首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Abstract

The cost and difficulty of applying lime on hilly pastures or small forage fields makes it appropriate to devote attention to efficiency of lime utilization. This study evaluated effects of calcitic and dolomitic lime on yield and mineral composition of 11 forage species grown on soil with a low base status of 0.46 cmolc as Ca and 0.18 cmolc as Mg kg‐1. Both lime types increased dry matter production, but only Lolium multiflorum responded more positively to dolomitic lime. The low Mg level in the soil was not a major factor limiting yield. Increase in yield was mainly attributed to the increase in pH with the concurrent decrease in Al level and to an increased Ca availability to plants. The species ranked as follows according to the magnitude of yield increase due to calcitic liming: Trifolium fragiferum > Trifolium pratense > Vicia sativa > Vicia villosa > Trifolium repens > Lolium perenne > Lolium multiflorum > Festuca arundinaceae = Lolium (multiflorum x perenne x perenne) > Trifolium subterraneum > Dactylis glomerata. The most responsive, Trifolium fragiferum, did not grow without lime. The least responsive, Dactylis glomerata, showed a yield increase of 36%. A similar ranking was obtained when all species were evaluated for Al tolerance using a 48 hour root elongation bioassay. In both unlimed soil and soil limed with calcitic lime, Mg concentrations of all species were relatively low. Although they were generally not low enough to have an effect on yield, they barely met the Mg nutritional requirement of cattle. By adding dolomitic lime, Mg content increased in grasses an average of 3.7 fold and in legumes by 2.4 fold. Grasses were similar in Ca, Mg, and K concentrations within a soil treatment. Legumes showed a greater range with the two vetches having the lowest Ca and Mg concentrations and red clover the highest.  相似文献   

2.
Abstract

Changes in the chemistry of the acidic Chilean Andisols in response to various ameliorant treatments (gypsum, dolomitic, and calcitic limestone) and their effects on ryegrass (Lolium perenne) production were studied in laboratory incubation and greenhouse experiments. Dolomitic and calcitic limestone alone and in combination with gypsum increased pH significantly and, at the same time, decreased exchangeable aluminum (Al) concentration to low concentrations. Gypsum alone increased pH slightly and reduced Al concentration by 50%, but its effect on ryegrass yield was similar to calcitic and dolomitic limestone. The Al/calcium (Ca) ratio was not a good predictor of the Al toxicity for plant growth but the Al/sulfur (S) ratio in the soil showed a good relationship with dry matter yield. The Ca + magnesium (Mg) + potassium (K) content in shoots was highly correlated with dry matter yield.  相似文献   

3.
Abstract

Tall fescue (Festuca arundinacea) is assuming increasing importance as a pasture species in South Africa. Many of the soils on which fescue is grown are inherently high in exchangeable Al and are characterized by high P‐immobilization capacities. The responses of fescue to dolomitic lime and P were examined in a factorial field trial on a red clay (Kandiustalfic Eustrustox) having a pH(KCl) and acid saturation [100(Al+H)/(Al+H+Ca+Mg+K)] in the unlimed state of 4.1 and 48%, respectively. A significant, though very limited, dry‐matter yield response to lime was evident (yields in the absence of lime were approximately 80% of the yields obtained at high lime levels). This pattern in the response to lime remained consistent over the three seasons of experimentation, despite soil acidity levels being substantially increased through the periodic use of ammonium sulphate as the N source in the trial. A significant response to P was evident at the first harvest after establishment; thereafter, P treatments had no effect on yield. The lime and P response data obtained in this investigation indicate that tall fescue is much more tolerant of soil acidity and has substantially lower soil P requirements than other important crop and pasture species in this country, such as maize (Zea mays) and Italian ryegrass (Lolium multiflorum). Lime significantly increased herbage Mg levels yet, in general, did not influence Ca levels in the herbage. Concentrations of Mg in the herbage exceeded Ca concentrations at all lime rates. Luxury uptake of K resulted in the K/(Ca+Mg) equivalents ratio in the herbage frequently exceeding the tetany hazard threshold of 2.2.  相似文献   

4.
In a ten‐year study of potassium (K) and lime application to a Kalmia sandy loam (fine‐loamy, siliceous, thermic Typic Hapludult), a soil high in nonexchangeable K, corn (Zea mays L.) and soybean [Glycine max (L.) Herr.] have not responded to applied K. The objectives of this study were to determine if a high K‐requiring crop such as tomato (Lycocersicon esculentum Mill. cv. Redpak) would respond to KCl fertilizer rate or lime type (dolomitic, calcitic, and mixed) and rate on such a soil. Potassium was applied at 0, 56, and 112 kg K/ha every year for ten years. Lime was applied at 0, 2, and 9 Mg/ha in calcitic, mixed, and dolomitic forms twice in ten years (1970 and 1973). In 1980, the tenth year of the study, tomato fruit was harvested by hand once‐over to simulate machine harvest and divided into four maturity groups by color. Soil pH was higher with dolomitic than calcitic lime. Soil K saturation was not influenced by lime rate or type. Fruit yield and leaf phosphorus (P), calcium (Ca), and magnesium (Mg) concentrations increased with increasing lime rates. Leaf K, manganese (Mn), iron (Fe), boron (B), copper (Cu), zinc (Zn), barium (Ba), strontium (Sr), and aluminum (Al) concentrations decreased with increasing lime rate. Leaf Mn, Ba, and Sr concentrations were lower with dolomitic than with calcitic lime. Lime type had no effect on tomato yield. Wide ranges in basic cation saturation ratios had little effect on yield. Soil K saturation and leaf K, Zn, and Ba concentrations increased with increasing K rate. Soil Ca and leaf Ca, Mg, and Al concentrations decreased with increasing K rate. Applied K had no effect on total yield but onceover marketable yield increased linearly with increasing K rate. Marketable yield increased 14% with an increase in K rate from 0 to 56 kg/ha. Thus, fruit maturity was apparently hastened by K fertilization.  相似文献   

5.
Abstract

In seeking reasons for differences in sensitivity among vegetables to low soil pH and the roles of lime and fertilizers, an experiment was conducted in 1984 with 3 crops: snapbeans (Phaseolus vulgaris L.), tomatoes (Lycopersicon esculentum L.), and red beets (Beta vulgaris L.). The lime treatments, check, calcitic lime, and dolomitic lime, were applied in 1979 and resulted in soil pH levels of 5.5, 6.9 and 6.7, respectively, at the time of planting. Banded fertilizer treatments were randomized in each lime plot. These were: check, NP, N, NPK, NPCa, and NPMg for snapbeans while with tomatoes and beets, K was added to the N, NPCa and NPMg treatments. Leaf samples from each plot were analyzed for 11 elements.

Growth responses of the 3 crops were related to the plant sensitivity to acid soils. When grown on soil with pH 5.5, snapbean vine weights and pod yields were not affected, tomato yields tended to be lower, and red beet yields were substantially reduced. Leaf Mn levels increased with the greater sensitivity to acid soils. Both calcitic and dolomitic limes had little effect on snapbean yields, moderate effects on tomato yields, and more than doubled yields of red beets. Lime types affected primarily leaf Ca and Mg. The NPK fertilizer treatment increased yields of tomatoes and red beets but increased only vine weights of snapbeans. Leaf Mn was increased substantially in the NPK treatment. When gypsum or Epsom salts was added, yields were not affected.

The sensitivity of red beets and to a lesser extent tomatoes could not be explained on the basis of manganese toxicity or poor uptake of calcium or magnesium. The results did suggest that poor phosphorus uptake could be a primary cause.  相似文献   

6.
Abstract

Magnesium (Mg) is a nutrient that affects the development of plants and is mainly supplied through liming performed to correct soil acidity. By acting on photosynthesis and influencing carbohydrate partitioning in the plant, supplementary Mg supplied through soil or foliar application can increase the yield and quality of potato (Solanum tuberosum L.) tubers. The aim of this study was to evaluate the effect of supplemental Mg fertilization by soil or foliar application on plant nutritional status, tuber yield, and carbohydrate partitioning in potato crops in soil corrected with calcitic and dolomitic limestones. The experiment was carried out in pots under greenhouse conditions with a randomized block design in a 2?×?3 factorial scheme with four replications. Dolomitic limestone application and supplemental Mg fertilization via soil increased the concentrations of this nutrient in potato leaves. Liming with dolomitic limestone reduced the uptake of Ca and K by plants, but supplemental Mg fertilization did not alter the uptake of Ca, Mg or K. Supplemental Mg fertilization did not increase plant growth and tuber yield, even when calcitic limestone was used to elevate the base saturation to 60%; the exchangeable Mg concentration in soil was 9?mmolc dm?3, and the Ca:Mg relationship was 3.7. Liming with dolomitic limestone or providing supplemental Mg fertilization did not increase sugar and starch partitioning to the tubers.  相似文献   

7.
Abstract

Four liming and Mg materials were compared in a greenhouse experiment with soybeans for their ability to raise soil pH, supply Mg, and their effect on the availability of Mn, Cu, Fe, and Zn. Three materials were added at rates of 0, 1, and 2 times the lime requirement, calcitic lime, dolomitic lime, and Hydra‐Mag (an industrial by‐product containing 20% Mg). Sul‐Po‐Mag was the fourth material added as a plus Mg check at a rate based on an equivalent amount of Mg to that supplied by Hydra‐Mag. Plant growth, plant tissue element content and extractable soil elements were determined after growing the soybeans for 5 weeks. Plants in treatments where no lime/Mg materials were added were very small due possibly to Mg deficiency and Al toxicity. The 1 and 2 times rates of the materials gave about equal growth except that the high Sul‐Po‐Mag rate caused salt injury. Hydra‐Mag increased soil pH more than calcitic lime which increased soil pH more than dolomitic lime. Soil and plant Mg levels were increased more by Hydra‐Mag than dolomitic lime when applied at equivalent rates based on the lime requirement. Dolomitic lime gave very good plant growth indicating that it made adequate amounts of Mg available. Hydra‐Mag reduced plant and extractable soil Zn, Cu, and Fe but no more so than calcitic or dolomitic lime. Hydra‐Mag reduced plant Mn more than for the other limes.  相似文献   

8.
Tomato plants were grown for 2 years at 4 different rates of Mg fertilization on a Princeton loamy sand at pH 4.8 with 29 kg exchangeable Mg/ha. Calcareous limestone was used to provide a pH treatment in the second year. Magnesium deficiency symptoms were observed on plants grown on plots having 38 kg/ha NH4OAC‐extractable Mg. Application of 56 kg Mg/ha corrected Mg deficiency and produced a significant increase in yield. Application of calcitic limestone also produced significant yield increases, but did not affect the development of Mg deficiency symptoms. Tomato yield was increased 27.9% by Mg application and 17.7% by lime application. Highest tomato yield was obtained with application of 112 kg Mg/ha. Symptoms of Mg deficiency were observed when the Mg concentration in recently mature leaf tissue was in the 0.30 to 0.32% range. Magnesium concentration in leaf tissue increased linearly with increasing Mg rate. Leaf Mg concentration at various growth stages of the tomato plant was variable depending on Mg treatment. Magnesium fertilization rate bad little effect on Ca or K leaf concentrations. Application of Calcltic limestone increased leaf tissue Ca and reduced leaf tissue Mg and Mn concentrations.  相似文献   

9.
Abstract

Changes in surface reactivity produced by different types of liming in a Chilean Andisol were determined. Barros Aranas soil with 53% aluminum (Al) saturation and 4.8 pH was incubated with different amounts of calcitic and dolomitic lime. Each cmol of calcitic or dolomitic lime applied per kg of soil increased the pH with 0.13 and 0.16 units, respectively. Consequently, the decrease in Al saturation was higher with dolomitic than with calcitic liming material. The zero point of charge (ZPC) increased from 4.2 in unlimed soil to 4.6 and 4.8 in limed soil, while the point of zero salt effect (PZSE) decreased from 4.5 to 4.0 and 3.5 with calcitic and dolomitic lime, indicating an increase in negative charge. But, isoelectric point (IEP) values measured by electrophoretic migration suggested that the external charge only changed by treatment with calcitic liming materials. In both treatments, the acidity constant decreased, and consequently phosphorus (P) adsorption capacity also decreased.  相似文献   

10.
Availability and plant uptake of nutrients were evaluated in three tropical acid soils (Kandiudult) amended with paper pulp and lime under greenhouse conditions. Amendments were applied to attain target pH values of 5.5, 6.0, and 6.5. A control treatment (no paper pulp or lime added) was also included. Rye grass (Lolium perenne L.) as a test plant was grown for three successive cycles of 40 days each. Extractable nutrients and cumulative nutrient uptake were determined. The application of paper pulp or lime resulted in a significant increase in exchangeable Ca and K and a decrease in exchangeable Mg and extractable Fe, Mn, and Zn. Amendment of soils with paper pulp or lime increased plant uptake of Ca and Mg and decreased that of K, Mn, and Zn. Both amendments behaved similarly, but the effect of lime seemed generally greater than that of paper pulp. Paper pulp in tropical acid soils behaved as a liming agent rather than an organic amendment. Similar to lime, amendment of soils with paper pulp resulted in an increase in availability of Ca and Mg and in a decrease in availability of K, Mn, and Zn for plants. Soil extractions appeared to be appropriate for assessing the availability of Ca, Mn, and Zn. Soil pH and effective cation exchange capacity positively influenced the availability of Ca and negatively the availability of Mn and Zn. Thus, the precision of predicting nutrient availability in paper pulp amended tropical acid soils could be improved by including soil pH or effective cation exchange capacity in relevant regression equations.  相似文献   

11.
Abstract

An experiment was conducted to determine the influence of continuous cropping and K fertilization on plants grown on coarse‐textured soils high in feldspars. The A and C horizons of Elsmere (sandy, mixed, mesic Aquic Haplustoll), Valentine (mixed, mesic Typic Ustipsamment) and Sharpsburg (fine, montmorillonitic, mesic Typic Arguidoll) soils were continuously cropped in the greenhouse with annual ryegrass (Lolium multiflorum Lam.). Four K treatments (0, 18.5, 37.5 and 75.0 mg K/kg soil) were applied before planting. At approximately 4 week intervals, above ground plant tissue was harvested and analyzed for K content for a total of 12 cuttings. Potassium deficiency symptoms (marginal necrosis, spotting) eventually appeared in plants grown on all but the A horizon of the Sharpsburg soil. Continuous cropping decreased plant K concentration, averaged across all treatments, from 38 to 10 g/kg dry matter. Potassium fertilization increased K concentration in plant dry matter on the soils initially low in slowly available and exchangeable K, but did not increase biomass. Uptake was higher by plants grown on A horizons. Different K rates resulted in different cumulative K uptake on the soils initially low in available K.  相似文献   

12.
Distribution and plant uptake of soil Cd as influenced by organic matter and soil type were investigated in a greenhouse experiment. Three soils (a sand, sandy loam and clay loam) were used. The rates of organic matter in its moist state added were 0,20,40, 80, 160 and 320 g kg-1 of the air-dried soil on mass basis. Ryegrass (Lolium multörum L.) was used as a test crop. Soil Cd was analysed by a sequential extraction technique and by extraction with 1 M NH4NO3 and 0.005 M DTPA. The exchangeable fraction of Cd as determined by 1 M MgCl2 in the sequential extraction procedure increased, whereas the Fe-Mn oxidebound fraction decreased, with increasing levels of organic matter addition in all three soils. The dry matter yields of ryegrass were not affected by the addition of organic matter, but the Cd concentrations in both cuts of ryegrass decreased with increasing amounts of organic matter added. The plant Cd was highly but negatively correlated to soil CEC. At any level of organic matter addition, the decrease in Cd concentration of ryegrass was in the order: sand > sandy loam > clay loam.  相似文献   

13.
Although Ni is officially recognized as an essential micronutrient for all higher plants, the majority of the published research on soil availability of Ni focuses on its hazardous role as a heavy metal. The objective of the study was to evaluate certain Ni soil tests in uncontaminated soils for an initial estimation of its sufficiency critical levels. Nickel was extracted from 30 cultivated soils employing the following extraction methods: DTPA, AB‐DTPA, AAAc‐EDTA, Mehlich‐3, 0.1 M HCl, and 0.1 M HNO3. Ryegrass (Lolium perenne L.) was grown in pots containing the soils, harvested five times, certain plant parameters were determined, and the Cate–Nelson procedures were used for Ni critical levels determination. Among the six methods, HCl was the least reliable extractant for the evaluation of soil available Ni, whereas the most significant (p ≤ 5%) relationships between Ni concentration or Ni uptake by ryegrass and Ni soil tests were consistently obtained for AAAc‐EDTA or Mehlich‐3 extractable Ni. In many cases, > 80% of the variability of Ni concentration or uptake by ryegrass was explained by these two soil tests without the inclusion of other soil properties that affect Ni bioavailability. Sufficiency critical levels of Ni in soil were ≈ 2 mg kg–1 for both methods. Consequently, as an initial approach, concentrations of AAAc‐EDTA or Mehlich‐3 extractable Ni < 2 mg kg–1 are probably a good guide to indicate soils that will respond to Ni fertilization.  相似文献   

14.
Abstract

Quantifying the effects of soil acidity on plant growth remains a challenging research topic as numerous soil and plant growth factors are influenced by pH and lime. In the field, annual ryegrass (Lolium multiflorum Lam. ‘Marshall') responded positively to the application of 3.8 Mg lime/ha on a strongly acid (pH 4.7) Lilbert loamy fine sand (loamy, siliceous, thermic, arenic Plinthic Paleudult) over three growing seasons. Dry matter yield in some cuttings, however, was better correlated with soil Al, P, Ca, Mg, and K than with pH. A greenhouse study was undertaken to quantitatively determine the effects of these five minerals plus Mo on ryegrass yield in limed and unlimed Lilbert soil material. Three ryegrass cuttings were obtained from unlimed (pH 4.8) or limed (1000 mg CaCO3/kg) Lilbert soil which was also amended with five rates of Ca, K, Mg, Al, P, and Mo in combinations stipulated by central composite design methodology. Response surface models that fit yield to the applied treatments and soil test data were complex because all factors and many interactions were significant. Furthermore, the models were transformed as the plants matured and element availability changed due to mineral uptake. Most yield improvement derived from liming occurred as a result of the elimination of exchangeable Al with a concomitant increase in P efficiency. Applied Ca did not alleviate Al toxicity in unlimed soil. Chlorotic plants developed in all pots where Mg was excluded. Yield was increased by applied Mg and Mo in unlimed soil, but not in limed soil. Applied K improved yield only in limed soil. Although regression accounted for a large portion of the yield variability (R2 values ranged from 0.75 to 0.95), these models were unable to accurately predict yield in control treatments.  相似文献   

15.
In acid soils, when no-tillage farmers intend to apply lime, the question arises as to whether it should be incorporated into the soil or whether it can be left on the soil surface. In this study, two types of limestone, calcitic (Lcal) and dolomitic (Lmag), were tested in two olive groves of cv. Cobrançosa, with an initial pH of 4.9 (S. Pedro) and 5.5 (Raparigas). In S. Pedro, limestone was incorporated into the soil (Lburied) and in Raparigas, it was left on the floor (Lfloor). The use of limestone significantly increased soil pH in the 0–0.10 m layer in both experiments. In the 0.10–0.20 m soil layer, only Lmag increased significantly the soil pH in comparison with the control. Lmag was more effective than Lcal in increasing cation exchange capacity (CEC) and reducing exchangeable acidity (EA) and aluminium (Al3+) in the Lfloor experiment. Both limes increased leaf calcium (Ca) concentration, and Lmag increased the leaf levels of magnesium (Mg). In Lfloor experiment (higher soil pH), soil microbial carbon (C) decreased, and microbial nitrogen (N) increased with liming, which may indicate an increase in bacteria in the soil and a decrease in fungi. In Lburied experiment (initial pH of 4.9), liming significantly increased accumulated (2018–2021) olive yield (56 and more than 67 kg tree−1, respectively, in the control and liming treatments). In Lfloor experiment (initial pH of 5.5), the accumulated olive yields did not differ significantly between treatments (average values between 105 and 115 kg tree−1). The results of this study provide evidence that liming may increase olive yield in very acid soils and that dolomitic limestone should preferably be used by no-tillage farmers, due its higher solubility and faster effect on soil and trees.  相似文献   

16.
The production and composition of leaf litter, soil acidity, exchangeable nutrients, and the amount and distribution of soil organic matter were analyzed in a broad‐leaved mixed forest on loess over limestone in Central Germany. The study aimed at determining the current variability of surface‐soil acidification and nutrient status, and at identifying and evaluating the main factors that contributed to the variability of these soil properties along a gradient of decreasing predominance of European beech (Fagus sylvatica L.) and increasing tree‐species diversity. Analyses were carried out in (1) mature monospecific stands with a predominance of beech (DL 1), (2) mature stands dominated by three deciduous‐tree species (DL 2: beech, ash [Fraxinus excelsior L.], lime [Tilia cordata Mill. and/or T. platyphyllos Scop.]), and (3) mature stands dominated by five deciduous‐tree species (DL 3: beech, ash, lime, hornbeam [Carpinus betulus L.], maple [Acer pseudoplatanus L. and/or A. platanoides L.]). The production of leaf litter was similar in all stands (3.2 to 3.9 Mg dry matter ha–1 y–1) but the total quantity of Ca and Mg deposited on the soil surface by leaf litter increased with increasing tree‐species diversity and decreasing abundance of beech (47 to 88 kg Ca ha–1 y–1; 3.8 to 7.9 kg Mg ha–1 y–1). The soil pH(H2O) and base saturation (BS) measured at three soil depths down to 30 cm (0–10 cm, 10–20 cm, 20–30 cm) were lower in stands dominated by beech (pH = 4.2 to 4.4, BS = 15% to 20%) than in mixed stands (pH = 5.1 to 6.5, BS = 80% to 100%). The quantities of exchangeable Al and Mn increased with decreasing pH and were highest beneath beech. Total stocks of exchangeable Ca (0–30 cm) were 12 to 15 times larger in mixed stands (6660 to 9650 kg ha–1) than in beech stands (620 kg ha–1). Similar results were found for stocks of exchangeable Mg that were 4 to 13 times larger in mixed stands (270 to 864 kg ha–1) than in beech stands (66 kg ha–1). Subsoil clay content and differences in litter composition were identified as important factors that contributed to the observed variability of soil acidification and stocks of exchangeable Ca and Mg. Organic‐C accumulation in the humus layer was highest in beech stands (0.81 kg m–2) and lowest in stands with the highest level of tree‐species diversity and the lowest abundance of beech (0.27 kg m–2). The results suggest that redistribution of nutrients via leaf litter has a high potential to increase BS in these loess‐derived surface soils that are underlain by limestone. Species‐related differences of the intensity of soil–tree cation cycling can thus influence the rate of soil acidification and the stocks and distribution of nutrients.  相似文献   

17.
Abstract

Though surface‐applied gypsum has been shown to be useful in reducing the subsoil acidity syndrome, excessive application could reduce the availability of other essential cations in soil. This study was conducted to determine the effects of surface‐applied gypsum on the availability of potassium (K) and magnesium (Mg) in field soils. Field experiments were conducted on Davidson and Tifton series soils in the southeastern United States with 6 main ameliorant treatments (0, 2, 5, and 10 t gypsum/ha, soil profile mixed to 1 m without lime incorporation and, mixed with lime to 1‐m depth), and 2 levels of Mg (0 and 100 kg Mg/ha) and 4 levels of K (0, 125, 250, and 375 kg K/ha) in a split‐split plot configuration. Alfalfa was grown on the Tifton soil and sorghum on the Davidson soil. Yields of alfalfa and sorghum increased with 2 t gypsum/ha but were adversely affected above 5 t gypsum/ha. Gypsum amendment at 2 t/ha reduced topsoil exchangeable Mg and K in both soils. In the soil profile study, exchangeable Mg was reduced throughout the upper 52.5‐cm depth, while no reduction of K was observed below the 22.5‐cm depth in either soil. The study indicates that Mg is more susceptible to leaching loss than K after surface application of gypsum. It is also suggested that surface‐applied gypsum be used as a soil ameliorant along with proper management of Mg and K fertilizers.  相似文献   

18.
Abstract

Application of coal combustion by‐products (CCBs) to acid soils can have beneficial or detrimental effects. A column study was conducted to determine the effects of CCBs on mitigating acid soil properties after leaching with 138 cm deionized water. Columns containing 105 cm acidic Lily soil (Typic Hapludult) had mixed in the top 15 cm the following treatments (g/kg soil): no CCB or limestone (check); dolomitic limestone (lime) at 3.98; high‐calcium sulfate (CaSO4) flue gas desulfurization (FGD) by‐product (BP) at 15.88; combination of lime+FGD at rates given; high‐CaSO4 FGD BP enriched with Mg (FGD+Mg) at 15.88; and fluidized bed combustion (FBC) BP at 6.45. After being leached for 39 days, the columns of acid soil treated with high‐CaSO4 by‐products showed higher subsurface pH, calcium (Ca), and sulfur (S) and lower aluminum (AI) and manganese (Mn). In contrast, the lime alone treatment had little effect on subsurface soil properties. Use of dolomitic limestone to supply magnesium (Mg) in conjunction with the CaSO4 treatments was more effective than supplementation with Mg(OH)2, where97% of the added Mg leached from the top layer. Substances leached from the CCBs studied were effective in reducing problems associated with subsurface soil acidity.  相似文献   

19.
Abstract

In Oxisols, acidity is the principal limiting factor for crop production. In recent years, because of intensive cropping on these soils, deficiency of micronutrients is increasing. A field experiment was conducted on an Oxisol during three consecutive years to assess the response of common bean (Phaseolus vulgaris L.) under a no‐tillage system to varying rates of lime (0, 12, and 24 Mg ha?1) and boron (0, 2, 4, 8, 12, 16, and 24 kg ha?1) application. Both time and boron (B) were applied as broadcast and incorporated into the soil at the beginning of the study. Changes in selected soil chemical properties in the soil profile (0- to 10‐ and 10- to 20‐cm depths) with liming were also determined. During all three years, gain yields increased significantly with the application of lime. However, B application significantly increased common bean yield in only the first crop. Only lime application significantly affected the soil chemical properties [pH; calcium (Ca2+); magnesium (Mg2+); hydrogen (H+)+ aluminum (Al3+); base saturation; acidity saturation; cation exchange capacity (CEC); percent saturation of Ca2+, Mg2+, and potassium (K+); and ratios of exchangeable Ca/Mg, Ca/K, and Mg/K] at both soil depths (0–10 cm and 10–20 cm). A positive significant association was observed between grain yield and soil chemical properties. Averaged across two depths and three crops, common bean produced maximum grain yield at soil pHw of 6.7, exchangeable (cmolc kg?1) of Ca2+ 4.9, Mg2+ 2.2, H++Al3+ 2.6, acidity saturation of 27.6%, CEC of 4.1 cmolc kg?1, base saturation of 72%, Ca saturation of 53.2%, Mg saturation of 17.6%, K saturation of 2.7%, Ca/Mg ratio of 2.8, Ca/K ratio of 25.7, and Mg/K ratio of 8.6. Soil organic matter did not change significantly with addition of lime.  相似文献   

20.
In acid soils, Al toxicity and nutrient deficiencies are main constraints for low yield of cacao (Theobroma cacao L.). A controlled growth chamber experiment was conducted to evaluate the effect of three Al saturations (0.2, 19, and 26%) adjusted by addition of dolomitic lime on growth and nutrient uptake parameters of cacao. Overall, increasing soil Al saturation decreased shoot and root dry weight, stem height, root length, relative growth rate, and net assimilation rate. However, increasing soil Al saturation increased leaf area, specific leaf area (total leaf area/total leaf dry wt), and leaf area ratio (total leaf area/shoot+root wt). Increasing soil Al saturation decreased uptake of elements. Nutrient influx (IN) and transport (TR) decreased significantly for K, Ca and Mg, and showed an increasing trend for S and P as soil Al saturation increased. However, increasing soil Al saturation significantly increased nutrient use efficiency ratio (ER, mg of shoot weight produced per mg of element in shoot) of Ca, Mg and K and decreased ER for other elements. Reduction of soil acidity constraints with addition of lime and fertilizers appear to be key factors in improving cacao yields in infertile, acidic, tropical soils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号