首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper,the nitrogen forms in newly-formed humic substances,including humic acid (HA),fulvic acid (FA) and humic acid in humin (HAI),were studied by using the ^15N CP-MAS NMR technique in combination with chemical approaches.Results show that the majority of nitrogen in HA,FA and HAI was in the amide form with some presented as aliphatic and/ or aromatic amines and some as pyrrole type nitrogen,although the contents of nonhydrolyzable nitrogen in them differed greatly from each other (15-55%).  相似文献   

2.
Bypass flow, the vertical flow of free water along the walls of macropores or preferential flow paths in the soil, can lead to movement of fertilizer nutrients beyond the reach of plants. Fertilizer type and the rate of application, as well as the amount, frequency, and intensity of rainfall, can influence the amount of fertilizer nitrogen (N) loss in leaching or bypass flow. The effect of fertilizer N form and rate of application on N recovery in bypass flow in a Kenyan Vertisol was determined. Calcium nitrate and ammonium sulfate, used to supply nitrate (NO3 ?)‐N and ammonium (NH4 +)‐N, respectively, were surface‐broadcast to 40‐cm‐long undisturbed soil columns at equivalent rates of 50, 100, and 200 kg N ha?1. Using a rainfall simulator, two rainfall events (30 mm of water applied in 1 h) were applied to the soil columns, one before and the other after fertilizer application. Total N, NO3 ?‐N, and NH4 +‐N concentrations in the bypass flow were determined after the second rainfall event. The application of NH4 +‐N, regardless of the rate, had no effect on N recovery in the bypass flow. When nitrate N was applied, the amount of fertilizer N recovered in the bypass flow significantly increased with the rate of NO3 ?‐N application. Of the total N in the bypass flow, 24 to 48% was derived from the soil, the bulk of which was organic N. It is concluded that following the application of NO3 ?‐N, bypass flow is an important avenue of loss of both fertilizer and soil N from Vertisols.  相似文献   

3.
Recent progresses in efficient management of nitrogen fertilizers for flooded rice in relation to nitrogen transformations in flooded soil were reviewed.Considerable progress has been achieved in the investigation on the mechanism of ammonia loss and the factors affecting it .However,little progress has been obtained in the investigations on nitrification-denitrification loss owing to the lack of method for estimating the fluxes of gaseous N products.Thus,so far the management practices developed or under investigation primarily for reducing ammonia loss are feasible or promising,while those for reducing nitrification-denitrification loss seem obscure,except the point deep placement. In addition,it was emphasized that the prediction of soil N supply and the recommendation of the optimal rate of N application based on it are only semi-quantitative.The priorities in research for improving the prediction are indicated.  相似文献   

4.
In a long‐term maize–wheat rotation at the Punjab Agricultural University, Ludhiana, India (subtropical climate), the effects of nitrogen (N), phosphorus (P), and potassium (K) addition on soil fertility and forms of inorganic P and K in the plow layer of an alkaline sandy loam soil were measured after 11 and 22 years of cropping. The treatments comprised four rates of N (0, 60, 120, and 180 kg N ha?1) as urea, three rates of P (0, 17.5, and 35 kg P ha?1) as single superphosphate, and two rates of K (0 and 33 kg K ha?1) as muriate of potash. The treatments selected for the present study were N0P0K0, N120P0K0, N120P17.5K0, N120P35K0, N120P17.5K33, and N120P35K33. A significant year × treatment interaction in decreasing available N [alkaline potassium permanganate (KMnO4)–oxidizable N) status of soils was found in all the treatments. Available P (Olsen P) in the control plot decreased over time whereas in plots with added P, available P increased significantly after years 11 and 22, with the greatest increase in the N120P17.5Ko treatment. Compared to the initial values, continuous P fertilization resulted in greater total P and chloride P concentrations after 11 and 22 years. Although sodium hydroxide (NaOH) P and sulfuric acid (H2SO4) P increased in P‐treated plots from the start of the trial to year 11, they decreased from year 11 to year 22. Among these inorganic P forms, chloride P was significantly positively correlated with P uptake (r = 0.811*). When only N and P were applied, available K [ammonium acetate (NH4OAc)–extractable K] significantly decreased over time. In plots without K addition, water‐soluble and exchangeable K decreased from their initial status. Compared to year 11, water‐soluble K increased, whereas exchangeable K decreased after year 22 in plots receiving no K fertilizer. Compared with NPK treatments, a significant decrease of total K in NP treatment plots suggests the release and uptake of nonexchangeable K. Water‐soluble K and exchangeable K were not correlated with K uptake. These results suggest that long‐term application of P fertilizers resulted in the accumulation of P in the soil, which could have resulted in saturation of P binding sites. Of the soil inorganic P fractions, only chloride P appears to be a good indicator of plant‐available P. The gradual loss in native soil K and release of nonexchangeable K indicates the need for adding K fertilizer to maintain soil fertility.  相似文献   

5.
Nitrification-denitrification losses of 15N-labelled nitrate and ammonium applied to the rhizos phere and nonrhizosphere of flooded rice were evaluated in 2 greenhouse rhizobox experiments.The loss of added N via denitrification was estimated directly by measuring the total fluxes of (N2O N2)12N,It was found that 67% and 51%-56% of 15N-nitrate added to rice rhizosphere were lost as (N2O N2)-15N in the 2 experiments,respectively,which were comparable to that added to norhizosphere soil(70%and 47%,respectively),implying that the denitrifying activity in rice rhizosphere was as high as that in nonrhizosphere soil.However,only trace amounts (0-0\3% of added N)were recovered as (N2O N2)-15N when 15N-ammonium was applied to either rhizosphere or nonrhizosphere,which seems to indicate that the nitrifying activity in the either rhizosphere of nonrhizosphere soils was quite low.The apparent denitrification calculated from 15N balance studies was 10%-47% higher than the total flux of (N2O N2)-15N.Reasons for the large differences can not be explained satisfactorily.Though the denitrifying activity in rhizosphere was high and comparable to that in nonrhizosphere soil.presumably due to the low nitrifying activity and /or the strong competition of N uptake against denitrification.the nitrification-denitrification taking place in rhizosphere could not be an important mechanism of loss of ammonium N in flooded rice-soil system.  相似文献   

6.
Nitrogen mineralization and nitrification in the soil of sub-alpine ruderal community of Mount Uludağ, Bursa, Turkey was measured for 1 year, under field conditions with Verbascum olympicum and Rumex olympicus being the dominant pioneer species under dry and wet sites, respectively. Seasonal fluctuations were observed in N mineralization and nitrification. The net N mineralization and nitrification were high in early summer and winter, due to high moisture. The annual net N mineralization rate (for the 0–15 cm soil layer) was higher under R. olympicus (188 kg N ha−1 yr−1) than under V. olympicum (96 kg N ha−1 yr−1). A significant positive correlation between net N mineralization and soil organic C (r2 = 0.166), total N (r2 = 0.141) and water content (r2 = 0.211) was found. Our results indicate that N mineralization rate is high in soils of ruderal communities on disturbed sites and varies with dominant species and, a difference in net N mineralization rate can be attributed to organic C, total N and moisture content of soils.  相似文献   

7.
An assessment of the environmental quality of sediments at several locations of the Ría de Pontevedra (NW of Spain) was performed by integrating toxicity data obtained from multiespecies bioassays, chemical data from analysis of mussels and sediment, and physical–chemical parameters of the sampled sites. Subsequently, a toxicity identification evaluation (TIE) method intended for characterization and identification of the toxic agents was applied to the most polluted location by using the Paracentrotus lividus sea urchin bioassay. Both metals and organic compounds seem to be the causative agents of toxicity in elutriates of the studied sediment. Finally, multivariate statistics were applied for a better interpretation of results. A factor analysis was developed to establish the relationship among variables and to derive local sediment quality guidelines (SQG) by linking chemical contamination to biological effects. When multidimensional scaling and cluster analysis were performed to group the locations according to either the chemistry or toxicity data, P3-site was always clearly broken up the others. The different approaches all supported the same conclusion: site P3 can be considered highly contaminated by both trace metals and PAHs resulting in high toxicity for all the tested species.  相似文献   

8.
Abstract

Samples of seven controlled‐release fertilizers, Nutricote Total 13–13–13, Nutricote Total 18–6–8, Osmocote Plus 15–9–12, Osmocote 13–13–13, Polyon 18–6–12, Polyon 14–14–14, and Plantacote 14–8–15, were placed in leaching columns containing acid‐washed sand. Samples of all leachates were analyzed weekly to determine release rates of ammonium‐nitrogen (N), nitrate‐N, phosphorus (P), potassium (K), magnesium (Mg), manganese (Mn), and iron (Fe). Release rates for P from all products were slower than those for NH4‐N, NO3‐N, and K. Release of Mg, Mn, and Fe was very poor, with less than 50% of the total amount of each of these elements ever being released from the prills for some products. Nutricote products released Fe and Mn more effectively than did Osmocote or Plantacote.  相似文献   

9.
The Fengqiu long-term field experiment was established to examine effects of organic manure and mineral fertilizers on soil total nitrogen (N) and natural 15N abundance. Fertilizer regimes include organic manure (OM), one-half N from organic manure plus one-half N from mineral N fertilizer (1/2OMN), mineral fertilizers [N–phosphorus (P)–potassium (K), NP, NK, PK], and a control. Organic manure (OM and 1/2OMN) significantly increased soil total N and δ15N, which was expected as a great amount of the N applied remained in soils. Mineral NPK fertilizer and mineral NP fertilizer significantly increased total N and slightly increaed δ15N. Phosphorus-deficient fertilization (NK) and N-deficient fertilization (PK) had no effect on soil total N. Significantly greater δ15N was observed in the NK treatment as compared to the control, suggesting that considerable N was lost by ammonia (NH3) voltalization and denitrification in this P-deficiency fertilization regime.  相似文献   

10.
Hail damage to an experiment that was being used to investigate nitrogen (N) nutrition of soybeans [Glycine max (L.) Merr.] with 15N methodology provided a unique opportunity to study the effects of hail damage at the R3 stage of development on N uptake and partitioning through stage R5.8. Field plots were established on a silt loam soil (Typic Hapludol 1). Severely damaged (mean 72% leaf loss) and slightly damaged (mean 26% leaf loss) soybeans were compared for total reduced N and for 15N concentration in leaflets, petioles, stems, roots, pod walls, and seeds during the 28 days following the hailstrom. The concentration of total N and of 15N in all organs in both damage treatments declined significantly after the storm, but less in green leaflets (total N), and in green leaflets, green petioles, and pod walls (15N) of severely than of slightly damaged plants. Measurements on senesced leaflets and petioles showed that the concentration of 15N also decreased to a greater extent than that of the total N in these organs. This differential loss of 15N compared with total N suggests that the 15N was in a form that was less refractory than was the bulk tissue N, and provides evidence of separate mobile pools of N in the plant. Nitrogen budgets were calculated to compare the loss of N and 15N from abscising leaflets and petioles to the N accumulation of the damaged plants during podfill. These showed that loss from the leaflets and petioles contributed only 7% of the total N accumulated by the plants between R3 and R5.8. This study has exemplified the usefulness of 15N methodology in investigations of the nutrition and physiology of soybeans suffering leaf damage by hail.  相似文献   

11.
Abstract

The knowledge of nitrogen (N) losses in direct‐drilling agrosystems is essential to develop strategies to increase fertilizer efficiency and to minimize environmental damage. The objectives were i) to quantify the magnitude of N volatilization and leaching simultaneously as affected by different urea fertilization rates and ii) to evaluate the capacity of these specific plant–soil systems to act as a buffer to prevent nitrate leaching. Two experiments were conducted during 2001/02 and 2002/03 growing seasons in Alberti, Argentina. The crop was direct‐drilled maize and the soil a Typic Argiudoll. Ammonia losses, N uptake by crop at flowering and harvest, grain yield, N in previous crop residues, and soil nitrate content up to 2‐m depths were determined. Nitrogen availability, soil nitrate (NO3)‐N up to 1 m plus fertilizer N, was linearly and highly associated with crop N uptake at flowering (R2=0.93, P<0.01) and at harvest (R2=0.852, P<0.01). Around 17.5% of fertilizer N was lost by volatilization in 10 days. The obtained values of residual nitrate N up to the 150‐cm depth were associated (R2=0.960, P<0.001) with those predicted by the nitrate leaching and economic analysis package (NLEAP) model. Maize in the direct‐drilling system was able to cycle N from the previous crop residues, N from soil organic matter, and N from fertilizers with few losses.  相似文献   

12.
In this study, benthic flux measurements of inorganic nitrogen (i.e., $ {\text{NH}}^{ + }_{4} $ , $ {\text{NO}}^{ - }_{2} $ ?+? $ {\text{NO}}^{ - }_{3} $ ) were made using a batch incubation system at different stations (i.e., shallow sandy macrophyte and unvegetated beds, and deep central mud) over four seasons in Lake Illawarra, NSW, Australia, to study the influence of different primary producers (i.e., seagrasses, microphytobenthos (MPB) and macroalgae) and/or different sediment types (i.e., sand or mud) on the benthic fluxes. In general, nutrient fluxes displayed typical diel variations, with lower flux out of sediments (release) or enhanced uptake by the sediment in the light, due to the photosynthetic activities of the plant-MPB-sediment community in Lake Illawarra during photosynthetic periods. A distinct seasonal pattern of inorganic-N fluxes was also observed (e.g., the marked difference between summers 2002 and 2003). This may be explained by the seasonal variations in the biomass and activity (growing or decay phases) of MPB, seagrass and macroalgae, which may influence their nutrient assimilation and alter the chemical conditions of surface sediments that influence the benthic geochemical processes and thus benthic nutrient fluxes. On an annual basis, unvegetated sediments displayed net DIN effluxes, while seagrass beds showed a net DIN uptake, and the highest DIN uptakes coincided with the largest standing crop of seagrass and/or macroalgae and the highest levels of benthic community production. This may be due to the enhanced denitrification and/or assimilation activity by rooted plants and macroalgae, and the effect is most efficient during periods of net growth (e.g., in Spring 2002).  相似文献   

13.
Abstract

Mineralization of soil organic nitrogen (N) and its contribution toward crop N uptake is central to developing efficient N‐management practices. Because biological incubation methods are time consuming and do not fit into the batch‐analysis techniques of soil‐testing laboratories, an analytical procedure that can provide an estimate of the mineralizable N would be useful as a soil‐test method for predicting plant‐available N in soil. In the present studies, the ability of boiling potassium chloride (KCl) to extract potentially mineralizable and plant‐available N in arable soils of semi‐arid India was tested against results from biological incubations and uptake of N by wheat in a pot experiment. Mineralization of organic N in soils was studied in the laboratory by conducting aerobic incubations for 112 days at 32°C and 33 KPa of moisture. Cumulative N mineralization in different soils ranged from 8.2 to 75.6 mg N kg?1 soil that constituted 2.7 to 8.8% of organic N. The amount of mineral N extracted by KCl increased with increase in length of boiling from 0.5 to 2 h. Boiling for 0.5, 1, 1.5, and 2 h resulted in an increase in mineral‐N extraction by 9.3, 12.7, 19.6, and 26.1%, respectively, as compared to mineral N extracted at room temperature. The boiling‐KCl‐hydrolyzable N (ΔNi) was directly dependent upon soil organic N content, but the presence of clay retarded hydrolysis for boiling lengths of 0.5 and 1 h. However, for boiling lengths of 1.5, and 2 h, the negative effect of clay was not apparent. The ΔN i was significantly (P=0.05) correlated to cumulative N mineralized and N‐mineralization potential (N0). The relationship between N0 and ΔN i was curvilinear and was best described by a power function. Boiling length of 2 h accounted for 78% of the variability in N0. Results of the pot experiment showed that at 21‐ and 63‐day growth stages, dry‐matter yield and N uptake by wheat were significantly correlated to boiling‐KCl‐extractable mineral N. Thus, boiling KCl could be used to predict potentially mineralizable and plant‐available N in these soils, and a boiling time of 2 h was most suitable to avoid the negatively affected estimates of boiling‐KCl‐hydrolyzable N in the presence of clay. The results have implications for selecting length of boiling in soils varying widely in clay content, and this may explain why, in earlier studies, longer boiling times (viz. 2 or 4 h) were better predictors of N availability as compared to 0.5 and 1 h.  相似文献   

14.
Abstract

In the West Central Great Plains of the United States, no‐till management has allowed for increased cropping intensity under dryland conditions. This, in turn, has affected the carbon (C) and nitrogen (N) mineralization dynamics of these systems. In this region, moisture stress increases from north to south due to an increase in evapotranspiration (ET), resulting in a climatic gradient that affects cropping system management. The objectives of this study were to determine the interaction of cropping system intensification and climatic gradient (ET) on C and N mineralization and to determine if the presence or absence of crop residue on the soil surface affects C and net N mineralization. Two cropping systems, winter wheat‐fallow (WF) (Triticum aestivium L.) and winter wheat‐corn (sorghum)‐millet‐fallow (WCMF) [Zea mays (L.), Sorghum bicolor (L.) Moench, Panicum milaceum (L.)] were studied at three locations across this aforementioned ET gradient. The treatments had been in place for 8 yrs prior to sampling in the study. These results showed that the more intense cropping system (WCMF) had a higher laboratory C mineralization rate at two of the three locations, which the study concluded resulted from larger residue biomass additions and larger quantities of surface residue and soil residue at these locations (Soil residue is defined as recognizable crop residue in the soil that is retained on a 0.6 mm screen). However, no differences in N mineralization occurred. This is most likely due to more N immobilization under WCMF as compared to WF. Presence or absence of crop residue on the surface of undisturbed soil cores during incubation affected potential C and net N mineralization more than either cropping system or location. Soil cores with the surface residue intact mineralized as much as 270% more C than the same soils where the surface crop residue had been removed. In laboratory studies evaluating the relative differences in cropping systems effects on C and N mineralization, the retention of crop residue on the soil surface may more accurately access the cropping system effects.  相似文献   

15.
Abstract

Quantitative assessment of soil nitrogen (N) that will become available is important for determining fertilizer needs of crops. Nitrogen‐supplying capacity of soil to rice and wheat was quantified by establishing zero‐N plots at on‐farm locations to which all nutrients except N were adequately supplied. Nitrogen uptake in zero‐N plots ranged from 41.4 to 110.3 kg N ha?1 for rice and 33.7 to 123.4 kg N ha?1 for wheat. Availability of soil N was also studied using oxidative, hydrolytic, and autoclaving indices, salt‐extraction indices, light‐absorption indices, and aerobic and anaerobic incubation indices. These were correlated with yield and N uptake by rice and wheat in zero‐N plots. Nitrogen extracted by alkaline KMnO4 and phosphate borate buffer and nitrogen mineralized under aerobic incubation were satisfactory indices of soil N supply. For rice, 2 M KCl and alkaline KMnO4 were the best N‐availability indices. Thus, alkaline KMnO4 should prove a quick and reliable indicator of indigenous soil N supply in soils under a rice–wheat cropping system.  相似文献   

16.
Abstract

The nitrate distribution in the soil profile varies with fertilization and tillage practices in potato (Solanum tuberosum L.) production. Band‐applied fertilizers localized near the seed at planting must diffuse through the bulk soil during the growing season. The hilling operation transforms soil surface into an undulating field landscape and redistributes the split‐applied nitrogen fertilizers between the hill and the interrow. The soil sampling procedure during the growing season thus becomes extremely tedious when searching to quantify nitrate accumulation in the entire soil volume. The objective of this study was to assess seasonal nitrate accumulation in a soil volume from a single boring in the potato hill. An intensive sampling was conducted at four places in the 0‐ to 50‐cm profile in potato fields receiving three rates of split-applied nitrogen (N) before hilling. Treatment and time effects provided a large range of nitrate concentrations throughout the soil profile. Nitrate content increased with N fertilization and organic‐matter mineralization and decreased as a result of plant uptake and nitrate leaching. Averaged across the season, nitrate accumulation in the 0‐ to 50‐cm profile represented 78% of that accumulated in the center of the hill on a per ha basis (r2=0.90). A single boring in the center of the hill considerably reduced sampling time and cost and provided a fair estimate of seasonal nitrate accumulation in the 0‐ to 50‐cm soil profile.  相似文献   

17.
Water, Air, & Soil Pollution - Precipitation was collected from May 15, 2001 to November 18, 2002, at the mountain top (620&nbsp;m a.s.l.) and mountain foot (47&nbsp;m a.s.l.) of the...  相似文献   

18.
Abstract

Comparison of methods is necessary to develop a quick and reliable test that can be used to determine soil‐available nitrogen (N) in an attempt to increase the efficiency of N fertilizers and reduce losses. The objectives of this research were to compare the fractions extracted by the calcium chloride (CaCl2) and the electro‐ultrafiltration (EUF) methods and to correlate them to the mineralization rate (k) obtained from a 112‐d incubation of 61 soil samples. Thirty‐five soil samples were collected from cornfields and 26 from winter cereal fields. Subsamples were either aerobically incubated to calculate k or extracted by the EUF and CaCl2 methods to identify three fractions: nitrate (NO3 ?)‐N, ammonium (NH4 +)‐N, and Norg‐N. The Norg‐N extracted by both methods was larger in soils from cornfields than in soils from winter cereal fields. In samples from cornfields, the Norg‐N fraction obtained by the EUF method was correlated to the Norg‐N measured by the CaCl2 method (r=0.46). Soil N content was related to k in samples from cornfields (r=0.40) but not in samples from winter cereal fields. Also, k was correlated to inorganic N content extracted by both chemical methods. The CaCl2 method was a reliable alternative for laboratories to determine soil‐available N for corn but not for winter cereal.  相似文献   

19.
The present article deals with the natural nitrogen-15 abundance of ammonium nitrogen and fixed ammonium in different soils.Variations in the natural ^15N abundance of ammonium nitrogen mineralized in soils under anaerobic incubation condition were related to soil pH.The δ ^15N of mineralizable N in acid soils was lower but that in neutral and calcareous soils was higher compared with the δ ^15N of total N in the soils.A variation tendence was also found in the δ ^15N of amino-acid N in the hydrolysates of soils.The natural ^15N abundance of fixed ammonium was higher than that of total N in most surface soils and other soil horizons,indicating that the increase of δ ^15N in the soil borizons beneath subsurface horizon of some forest soils and acid paddy soils was related to the higher δ ^15N value of fixed ammonium in the soil.  相似文献   

20.
Concern over the pollution potential of nitrogen (N) fertilisers has prompted studies of the utilisation efficiency of applied N by crops. This study was conducted to determine the efficiency of N usage by bell pepper (Capsicum annuum L.) grown with plastic mulch and trickle irrigation, and to define a rate of applied N which is equal to uptake by the crop. The relationships between applied N (0, 70, 140, 210, and 280 kg/ha), nutrient uptake, and yield for spring and autumn bell pepper crops grown on a major soil type (Tropeptic Eutrustox) in the Bundaberg region of subtropical Australia were investigated. Maximum dry weight yield of fruit, leaves, roots, and stems corresponded with N210 to N280 for both spring and autumn crops. In addition, maximum fresh weight of marketable fruit corresponded with N210 to N280 for both seasons. Nitrogen uptake was equal to the applied rate at N140. Plant uptake of elements increased with applied N and, at N280, were ranked as follows: K> N> Ca> Mg > S > P. Fruit accumulated the greatest proportion of K, N, and P (40 to 64%, 40 to 64%, 49 to 76%, respectively), and only a comparatively small amount of Ca (6 to 7%). The efficiency of fruit production from absorbed applied N declined with increasing N rate. District standard rates of P, N, K, and S application exceeded uptake by plants grown at an equivalent N rate (differences of 68 and 65 kg P, 57 and 52 kg N, 32 and 24 kg K, and 19 and 24 kg S for spring and autumn, respectively). Because of the importance of pepper yield as a determinant in economic outcome and the relatively low cost of fertiliser N, application rates in excess of N140 are likely to continue by district growers in an attempt to maximise yield.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号