共查询到20条相似文献,搜索用时 15 毫秒
1.
《Communications in Soil Science and Plant Analysis》2012,43(13-14):1949-1963
Abstract The effectiveness of Stay‐N 2000 or reformulated nitrapyrin [2‐chloro‐6‐(tricholoromethyl) pyridine] was investigated in two Iowa soils representative of Clarion and Okoboji soils that differed in organic carbon, pH, and texture. A nonlinear regression was used to estimate kinetic parameters. The maximum nitrification rate (K max) and the duration of lag period (t′) were derived from the equation to characterize the nitrification process in both soils. Stay‐N 2000 appeared to be a better inhibitor than nitrapyrin to extend t′ and as effective as nitrapyrin in reducing K max. Stay‐N 2000 reduced K max an appreciable amount in the Okoboji soil at the rate of 12 µg a.i. g?1 soil or three times the recommended rate. Nitrification rates were affected by the rates of nitrogen (N) applied to both soils; the higher the N rates, the higher Kmax, and the more the nitrate (NO3 ?)‐N accumulation. 相似文献
2.
《Communications in Soil Science and Plant Analysis》2012,43(7-8):1214-1226
The effects of temperature and water potential on nitrification were investigated in two Iowa soils treated with Stay‐N 2000. The soils were incubated at 10, 20, and 30 °C after soil water potentials of ?1, ?10, or ?60 kPa were applied to each soil. A first‐order equation was used to calculate the maximum nitrification rate (K max), duration of lag period (t′), period of maximum nitrification (Δt), and termination period of nitrification (t s). The highest K max were 18 and 24 mg kg?1 d?1 nitrate (NO3 ?)–nitrogen (N), respectively, at 30 °C and ?10 kPa in both the Nicollet (fine‐loamy, mixed, superactive, mesic Aquic Hapludoll) and Canisteo (fine‐loamy, mixed, superactive, calcareous, mesic Typic Endoaquoll) soils and reduced to 4 and 16 mg kg?1 d?1 NO3 ?‐N when Stay‐N 2000 was added. The extension of t′ due to the addition of Stay‐N 2000 was as high as 7 d in the Nicollet soil at 10 °C and ?1 kPa and as little as 2 d in the Canisteo soil at 20 °C and ?10 kPa. 相似文献
3.
LINYU-SUO XUEJIA-HUA 《土壤圈》1994,4(3):225-231
The pH effect on the sorption kinetics of heavy metals in soils was studied using a constant flow leaching method.The soil samples were red soil collected from Yingtan,Jiangxi,and yellow-brown soil from Nanjing,Jiansu,The heavy metals tested were zinc and cadmium.Assuming that the experimental data diffed to the following kinetic rate equation:1/c.dx/dt=kx∞-kx,the rate constant k of sorption could be determined from the slope of the straight line by plotting of 1/c,dx/dt vs.x.The results showed that the pH effect on the rate constants of heavy mental sorption in soils was very significant.The values of k decreased with increasing pH.The sorptions were more sensitive to pH in red soil than in yellow-brown soil. 相似文献
4.
《Communications in Soil Science and Plant Analysis》2012,43(3-4):538-550
Abstract Sewage‐sludge‐amended soils generally contain elevated levels of organic matter and heavy metals compared to control soils. Because organic matter is known to complex with heavy metals, the solubility behavior of the organic matter in such soils may exert a significant influence on the solubility of the metals. Little is known about such a process. Using batch experiments in which the solubility of organic matter in a heavily sludge‐amended soil was artificially manipulated, we show that the solubilities of the heavy metals copper (Cu), nickel (Ni), and lead (Pb) show a strong positive relationship to the solubility of organic matter, particularly at high pH. The results suggest that under field conditions, spatiotemporal variations in the solid–solution partitioning of organic matter may have a bearing on the environmental significance (mobility and bioavailability) of these heavy metals. 相似文献
5.
《Communications in Soil Science and Plant Analysis》2012,43(9-10):1353-1370
Abstract Heavy‐metal concentration in underground and surface water, soil, and crop plants growing in farmers' fields near the industrial city of Ludhiana, Punjab, India, that receive irrigation with water contaminated with sewer and untreated industrial effluents was studied. The concentrations of lead (Pb), chromium (Cr), cadmium (Cd), and nickel (Ni) in sewage‐contaminated water were 18, 80, 88, and 210 times higher than in shallow handpump water, and 21, 133, 700, and 2200 times higher than in deep tube‐well water, respectively. The concentrations of Cd and Ni in shallow handpump underground water were significantly higher than in deep tube‐well underground water. The concentrations of Pb, Cr, Cd, and Ni in deep tube‐well water were 0.017, 0.003, 0.0002, and 0.0002 mg L?1, respectively. Soils irrigated with sewage‐contaminated water had higher electrical conductivity, cation exchange capacity, organic carbon (C), and clay content but had lower pH and calcium carbonate content compared to soils irrigated with deep underground water. The concentrations of diethylenetriamine pentaacetic acid (DTPA)–extractable Pb, Cr, Cd, and Ni in soils irrigated with sewage‐contaminated water were 1.8, 35.5, 3.6, and 14.3 times higher, and total concentrations of these heavy metals were 1.5, 3.0, 3.7, and 2.2 times higher than that in soils irrigated with deep underground water. The mean concentrations of Pb, Cr, Cd, and Ni in crop plants growing on soils irrigated with sewage‐contaminated water were 4.88, 4.20, 0.29, and 3.99 mg kg?1, which were 1.2, 2.1, 8.7, and 1.9 times higher than in plants irrigated with deep tube‐well water, respectively. The amounts of potentially toxic metals were significantly and positively correlated with cation exchange capacity and organic C content and negatively correlated with soil pH. In conclusion, long‐term accumulation of toxic metals in soils and their uptake by crop plants has a high potential for phytotoxicity as well as for entering into the food chain. The findings also suggest contamination of underground shallow drinking water through leaching of some highly mobile metals. 相似文献
6.
《Communications in Soil Science and Plant Analysis》2012,43(4):390-407
The To Lich and Kim Nguu Rivers, laden with untreated waste from industrial sources, serve as sources of water for irrigating vegetable farms. The purposes of this study were to identify the impact of wastewater irrigation on the level of heavy metals in the soils and vegetables and to predict their potential mobility and bioavailability. Soil samples were collected from different distances from the canal. The average concentrations of the heavy metals in the soil were in the order zinc (Zn; 204 mg kg?1) > copper (Cu; 196 mg kg?1) > chromium (Cr; 175 mg kg?1) > lead (Pb; 131 mg kg?1) > nickel (Ni; 60 mg kg?1) > cadmium (Cd; 4 mg kg?1). The concentrations of all heavy metals in the study site were much greater than the background level in that area and exceeded the permissible levels of the Vietnamese standards for Cd, Cu, and Pb. The concentrations of Zn, Ni, and Pb in the surface soil decreased with distance from the canal. The results of selective sequential extraction indicated that dominant fractions were oxide, organic, and residual for Ni, Pb, and Zn; organic and oxide for Cr; oxide for Cd; and organic for Cu. Leaching tests for water and acid indicated that the ratio of leached metal concentration to total metal concentration in the soil decreased in the order of Cd > Ni > Cr > Pb > Cu > Zn and in the order of Cd > Ni > Cr > Zn > Cu > Pb for the ethylenediaminetetraaceitc acid (EDTA) treatment. The EDTA treatment gave greater leachability than other treatments for most metal types. By leaching with water and acid, all heavy metals were fully released from the exchangeable fraction, and some heavy metals were fully released from carbonate and oxide fractions. The concentrations of Cd, Cr, Cu, Ni, Pb, and Zn in the vegetables exceeded the Vietnamese standards. The transfer coefficients for the metals were in the order of Zn > Ni > Cu > Cd = Cr > Pb. 相似文献
7.
《Communications in Soil Science and Plant Analysis》2012,43(5-6):812-823
Abstract Alkaline‐treated wastewater sludges with varying doses of fly ash were added to a clay soil at rates equivalent to 100 t (dry weight) raw sludge ha?1 soil, and the variations in ammonium, nitrate, and total nitrogen contents were monitored throughout an incubation period of 360 days at 28°C. The results showed that inhibition of organic nitrogen mineralization occurred in soil amended with fly ash–containing sludge during the first 90 days of incubation. After the total incubation period of 360 days, the inhibition effects of alkaline sludge amendments totally disappeared. In fact, mineralization was enhanced in alkaline pasteurized sludges containing 80% and 120% fly ash. The overall results indicated that application of sludges amended with fly ash may prolong the use (3 to 6 months) of nitrogen from the organic nitrogen pool in sludge. 相似文献
8.
《Communications in Soil Science and Plant Analysis》2012,43(5-6):789-799
Abstract The effects of irrigating with saline water on native soil fertility and nutrient relationships are not well understood. In a laboratory experiment, we determined the extent of indigenous nutrient [calcium (Ca), magnesium (Mg), potassium (K), manganese (Mn), and zinc (Zn)] release in salt-saturated soils. Soils were saturated with 0, 75, and 150 mmolc L?1 sodium chloride (NaCl) solution and incubated for 1, 5, 10, and 15 days. The saturation extracts were analyzed for pH, ECe, and water‐soluble Ca, Mg, K, Mn, and Zn, and the remainder soil samples were analyzed for exchangeable forms of these elements. In a subexperiment, three soil types (masa, red‐yellow, and andosol) were saturated individually either with 100 mmolc L?1 of NaCl, sodium nitrate (NaNO3), or sodium sulfate (Na2SO4) salt. These salts were also compared for nutrient release. Soils treated with NaCl released higher amounts of water‐soluble than exchangeable nutrients. Except for Zn, the average concentrations of these nutrients in the soil solution increased significantly with time of incubation, but concentrations of the exchangeable forms varied inversely with time of incubation. The masa soil exhibited the highest concentrations of Ca and Mg, whereas K was highest in andosol. The extract from soils treated with NaCl contained greater amounts of soluble cations, whereas soils treated with Na2SO4 produced the lowest concentration of these elements irrespective of the type of soil used. 相似文献
9.
《Communications in Soil Science and Plant Analysis》2012,43(15-20):2157-2170
Abstract A single biosolids application was made to 1.5×2.3 m confined plots of a Davidson clay loam (Rhodic Kandiudult) in 1984 at 0, 42, 84, 126, 168, and 210 Mg ha?1. The highest biosolids application supplied 750 and 600 kg ha?1 of Cu and Zn, respectively. Corn (Zea mays L.), from 1984 to 2000, and radish (Raphanus sativus L.) and romaine lettuce (Lactuca sativa var. longifolia), from 2001 to 2004, were grown at the site to assess heavy‐metal bioavailability. Extractable (0.005 diethylenetriamine (DTPA) and Mehlich 1) Cu and Zn were determined on 0 to 15‐cm depth samples from each plot. Corn yield increased with biosolids rate each year until 1993 to 1997, when yield decreased with biosolids rate because of phytotoxicity induced by low (<5.0) soil pH. The corn yield reduction was reversed between 1998 and 2000 upon raising the soil pH to approximately 6.0 by limestone addition following the 1997 season. Between 2001 and 2004, radish and lettuce yields were either not affected or slightly increased with biosolids rate, even as soil pH declined to below 5.5. Plant‐tissue metal concentrations increased with biosolids rate and as pH declined but were always within the normal range of these crops. Mehlich 1 and DTPA extractable metals increased linearly with biosolids rate. Extractability of Cu and Zn decreased approximately 50% over the past 20 years despite a decrease in soil organic matter concentration and greater than 95% conservation of the metals. 相似文献
10.
《Communications in Soil Science and Plant Analysis》2012,43(21-22):3524-3538
The risks related to municipal solid waste compost application in comparison to farmyard manure and mineral fertilizers on durum wheat were investigated on a short‐term experiment. Compost was applied at 40 t ha?1 and 80 t ha?1 with or without chemical fertilizers. Analogously, farmyard manure was applied at 40 t ha?1. Both compost and farmyard manure improved plant growth and nutrient uptake. However, compost amendment showed more effectiveness, especially at 80 t ha?1. Alternatively, this dose of compost involved an increase of plant copper, cadmium, and zinc concentrations in plant tissues. Metal accumulation did not thwart the enhancement of wheat yield. Furthermore, grain translocation factor reached 1 only in the case of copper; however, it showed a significant decrease following compost application (ranged between 0.57 and 0.69). Bioconcentration factor showed a significant decrease with municipal solid waste compost supply, constituting an internal detoxification mechanism. 相似文献
11.
《Communications in Soil Science and Plant Analysis》2012,43(17-18):2833-2854
Potash resources in China are very scarce. It is especially important to correctly evaluate the potential potassium‐supplying power of soils in northern China in order to use soil potassium sufficiently and potash fertilizer properly. Regional differences in crop yield responses to long‐term potassium application in northern China were determined in this study. Twenty‐five representative soil samples from 13 provinces, municipalities, and autonomous regions of major agricultural regions in northern China were collected from the surface layer (0–20 cm) before crop seeding in 1993. A soil potassium‐depletion study was carried out in a pot experiment with successive planting of corn seedlings for 10 harvests in the 25 soils. Since 1993, field trials on wheat and corn response to long‐term potassium application were conducted at the fixed sites of HLJ‐SC (Shuangcheng of Heilongjiang), JL‐LFZ (Liufangzi of Jilin), HB‐XJ (Xinji of Hebei), SX‐LF (Linfen of Shanxi), QH‐NKY (Nongkeyuan of Qinghai), and XJ‐CJ (Changji of Xinjiang). Soil‐available potassium, slowly available potassium, total potassium, main clay minerals, cation exchange capacity, particle size, other available nutrients, and potassium concentration in plants were measured. The results showed that potential potassium‐supplying powers of the 25 tested soils, which were respectively evaluated by the contents of slowly available potassium in soils and the amount of total net potassium uptake in the pot experiment, generally tended to increase from eastern to western regions in northern China. Significant wheat yield responses to long‐term potassium application in the field trials were found since 2000 in the north‐central region but not observed until 2004 in the northwestern region. Significant corn yield responses to long‐term potassium application in the field trials were found starting in soils of the northeastern region, following in soils of the north‐central region, and then in soils of the northwestern region. These were consistent with potential potassium‐supplying power of the soils, which tended to increase from east to west regions. 相似文献
12.
《Communications in Soil Science and Plant Analysis》2012,43(13-14):1439-1451
Abstract In a laboratory study, ammonia (NH3) was trapped from 10 g soil units treated with 10 mg urea‐N, 10 mg urea‐N plus 50 ug N‐(n‐butyl) thiophosphoric triamide (NBPT), or 10 mg urea‐N plus 50 ug phenyl‐phosphorodiamidate (PPD). The soil was a Dothan loamy sand with pH levels adjusted to 6.0, 6.5, and 6.9 prior to N application. After 12 days, NBPT reduced NH3 volatilization 95 to 97%, while PPD reduced it 19 to 30%. Although NH3 loss was positively related to initial soil pH, there was no interaction between pH and urease inhibitor. In a field study, NH3 was trapped in semi‐closed chambers from 134 kg N/ha surface applied to corn (Zea mays L.) 6 weeks after planting. Nine days after N application, NH3 losses were 20.5, 1.5, 1.5, and 0.2 kg N/ha from urea, urea plus 0.25% NBPT, urea plus 0.50% NBPT, and ammonium nitrate, respectively. Covariance analysis showed that percent organic matter was negatively related to NHL losses. The soil properties, initial pH, CEC, and percent sand, did not vary enough to affect NH3 volatilization. In conclusion, in both the laboratory and the field, NBPT exhibited strong control of NH3 volatilization, and could thereby prevent significant loss of surface‐applied urea‐N to crops. 相似文献
13.
《Communications in Soil Science and Plant Analysis》2012,43(9-10):1493-1506
Abstract The low‐hilly regions in South China are mainly covered with Ultisols and Alfisols with a pH of 4.5–6.0. The major factor limiting crop performance is soluble aluminum (Al) in acid soils, resulting in phytotoxicity in susceptible species. An investigation in Jiangxi and Zhejiang provinces in South China showed that many plants including some native plants and cultivated crops (total of 27 species) could grow well in acid soils of these areas. The Al‐accumulating capacity in leaves varied greatly from species to species. Camellia oleifera Abel accumulated more than 13,500 mg kg?1 Al in old leaves; Camellia sinensis (L.) O. Kuntze, Fagopyrum esculentum Moench, and Dicranopteris pedata (Houtt.) Nakaike accumulated more than 1000 mg kg?1 Al in leaves; and Oryza sativa L., Eucalyptus globulus Labill., Citrus reticulata Blanco, and Brassica chinensis L. accumulated less than 200 mg kg?1 Al in leaves. This investigation provides an important basis for further exploring Al accumulation and resistant mechanisms in plants. 相似文献
14.
《Communications in Soil Science and Plant Analysis》2012,43(7-8):1029-1046
Abstract A previous study indicated that agricultural biosolid applications increased the concentration of EPA3050‐digestible trace elements in soils on Pennsylvania production farms but could not indicate potential trace‐element environmental availability. This study was conducted to determine if biosolid application had altered the distribution of trace‐elements among operationally defined soil fractions and the relationship of trace element concentrations in soil and crop tissues. Biosolid‐amended and unamended soils from production farms in Pennsylvania were extracted using a modified Bureau Communautaire de Référence (BCR) sequential fractionation technique and analyzed for chromium (Cr), copper (Cu), nickel (Ni), lead (Pb), and zinc (Zn). Trace‐element concentrations in crop tissues (soybean silage, sudangrass, corn grain, alfalfa hay, and orchardgrass hay) from the same farms were also determined. Fractionation results indicated that the proportion of Cr, Cu, Ni, Pb, and Zn that is potentially bioavailable is quite small in unamended soils. Biosolid applications significantly (P≤0.1) increased concentrations of Cu in all soil fractions (average increase over unamended soil=1.14, 8.27, 6.04, and 5.84 mg kg?1 for the exchangeable, reducible, oxidizable, and residual fractions, respectively), Ni (0.41, 1.65 mg kg?1 for the reducible and residual fractions, respectively), Pb (5.12 and 1.49 mg kg?1 for the reducible and residual fractions, respectively), and Zn (8.28, 7.12, 4.44, and 8.98 mg kg?1 for the exchangeable, reducible, oxidizable, and residual fractions, respectively) but did not significantly increase Cr in any soil fraction. Concentrations of Cu in all soil fractions were significantly (P≤0.01) correlated with concentrations of Cu in orchardgrass tissue (r=0.70, 0.66, 0.76, and 0.69 for the exchangeable, reducible, oxidizable, and residual soil fractions, respectively). Concentrations of exchangeable and reducible Zn were significantly correlated with Zn in sudangrass tissue (r=0.81 and 0.67), and reducible Zn was significantly correlated with Zn concentrations in orchardgrass tissue (r=0.65). Application of biosolids had little effect on bioavailability of Cr, Ni, or Pb, whereas higher loadings of Cu and Zn led to a shift toward the more labile soil fractions. Loadings of Cu and Zn were much smaller than cumulative loadings permitted under U.S. Environmental Protection Agency (USEPA) Part 503 regulations. Chemical soil fractionation was able to detect increases in labile soil Cu and Zn that relate to increased phytoavailability. 相似文献
15.
《Communications in Soil Science and Plant Analysis》2012,43(2):155-172
Abstract: The effect of ion‐exchange substrate Biona‐312 additions to nickel (Ni)–polluted soil on yield and mineral composition of cherry tomato and cucumber was evaluated. The plants were grown on the following media: untreated soil (the control series) and soil with added Ni (40 and 100 mg of Ni kg?1, respectively) as well as Biona‐312 (2 and 5% mass additions, respectively). In the presence of 40 mg of Ni kg?1 of soil, the plant yield did not change significantly, whereas in conditions of 100 of mg Ni kg?1, it decreased significantly. Biona‐312 application on Ni‐polluted soil increased the productivity of both species. The content of macronutrients in the plant biomass varied depending on the growth stage, Ni level, and Biona‐312 dose. For both species, higher Ni content was observed in the aboveground organs than in roots, but tomato contained more Ni than cucumber. Biona application reduced the Ni content in plant biomass of both species after being introduced into soil with a higher Ni level. 相似文献
16.
In this research work,the authors,using the recently developed method of fractionating the forms of inorganic phosphorus in calcareous soils,have studied the transformation processes of inorgnic phosphorus in three different phosphate fertilizers,i.e.,superphosphate,diammonium phosphate and calcium magnesium phyosphate,being commonly used in China,during a period of 3 years after their application to calcareous soils,and based on the experimental results obtained,some problems in current use of phosphate fertilizers are discussed. 相似文献
17.
《Communications in Soil Science and Plant Analysis》2012,43(7-8):1059-1075
Abstract Loss‐on‐ignition (LOI) and concentration of organic carbon (Cc) were determined on pristine forest soils and soils from afforested arable fields. The objectives were to investigate the relation between the Cc of soil estimated indirectly from LOI and true Cc from dry combustion (CLECO) and further to evaluate how the applied analytical method affects the carbon pool estimates. According to results, LOI was a good indicator of Cc in the organic layer. As regards mineral soil, however, CLECO/LOI ratio significantly decreased with increasing depth, and the ratio changed differently in soils underlying forest sites as opposed to the soils from former fields. The results indicate that estimation of carbon pools from conversion factors would lead to considerable bias and that direct measurement of Cc is preferable to the use of any Cc/LOI ratio. The results also emphasize the need for elimination of carbonate carbon when measuring Cc from the soil of arable fields. 相似文献
18.
Capability of Loss‐on‐Ignition as a Predictor of Total Organic Carbon in Non‐Calcareous Forest Soils
《Communications in Soil Science and Plant Analysis》2012,43(19-20):2899-2921
Abstract Accurate analyses of large numbers of soil samples are needed in order to reduce the uncertainty of carbon inventories. Loss‐on‐ignition (LOI) is still considered the most convenient assessment method, but its accuracy and precision for predicting total organic carbon (TOC) is questioned. However, our estimation of measurement precision for different samples showed comparable relative standard deviations (RSDs) for LOI and TOC determinations. Highest precision was found in forest floor samples (RSD<1.2%) and lowest (RSD 5–10%) in sandy soil samples low in organic matter. Forest floor samples (n=66) and non‐calcareous mineral soil samples (n=654) were used to calibrate and validate predictive equations. Excellent linear relationships were found. For a wide range of soils the bivariate predictive equation TOC=?0.1046 Clay+0.5936 LOI (r2=0.98) was developed and validated. After correction for clay content, slopes averaged remarkably close to the traditional 0.58 conversion factor. 相似文献
19.
《Communications in Soil Science and Plant Analysis》2012,43(7-8):1124-1137
The rate of cadmium (Cd) uptake by lettuce (Lactuca savita var. longifolia) over an entire growing season was investigated in a field treated with phosphorus (P) fertilizers spiked to different Cd levels. Romaine lettuce was planted following the standard cultivation practices. Over the growing period, soil and plant samples were taken to determine the total soil Cd content, Cd concentration of 1:0.5 (soil‐to‐water) extracts, and Cd content of plant tissue. Results indicated that lettuce can accumulate as much as 20 mg Cd per kilogram dry biomass without adverse effects on growth. The Cd content in the plant tissues decreased exponentially with time, indicating a dilution factor existing along with the plant growth. The plant uptake rate on a per‐unit‐area basis increased over time and can be simulated by a sigmoid pattern model. The plant uptake coefficient (α, L solution kg biomass?1 day?1) decreased as the Cd treatment level increased. 相似文献
20.
《Communications in Soil Science and Plant Analysis》2012,43(11-12):1551-1562
Abstract Fly ash from the coal‐burning industry may be a potential inorganic soil amendment to increase rice productivity and to restore the soil nutrient balance in paddy soil. In this study, fly ash was applied at rates of 0, 40, 80, and 120 Mg ha?1 in two paddy soils (silt loam in Yehari and loamy sand in Daegok). During rice cultivation, available phosphorus (P) increased significantly with fly ash application, as there was high content of P (786 mg kg?1) in the applied fly ash. In addition, high content of silicon (Si) and high pH of fly ash contributed to increased available‐P content by ion competition between phosphate and silicate and by neutralization of soil acidity, respectively. With fly‐ash application, water‐soluble P (W‐P) content increased significantly together with increasing aluminum‐bound P (Al‐P) and calcium‐bound P (Ca‐P) fractions. By contrast, iron‐bound P (Fe‐P) decreased significantly because of reduction of iron under the flooded paddy soil during rice cultivation. The present experiment indicated that addition of fly ash had a positive benefit on increasing the P availability. 相似文献