首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The infiltration process is important in the planning and management of irrigation systems. This study was performed in Mazandaran province, Iran, to compare the effect of magnetized and non‐magnetized irrigation water on cumulative infiltration and final infiltration rate of three soil textures. Magnetized water was obtained by passing the water through a strong permanent magnet installed on a feed pipeline. The results showed that the effects of soil texture and magnetized irrigation water on cumulative water infiltration and final infiltration rate was significant (P < 0.01). Cumulative water infiltration and final infiltration rates with magnetized water were greater than that of non‐magnetized water. The cumulative water infiltration rate after 4 h for magnetized and non‐magnetized water was 26.4 and 12.7 cm in clay soil, 37.6 and 20 cm in silty loam soil and 40.8 and 29.3 cm in sandy loam soil, respectively. The final infiltration rates after 4 h for magnetized and non‐magnetized water were 0.05 and 0.023 cm/min in clay soil, 0.063 and 0.036 cm/min in silty loam soil and 0.076 and 0.046 cm/min in sandy loam soil, respectively. Therefore, magnetized irrigation water had most effect on the infiltration capacity of clay soil.  相似文献   

2.
A field experiment was conducted to study the biohydrological properties of soil and yield of Vigna unguiculata L. Walp irrigated with five concentrations of sugar mill wastewater (SMW) during the Kharif and Zaid seasons. Among various concentrations of SMW, irrigation with 100% SMW significantly (P < 0.001) increased zinc (Zn), copper (Cu), cadmium (C), nickel (Ni), chromium (Cr), and iron (Fe) of the soil, while decreased total bacteria, fungi, actinomycetes, yeast, and rhizobia of the soil in both the cultivated seasons. However, the values of these metals were below the recommended permissible limit except Cd. Enrichment factor (Ef) of various heavy metals for soil was in the order Ni > Cr > Cd > Zn > Cu after irrigation with SMW. The crop yield of V. unguiculata was found to be inversely proportional to concentrations of SMW, with the best results being obtained at 50% SMW concentrations after 90 days of irrigation in both the cultivated seasons.  相似文献   

3.
Drought stress is an important factor limiting the yield potential of peanut. In order to determine the effect of different irrigation scenarios on peanut production, field experiments were conducted in 2011 and 2012 growing seasons using factorial design with three replicates. On the other hand, the crop simulation models can be useful to predict crop yields and to investigate the impact of drought stress on plant growth and development. In this study, the Cropping System Model–Crop Growth (CSM-CROPGRO)-Peanut model was employed for the simulation of seed yield, pod yield, biomass, soil water balance components and water productivity for peanut in Astaneh-Ashrafiyeh, Iran. Results showed that the model was able to reasonably simulate seed yield, pod yield and final biomass for different irrigation scenarios (RMSEn < 20%, R2 > 0.8 and d > 0.8). According to the results, irrigation depth and interval were important factors affecting yield and biomass. In general, model error increased as the amount of water applied decreased. The least amount of water applied (40 mm) resulted in yield reductions by 76%, 70% and 67% of the greatest amount of water applied (480 mm) for seed yield, pod yield and final biomass, respectively. For each irrigation interval, larger irrigation depth led to lower water productivity (WP) of irrigation (WPI), but higher WP based on evapotranspiration (WPET) and transpiration (WPT).The average amounts of WPI, WPET, WPT based on seed yield were 1.2, 0.63 and 1.01 kg m?3, respectively.  相似文献   

4.
灌水效率碘—淀粉显色示踪试验   总被引:1,自引:0,他引:1  
该文旨在研究不同土质、灌水量和灌水方法情况下入渗模式、灌水效率,并探讨不同灌水条件下溶质分布和水流运动模式之间的关系。根据碘-淀粉显色原理示踪水流运动和溶质迁移,分别在壤土和黏土条件下、开展了重力灌溉和微灌方式下的12组入渗试验,采用适用效率、深层渗漏损失率、有效储水率和均匀度对灌水效率进行综合评价。结果表明,入渗水再分布主要受到湿润模式的影响,有效储水率和均匀度随着灌水量的增加而提高,然而深层渗漏损失率也明显增大。溶质分布的均匀程度和深层渗漏损失率均小于水量分布的均匀程度和损失率,根据入渗后水分和溶质的再分布情况对灌水效率进行评价更为直接和全面。  相似文献   

5.
磷肥和钾肥不同配施方式对其养分在土壤中迁移的影响   总被引:4,自引:4,他引:0  
采用单点源滴灌试验方法,模拟滴灌条件下磷(P)、钾(K)肥作为基肥一次施入和随水分施入两种不同的配施方式下速效P、K含量在土壤中的时空分布变化情况。结果表明:对于可溶性较好的磷、钾肥作为基肥施入土壤后,均随着滴灌水的下渗运移而发生迁移,速效磷的高值区出现在湿润区的边缘附近,速效钾则比较均匀的分布在湿润区内;随水分施磷肥,仅在湿润区深度20cm,水平方向15cm以内的土层发生积累。在施加磷肥总量一致时,随水分施入土壤速效磷含量的最大值明显高于作为基肥施入的最大值;随水分施钾肥,速效钾在土壤中的分布也趋于均匀,但是在滴水点附近形成高值区,且随水分施钾肥可在一定程度上减缓速效钾在土壤中的迁移速度。  相似文献   

6.

Purpose

The concept of irrigating crops with saline irrigation water is not new, but impacts of this practice on soil properties remain debatable, particularly the use of highly saline water. In this work, key soil chemical properties were assessed to a depth of 300 cm following 2.5 years of application of highly saline irrigation to a sodic texture-contrast soil (Brown Sodosol) in south-eastern Tasmania, Australia.

Materials and methods

Control plots (rainfall only) were compared to irrigation treatments of low (0.8 dS/m) and high salinity (16 dS/m) waters at application rates of both 200 and 800 mm/year.

Results and discussion

Whilst significant increases in both electrical conductivity and chloride concentration occurred throughout the soil profile in the high salinity treatment, these values were well below those of the irrigation water, indicating effective deep leaching. In the upper soil profile, 0–50 cm, of the high salinity treatments both the exchangeable Na+ and its ratio to total base cations (ESP) were significantly increased whilst the lower soil profile between 50 and 200 cm, was improved via both reduced alkalinity and sodicity. Leaching of the exchangeable base cations Ca2+, Mg2+ and K+ was significant in the upper soil profile (0–50 cm). As expected, the low salinity treatment (0.8 dS/m) had minimal impacts on soil chemical properties. The upper topsoil (0–10 cm) total organic carbon was significantly reduced in the high salinity plots and was negatively correlated with Cl? concentration.

Conclusions

The data confirms the general concerns about application of saline irrigation, namely increased whole profile salinisation and upper soil profile (0–50 cm) sodicity, but they also show unexpected and desirable reductions in the lower soil profile (>?50 cm) alkalinity and sodicity. It appears the Na+ ions present in the saline waters led to differential leaching of base cations from the rooting zone, especially Ca2+ which then ameliorate the alkalinity and sodicity deeper in the soil profile (>?50 cm). Thus, surface application of gypsum may help sustain the application of highly saline waters; alternatively, subsurface irrigation above the sodic clayey subsoils could be trailed.
  相似文献   

7.
为了探究盐旱胁迫对土壤中氮素分布和棉花生长的影响,通过测坑试验研究滴灌区不同盐分、干旱条件下土壤全氮、硝氮、氨氮的分布和棉花生长情况。试验设置3种盐分梯度的土壤(电导率,EC):3,6,9 dS/m,分别用T1、T2、T3表示;3个灌水量:2 700,3 600,4 500 m3/hm2,分别用W1、W2、W3表示(4 500 m3/hm2为当地推荐灌水量)。结果表明:当土壤盐分梯度> 3 dS/m时土壤全氮累积量显著高于低盐土壤(P<0.05),且土壤盐分对棉花花期生长影响较大。土壤的氨氮挥发量和土壤盐分梯度成正比。土壤硝态氮的淋失与灌水量呈正比,与正常灌水量的硝态氮淋失相比,水分胁迫对棉花产量的影响更为严重(P<0.01)。随土层深度的增加,土壤碱解氮以每20 cm土层8%的速度减少。各处理土壤15N残留率为11%~40%,随土壤盐度增加而增加,随灌水量增加而减少,与土壤全氮含量呈正比,与棉花产量呈反比。综上所述,T1W3处理更有利于棉花对氮肥的利用和产量的提高,推荐滴灌区棉花土壤盐度<3 dS/m,灌水量4 500 m3/hm2,可在花期适当提高施肥量以稳定产量。  相似文献   

8.
水肥气耦合滴灌番茄地土壤N2O排放特征及影响因素分析   总被引:2,自引:2,他引:0  
为了解水肥气耦合滴灌下不同水肥气调控措施对土壤N_2O排放的影响,该研究设置施氮量(低氮和常氮)、掺气量(不掺气和循环曝气处理)和灌水量(低湿度和高湿度处理)3因素2水平完全随机试验,通过静态箱-气相色谱法、q PCR技术和结构方程模型,系统研究了不同水肥气组合方案下温室番茄地土壤N_2O排放特征及其与相关影响因素之间的关系。结果表明,水肥气耦合滴灌下N_2O排放峰值出现在施氮后2 d内,其余时期N_2O排放通量较低且变幅较小。施氮量、掺气量和灌水量的增加可增加土壤N_2O排放通量和排放总量。其中,高湿度条件下N_2O排放总量较低湿度平均增加了30.14%,曝气条件下N_2O排放总量较对照平均增加了35.16%,常氮条件下N_2O排放总量较低氮平均增加了33.83%。施氮量、掺气量和灌水量的增加可提高温室番茄的产量和氮肥偏生产力。土壤NH4+-N和NO3--N含量对N_2O排放的总效应为0.60和0.79,是影响水肥气耦合滴灌下土壤N_2O排放的主导因子。综合考虑作物产量、N_2O排放总量和氮肥偏生产力,常氮曝气低湿度处理是适宜的水肥气耦合滴灌方案。  相似文献   

9.
土壤初始含水率对膜孔灌湿润体特征的影响   总被引:4,自引:1,他引:4  
为了研究膜孔灌中土壤初始含水率对湿润体特征及累积入渗量的影响,首先通过室内试验验证HYDRUS模拟西安粉壤土膜孔灌湿润体形状以及含水率分布的可靠性,然后基于HYDRUS模型模拟在不同初始含水率条件下膜孔灌湿润体的变化过程。结果表明:基于HYDRUS模型模拟的累积入渗量和湿润锋运移距离与室内试验结果的R~2均接近1,标准偏差绝对值均小于10%,拟合良好,表明HYDRUS模型模拟入渗过程的可靠性。膜孔灌湿润锋形状可采用椭圆方程表示。当初始含水率较小(不大于0.1 cm~3/cm~3)时,湿润体半径的含水率分布可采用椭圆方程表示;从膜孔中心到湿润锋表面,随着初始含水率的增大,湿润体内的含水率梯度减小,湿润体半径的含水率分布曲线由椭圆曲线逐渐转变为平缓曲线。基于湿润体含水率分布规律建立了考虑初始含水率的累积入渗量模型,累积入渗量与湿润体半径的三次方呈正比,湿润体半径可表示为湿润锋水平运移距离和垂向运移距离的几何平均值;对于不同的膜孔半径(1~5cm),模型计算累积入渗量与HYDRUS模拟值的R~2为0.99,标准偏差绝对值小于10%;对于粉土、粉壤土和壤土,当初始体积含水率不大于0.25 cm~3/cm~3算累积入渗量与HYDRUS模拟值的R~2为0.99,标准偏差绝对值小于10%,结果表明该模型对不同土壤质地和膜孔半径的适用性良好;该模型在计算作物灌水需求量方面优于Kostiacov模型等传统的经验模型。该研究揭示了不同初始含水率下的膜孔灌湿润体特征,并建立了累积入渗量模型,可为膜孔灌灌溉水量的计算提供参考依据。  相似文献   

10.
为了探究磁化水和石膏共同作用对水盐运移特征的影响,该研究通过室内一维垂直入渗试验,分析未磁化和磁化微咸水两种类型的灌溉水入渗下,5个石膏施量(0、0.1、0.2、0.4、0.6 kg/m2)对土壤水分和盐分运移特征的影响.结果表明:磁化和未磁化微咸水入渗时,累积入渗量和湿润锋深度均随着石膏施量的增加而减小.不同石膏施量...  相似文献   

11.
采用田间大区试验,连续3年在河套重盐碱区开展了冬季咸水结冰灌溉试验研究,设置冬季咸水结冰灌溉(FSWI)和无灌溉对照(CK)两个处理,其中FSWI处理的灌水量为180 mm,矿化度为6.79~7.97 g·L~(–1),种植作物为青贮玉米,以分析不同处理下土壤水盐和钠吸附比(SAR)的周年动态以及对作物生长的影响,探究冬季咸水结冰灌溉对河套重盐碱地的改良效果。结果表明:与CK相比,FSWI处理显著改变了春季土壤水盐和SAR动态。0~20 cm土层,春季FSWI处理的土壤含水量显著高于CK处理,玉米苗期, FSWI处理的土壤含水量平均为24.3%,显著高于CK的21.6%; FSWI处理的春季土壤含盐量和SAR显著低于CK处理,其中, FSWI处理的土壤含盐量由灌溉前的33.86 g·kg~(–1)降低至玉米苗期的5 g·kg~(–1)以下,而CK处理土壤含盐量逐渐升高至玉米苗期的34.2 g·kg~(–1); FSWI处理土壤SAR由灌溉前的21.9降低至玉米苗期的9.86, CK土壤SAR则逐渐升高至玉米苗期的25.00。后续地膜覆盖和夏季降雨使FSWI处理的土壤含水量维持在23.0%以上,土壤含盐量保持在5 g·kg~(–1)以下,土壤SAR保持在9左右。20~40 cm土层与0~20 cm土层的土壤水盐和SAR变化趋势与表层一致,但没有表层变化剧烈。此外,随着灌溉年限的延长,同时期土壤含盐量和SAR呈逐年降低的趋势。FSWI处理玉米出苗率在70%以上,干物质产量为9~12t·hm~(–2),而CK处理由于土壤含水量较低(21.0%),并且土壤含盐量和SAR均较高,造成玉米出苗率极低,进而导致绝收。因此冬季咸水结冰灌溉改变了土壤水盐动态过程,变春季积盐为脱盐,显著降低了土壤SAR,并补充了土壤水分,保证了饲用玉米的正常种植和生长,这为该地区盐碱地改良和饲料作物种植提供了技术支持。  相似文献   

12.
Research on the factors affecting the characteristics of film slit irrigation has not received sufficient attention, although this is a wide-adopted irrigation technology. Infiltration modelling based on fewer factors deserves priority in the field studies. A laboratory theoretical study was conducted to investigate the simulated effects of SWMS-2D (simulating water movement through soil in two-dimensional) on soil moisture and cumulative infiltration of film slit irrigation. Error analyses indicated that SWMS-2D was suitable for infiltration simulation. Besides, SWMS-2D was applied to investigate the cumulative infiltration affected by soil texture, initial soil moisture, irrigation water depth, soil structure, opening ratio (ρ), and film slit width (d) and spacing. Results showed that for a certain soil, initial soil moisture and irrigation water depth had the poorest effects, whereas ρ and d had the strongest effects on cumulative infiltration among the 6 influencing factors. Furthermore, a simplified model with only ρ and d was proposed and verified by 3 soil types, which indicated that the proposed double-factor model can be employed for cumulative infiltration estimation under film slit irrigation, due to small mean absolute error of 1.03–3.13 mm, root mean square error of 1.24–3.80 mm, and high Nash-Sutcliffe coefficient around 1.0.  相似文献   

13.
秸秆生物炭对黏壤土入渗规律的影响   总被引:3,自引:0,他引:3  
为提高干旱半干旱区耕作土壤灌溉水的利用效率,采用秸秆生物碳对黏壤土进行改良,并用3种经典入渗模型进行入渗模拟,寻求适于描述研究区土壤入渗规律的模型及改良方案。采用双环入渗试验测定4种生物炭施用水平(10 t/hm2,20 t/hm2,30 t/hm2,50 t/hm2)的田间作物生育期内土壤含水率、入渗速率及累积入渗量,分别采用Green-Ampt模型、Philip模型和Kostiakov经验公式对试验组与对照组(CK)的入渗过程进行模拟。结果表明:施用量为30 t/hm2较CK效果最为明显,施用层(0—40 cm)入渗速率增加44.6%,耕作层土壤含水率增加8.9%,累积入渗量增加45.45%。比较3种模型的入渗过程拟合结果,认为Kostiakov经验公式拟合的效果符合实测规律,可为研究区改良土壤水分入渗过程提供理论依据。  相似文献   

14.
本文以北京地区冬小麦夏玉米种植制度为背景,应用作物土壤联合模型,模拟了不同水氮管理措施和降雨年型下的周年相对产量、土壤水氮资源利用、损失和周年利用效率,分析了水氮管理措施对它们的影响,以期为合理进行水氮管理,提高周年的产量和土壤水氮资源利用效率服务。  相似文献   

15.
ABSTRACT

There is a growing concern about excessive use of nitrogen (N) and water in agricultural system with unscientific management in Indian and developing countries of the world. Field experiments were conducted on the lateritic sandy loam soils of Kharagpur, West Bengal, India, during spring–summer (February-June) seasons for three years (2015–2017) to evaluate okra crop response under subsurface drip and conventional furrow irrigation with varying amount of nitrogen treatments. Irrigation treatments had three levels of soil water depletion from field capacity (i.e., 20%, 35%, and 50%) under subsurface drip system. There was no soil water depletion under conventional furrow irrigation system. There were four levels of nitrogen fertilizer treatments (i.e., 0, 80, 100, and 120 kg ha?1). This was supplied using urea as a nitrogenous fertilizer. The yield response of okra crop under subsurface drip was found to be 56.4% higher than that of the furrow irrigation treatment. Best yield response and maximum water use efficiency and nitrogen use efficiency were recorded under 20% soil water depletion with 100 kg ha?1 of nitrogen fertigation. Among the various soil moisture depletions, subsurface drip at 20% soil water depletion treatment responded least quantity of water lost through deep drainage and nitrogen loss beyond the root zone as compared to other irrigation treatments. The water loss through subsurface drainage was observed as 33.11 mm lesser under subsurface drip as compared to that of the furrow irrigation, and this may due to low-volume and frequent irrigation water application with subsurface drip. Hence, irrigation through subsurface drip should be used for improving water and nitrogen fertilizer use efficiency of okra crop cultivation.  相似文献   

16.
Amendments with the potential to reduce phosphorus (P) losses from agricultural grassland arising from the land application of dairy-soiled water (DSW) were investigated. Optimal application rates were studied, and associated costs and feasibility were estimated. First, batch tests were carried out to identify appropriate chemicals or phosphorus sorbing materials to control P in runoff from DSW. Then, the best four treatments were examined in an agitator test. In this test, soil??placed in a beaker??was loaded with DSW or amended DSW at a rate equivalent to 5 mm ha?1 (the maximum permissible application rate of DSW allowable in a 42-day period in Ireland). The soil was overlain with continuously stirred water to simulate runoff on land-applied DSW. Optimum application rates were selected based on percentage removal of dissolved reactive phosphorus in overlying water and the estimated cost of amendment. The costs of the amendments, per cubic metre of DSW, increased in the order: bottom ash (1.55 ?), alum (1.67 to 1.92 ?), FeCl2·4H2O (3.55 to 8.15 ?), and lime (20.31 to 88.65 ?). The feasibility of the amendments, taking into account their cost, potential adverse effects, public perception, and their performance, decreased in the order: alum?>?FeCl2·4H2O?>?bottom ash?>?lime. Amendments to DSW could be introduced in critical source areas??areas where high soil test P and direct migration pathways to a receptor overlap.  相似文献   

17.
为探究苔藓覆盖对喀斯特山地土壤剥蚀过程影响的机理,通过野外采集原状土样,结合上方来水冲刷剥蚀试验,分析了不同坡度(5°,20°)与不同土壤含水率(饱和含水率、田间含水率)条件下苔藓盖度与土壤分离能力间的定量关系,解析了坡面流水力特征参数对苔藓覆盖的响应规律.结果表明:在5°和20°坡度下,苔藓覆盖下饱和土壤的土壤剥蚀率...  相似文献   

18.
An experiment was conducted to observe the phosphate sorption potential of some soils of Bangladesh. Three soil series of calcareous origin, namely Sara (Aquic Eutrochrept), Gopalpur (Aquic Eutrochrept) and Ishurdi (Aeric Haplaquept), and two soil series of non-calcareous origin, namely Tejgaon (Rhodic Paleustult) and Ghatail (Aeric Haplaquept), were selected. The soils were equilibrated with dilute solution of calcium chloride containing graded concentrations of phosphate (0, 1, 2, 5, 10, 25 and 50?μg?P?mL?1), and the amount of phosphate sorbed or desorbed was determined. Although all the soils showed potential for sorbing phosphate from applied phosphorus, their ability to sorb phosphorus differed. Increasing rates of phosphate application increased the amount of P sorption but reduced phosphate sorption percentage in all soils except Tejgaon. Phosphate was sorbed by the soils in the order: Tejgaon > Ghatail > Ishurdi > Gopalpur > Sara at 50?μg?P?mL?1 application. Soils possessing higher amounts of free iron oxide and clay sorbed more phosphate from applied phosphorus.  相似文献   

19.
Fertigation techniques have been widely used in drip-irrigated cotton. The timing of nitrogen (N) fertilizer injections then becomes a management question producers need guidance on. This study investigated the effect of nitrogen (N) fertigation frequency on drip-irrigated cotton. Experiments were conducted in the Southeastern Anatolia Region of Turkey in 2011 and 2012. A split-plot experimental design was applied. The main plots contained two different lateral spaces: A, one drip-line (lateral) per row; and B, one lateral for every two rows. Sub-plots were designed with different frequencies of fertigation as follows: a, the application of fixed amount of N at each irrigation cycle (5 days); b, the application of fixed amount of N every two irrigation cycles (10 days); and c, the application of one-fifth of the total N between the first irrigation and first flowering, two-fifths between the first flowering and formation of the first boll, and one-fifth between the formation of the first boll and last irrigation cycle. One-fifth of the total N was applied to the soil at sowing in all treatment regimens. The maximum cotton yield (4120 kg ha?1) and highest total N content (2.57–2.94%) in the leaves were obtained with one lateral for every two rows and the application of fixed amount of N every two irrigation cycles (10 days). One-fifth of the total N might be applied to the soil at sowing, and the remaining N should be applied in equal doses (an average of 7 fertigations) every two irrigation cycles (10 days) by fertigation. However, further research fertigation methods for cotton, including the amount of N that needs to be applied and the use of different injection systems, is required.  相似文献   

20.
Field experiments over a 3 y period were conducted in a winter wheat‐maize double‐cropping system at the Dongbeiwang Experimental Station, Beijing, China. Three different treatments of irrigation (sprinkler “suboptimal” and “optimized”; conventional flood irrigation) and N fertilization (none, according to Nmin soil tests, conventional) were studied with respect to effects on soil water balance, nitrate leaching, and grain yield. Under sprinkler irrigation, evaporation losses were higher due to a more frequent water application. On the other hand, in this treatment nitrate leaching was smaller as compared to flood irrigation, where abundant seepage fluxes >10 mm d–1 along preferential flow paths occurred. For quantifying nitrate leaching, passive samplers filled with ion‐exchange resins appeared to be better suited than a method which combined measurements of suction‐cup concentrations with model‐based soil water fluxes. As a result of the more balanced percolation regime (compared to that under conventional flood irrigation), there was a tendency of higher salt load of the soil solution in the rooting zone. Given a seepage rate of 50 mm, a winter wheat grain production of 5–6 t ha–1 required a total water addition of about 430 mm. Fertilizer treatments >100 kg N ha–1 did not result in any additional yield increase. An even balance between withdrawing and recharge of groundwater cannot be achieved with “optimized” irrigation, but with a reduction of evapotranspiration losses, adapted cropping systems, and/or by tapping water resources from reservoirs in more distant areas with surpluses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号