In general, organic matter and contents of N and P were higher in surface casts of L. terrestris and soils than in the control soil. Activities of UA, APA, the contents of organic carbon and nutrients N and P in soil and casts showed positive correlations. On the contrary, ASA and DHA were negatively correlated with the contents of organic matter and nutrients.  相似文献   

15.
Abstract

The rationale for this experiment was to determine forage nutrient concentrations as affected by biosolids fertilization. We studied the effects of single applications of two exceptional quality biosolids to bahiagrass (Paspalum notatum) pasture with regard to satisfying beef cattle nutrient requirements. Twenty‐five 0.8‐ha pastures were divided into five blocks. Two biosolids were applied as normal and double agronomic rates. The control plot received NH4NO3. Forages were analyzed for calcium (Ca), phosphorus (P), magnesium (Mg), potassium (K), sodium (Na), crude protein (CP), and in vitro organic matter digestibility (IVOMD), and soils were analyzed for Mehlich I extractable Ca, P, Mg, and K. Single (agronomic or twice this) applications of biosolids to pastures had little effect on Ca, P, Na, and K forage concentrations, but forage Mg was elevated in several treatments late in the season. Crude protein concentrations were elevated above the control for all biosolids treatments late in the season, whereas only small differences were observed at early sampling times. Trends were similar for IVOMD. In general, all treatments were associated with soils with adequate Ca, P, and Mg concentrations, while soil K was uniformly low. In relation to grazing beef cattle requirements, all treatments resulted in generally adequate forage levels of Ca, P, Mg, K, CP, and IVOMD, however, Na (<0.06%) was deficient.  相似文献   

16.
Abstract

Quantifying the relative contribution of different phosphorus (P) sources to P uptake can lead to greater understanding of the mechanisms that increase available P in integrated P management systems. The 32P–33P double isotope labeling technique was used to determine the relative contribution of green manures (GMs) and P fertilizers to P uptake by Setaria grass (Setaria sphacelata) grown in an amended tropical acid soil (Bungor series) in a glasshouse study. The amendments were factorial combinations of GMs (Calopogonium caeruleum, Gliricidia sepium and Imperata cylindrica) and P fertilizers [phosphate rocks (PRs) from North Carolina (NCPR), China (CPR) and Algeria (APR), and triple superphosphate (TSP)]. Dry matter yield, P uptake, and P utilization from the amendments were monitored at 4, 8, and 15 weeks after establishment (WAE). The GMs alone or in combination with P fertilizers contributed less than 5% to total P uptake in this soil, but total P uptake into Setaria plants in the GM treatments was three to four times that of the P fertilizers because the GMs mobilized more soil P. Also, the GMs markedly increased fertilizer P utilization in the combined treatments, from 3% to 39% with CPR, from 6–9% to 19–48% with reactive PRs, and from 6% to 37% with TSP in this soil. Both PGM and the other decomposition products were probably involved in reducing soil P‐retention capacity. Mobilization of soil P was most likely the result of the action of the other decomposition products. These results demonstrate the high potential of integrating GMs and PRs for managing P in tropical soils and the importance of the soil P mobilization capacity of the organic components. Even the low‐quality Imperata GM enhanced the effectiveness of the reactive APR more than fourfold.  相似文献   

17.
ABSTRACT

Pre-plant fertilizers are used to adjust soil fertility for nutrients such as phosphorus (P) during turfgrass establishment. However, nutrient applications of water-soluble sources in coarse-textured soils are prone to leaching compared to slow-release sources. Poultry litter ash (PLA), a by-product of poultry litter combustion, concentrates macronutrients into less water-soluble forms. The objective of this study was to evaluate PLA with triple superphosphate (TSP), in ratios of P in PLA to that in TSP of 0:100, 25:75, 50:50, 75:25; 100:0 as a pre-plant fertilizer incorporated into a 90:10 (v/v) sand and peat mixture seeded with bermudagrass (Cynodon dactylon L.) ‘Sahara’. Bermudagrass groundcover, shoot, and root biomass were measured at 6 weeks. Leachate was captured weekly and analyzed for P, K, Ca, and Mg. Bermudagrass groundcover and biomass accumulation were similar across all treatments at 6 weeks after planting (WAP). The benefit of PLA compared to TSP was the reduction in P, K, Ca, and Mg leached during the first two WAP. As the percentage of PLA increased relative to TSP, nutrient leaching decreased, with 100% PLA resulting in the lowest cumulative nutrient masses leached. Application of 100% PLA as a pre-plant fertilizer can limit nutrient leaching in coarse-textured media compared to more water-soluble nutrient sources, particularly TSP, without delaying bermudagrass establishment.  相似文献   

18.
The effects of biosolids from tomato processing on soil properties and wheat growth were investigated in an Alfisol from central Greece. Biosolids were mixed with soil from the surface (Ap) or subsurface (Bt) horizon in plastic containers at rates of 1%, 5%, and 10% by dry weight (d.w.; equivalent to 10, 50, and 100 Mg ha–1). Biosolid treatments were compared to an NH4Cl application (50 mg N kg–1) and an untreated control in (1) a 102 d incubation experiment at 28°C to determine biosolid nitrification potential and (2) a 45 d outdoor experiment to evaluate effects on soil fertility and wheat growth. Mineralization of biosolids in the incubation experiment resulted in accumulation of nitrate‐N and indicated that biosolids were able to supply N that was in excess of crop needs in treatments of 5% and 10%. After 45 d of wheat growth, available soil nutrients (N, P) and P uptake by wheat were distinctly lower in the Bt than in the Ap horizon. However, soil pH, electrical conductivity, organic matter, total N, nitrate‐N, extractable P, and exchangeable K increased with increasing rate of biosolid application in both soils. These were followed by corresponding increases in wheat nutrient uptake and biomass production, thus demonstrating the importance of this organic material for sustaining production in soils of low immediate fertility. Compared to the NH4Cl treatment (50 kg N ha–1 equivalent), biosolid application rates of 5% and 10% had higher available soil nutrients, similar or higher nutrient uptake and higher wheat biomass. But only an application of 10% biosolids provided sufficient N levels for wheat in the surface soil, and even higher applications were required for providing sufficient N and P in the Bt horizon.  相似文献   

19.
Water-extractable phosphorus (WEP) in manures can influence the risk of phosphorus (P) losses in runoff when manures are land applied. We evaluated several manure handling and extraction variables to develop an extraction procedure for WEP that will minimize pre-analysis manure-sample-handling effects on WEP measurements. We also related manure WEP determinations to runoff dissolved reactive phosphorus (DRP) concentrations found in previously conducted field simulated rainfall experiments using the same manures to evaluate WEP as a predictor of P runoff losses. Dairy and poultry manure WEP concentrations increased with manure-to-water extraction ratio and shaking time. Relative to fresh manures, drying and grinding dairy manures before analysis usually decreased WEP concentrations, while WEP in poultry manures was often increased. Pre-analysis handling effects on WEP were minimized at the 1:1000 extraction ratio with a 1-h shaking time. Relationships between manure WEP and runoff DRP concentrations were strongly influenced by season of year and WEP extraction procedure. The best prediction of DRP concentration in spring runoff experiments was with manure WEP concentration at the 1:1000 extraction ratio. With fall runoff studies, DRP concentrations were best predicted with WEP application rate rather than concentration. These seasonal differences can be explained by the greater percentage of rainfall that ran off in the fall compared to the spring. For all studies, runoff DRP concentrations were strongly related (r2 = 0.82) to the ratio of runoff to rainfall volumes, confirming that models need to take runoff hydrology into account as well as manure WEP in P-loss risk assessments.  相似文献   

20.
The impact of biosolids on soil processes in five soils under pasture was assessed. Five biosolid treatments (control, dried pellets, compost, biosolids at 200 kg N/ha, and biosolids at 800 kg N/ha) were mixed in 0- to 10-cm-deep soil in lysimeters each year. Nematodes were sampled after 2 years. Many of the nematode populations and indices showed significant soil effects. Nematode responses to the range of biosolid amendments were similar across the five soils. Few populations showed an interaction between the type of amendment and the soil. The most marked response to amendment was that of bacterial-feeding Rhabditidae, in which populations were affected by the weight of the biosolid amendment. Nematode contribution to the soil processes in these soils was not adversely affected by the application of biosolids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号