首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Knowledge of differentiation of pollutants in urban runoff between dissolved and particulate matter is of great concern for a successful design of a water treatment process. Seasonal variations in pollutant load are of equal importance. Ten metals (Al, Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, and Zn), as dissolved and particulate bound, was studied in the runoff from a major urban highway during a winter season and its following summer. Studded tyres and winter salting were expected to have an impact on the runoff water quality. The dissolved part of Al, Cd, Co, Cr, Mn and Ni was significantly higher in winter in comparison with summer (p?<?0.01). For Fe, however, the dissolved part was lower during winter. No significant difference was found for Cu, Pb and Zn between the two seasons. The mass concentration (mg kg?1) for all metals was significantly higher over the summer except for Al and Co, which showed a higher mass concentration during the winter. The concentration of selected metals vs. total suspended solids (TSS) showed a linear relationship (r 2?>?0.95) during winter runoff events except for Cd. A good correlation (r 2?>?0.90) was also found for the summer period for Al, Cu, Fe, Mn, Ni and Zn. It is suggested that the metal pollutant load during winter could be assessed indirectly by measurement of TSS.  相似文献   

2.
This study determines the seasonal variability of metal partition coefficients [aluminium (Al), iron (Fe), manganese (Mn), copper (Cu), and zinc (Zn)] and analyses the importance of suspended sediments (SS), dissolved organic carbon (DOC) concentrations, pH, and discharge (Q) on the seasonal variability of metal partition coefficients (KDs) in the headwaters of the Mero River catchment, which drains an agroforestry area in northwestern Spain. Metal partition coefficients were used as an approach to relate dissolved and particulate fractions. Water samples were collected over 3 years (2005–2008) at the catchment outlet. The mean metal dissolved concentrations were: Fe (43.5 μg L?1) > Al (23.3 μg L?1) > Zn (1.8 μg L?1) > Mn (1.2 μg L?1) > Cu (0.3 μg L?1). Partition coefficients followed the order Mn > Al > Fe > Zn > Cu, and their values exhibited low variability. Al, Cu, and Zn partition coefficients presented the greatest values in summer, except during 2007–2008, when the greatest KDs value was observed in autumn, whereas the KDs of Fe showed the greatest values in winter. The KD of Mn has no seasonality. For Al, Cu, and Zn, the seasonal SS concentrations were closely related to Kd. For Fe, Kd was more closely related to DOC concentration than to SS concentration.  相似文献   

3.
Heavy metal transport in Cauvery river chiefly takes place in the particulate form. Tributaries Hemevathi and Kabini draining highly mineralized areas contribute significantly to the heavy metal load of the Cauvery river. Particulate metal transport is influenced by the presence of major dams built across the river. Factor analysis of the elemental data identifies two major group of heavy metals, (a) Fe, Mn, Cr, V and Ti and (b) Cu, Pb and Zn in the suspended sediments of Cauvery river. Heavy metals in surface sediments show wide variations in their concentrations due to the non-uniform grain size distribution of the sediments. The elements Fe, Mn, Pb, Cu, Zn, Ni, Co and As are dominantly present in the <20 μm fraction of the river sediments. Speciation studies show that Fe-Mn oxide phase held the largest share of heavy metals in the sediments. The depth variation of heavy metals in the core sediments suggest their similar mobility during diagenesis. Geoaccumulation indices calculated suggest that Cd, Zn, Cr, Pb, Cu and Ni are enriched in sediments several times over background values.  相似文献   

4.
Heavy metal inputs to Mississippi Delta sediments   总被引:1,自引:0,他引:1  
Heavy metal concentrations were determined in suspended particulates, filtered water and sediment collected in the Mississippi River and from its marine delta. More than 90% of the metal load of the river is associated with particulate matter, which is relatively constant in chemical composition with time and place. The Mississippi River suspended material is similar to average crystal rocks in Fe, Al, V, Cr, Cu, Co, Mn, and Ni concentration but is generally enriched in Zn, Cd and Pb. Sediment cores dated by the Pb 210 method show that the Cd and Pb enrichments are recent phenomenon and are most likely due to the activities of man. About 6000 tonne of Pb and 300 tonne of Cd are being added to the delta sediments by man each year, more than 30 times the amount added to the Southern California Bight. River particulate matter is essentially identical to deltaic sediments in Al, Fe, Cr, V, Cd and Pb concentration, but the sediments are depleted in Co, Cu, Mn, Ni and Zn by 20 to 40%. Chemical leaching of the solids show the metal losses to be primarily from the oxide phase, suggesting diagenetic reduction and mobilization as a mechanism. Trace metal concentrations in filtered Mississippi River water were below the limits for safe drinking water and were similar to world average river values. The abundant river suspended matter and high pH combine to keep dissolved trace metal concentrations low.  相似文献   

5.
Concentrations of Al, Fe, Mn, Zn and Cu were measured monthly at 24 sites in 21 rivers in Ontario and Quebec. Relationships between metal and suspended particulate matter (SPM), turbidity, colour (g440), temperature and system hydrology were quantified, and used to derive empirical models for predicting metal concentrations. In a test of the models using an independent data set, they explained a significant proportion of the variation in Al (90%), Fe (85%), and Mn (57%), but only 37% of the variation in riverine Zn concentrations. Metals concentrations are most strongly associated with SPM concentrations. The proportion of the total metal load associated with particulates (>0.45 μm) is highly variable below 10 ppm SPM, indicating that this concentration approximates the division between systems dominated by weathered (solution) versus eroded (particulate) inputs. Annual metal exports were calculated, and empirical models for predicting catchment exports were developed using system hydrology and average SPM concentrations. These simple models can be used to estimate metals concentrations and exports from routine water quality monitoring data, without requiring chemical analyses. They also serve to distinguish background levels from those indicating metal contamination, and will, therefore, be useful for water quality evaluation.  相似文献   

6.
This paper reports the dissolved and particulate trace metal distributions in Lake Mikri Prespa, wetland of NW Greece. The concentrations of Cu, Pb, Zn, Cd, Al, Fe, Mn, Ni and Cr were determined in surface and hypolimnetic waters as well as in the inputs and the outflow. Trace metals were connected with two major populations of suspended particles, identified by using the recovery ratio for two different leaching reagents, namely 0.5 N HCl and 1:1 hot aqueous HNO3. The first group is land derived entering the lake through runoff and plays a rather restricted role in its geochemistry. The second group which is more important includes authigenic carbonates, Fe and Mn hydroxides and oxides and organic rich particulates.  相似文献   

7.
The objective of this work is to analyze Fe, Mn, Cr, Cd, Cu, Pb, and Zn distributions in the water column in terms of total, dissolved, and particulate concentrations in the Salado River (Santa Fe – Argentina); their relationship with total, dissolved and suspended solids; and the impact of two pollution sources on the watercourse: a stream that collects domestic and industrial wastewater discharges of the region and a direct discharge that releases urban and industrial effluents to the river. Water samples obtained from 5 surveys were analyzed. The Salado River transported a load of heavy metals that ranged from 700 g/s to 2200 g/s of Fe, 20 g/s to 60 g/s of Mn and 1 g/s to 3 g/s of Cr. Results show that most metals were found in particulate form, that the metal input from the direct discharge may be significant at low water levels, whereas a lesser impact was produced by the stream, and that both pollution sources were negligible at high water levels.  相似文献   

8.
A mass-balance approach was used to examine the role of macrophyte beds as a sink or source for 7 metals over time scales varying from two months (the growing season of the plants) to one year. During the growing season the macrophyte beds were found to be net sinks for particulate metals but were net sources of dissolved metals. During senescence, ca. 15–20% of the Al, Fe, and Mn and ca. 25–30% of the Cr, Cu, Ni and Zn within the macrophyte tissues at maximum seasonal biomass was lost to the surrounding waters in a dissolved form. The export of metals from the weeds during senescence was a very small fraction (<0.01% of Al, Fe to 3.5% of Zn) of the annual allochthonous metal loading to Fitch Bay in L. Memphremagog, Quebec. In L. Weedon however, metal export during senescence was 34% (Mn) to 57%(Cu) of the annual allochthonous load. The time estimated for the plants to recycle the metals within the rooting zone of the sediments was on the order of hundreds of years. These results demonstrate that while weedbeds are net sources of metals during the summer, only a small fraction of metals in littoral sediments are not permanently buried over the longer term.  相似文献   

9.
Trace metals (Al, Pb, Zn, Cr, Cu, Ni, Fe, Mn) were studied in waters (dissolved and particulate phases) and sediments of the Louros Estuary in the Amvrakikos Gulf, one of the most important European wetlands located at the NW coast of Greece. The study system is small, with a relatively narrow mixing zone, typical for Mediterranean estuaries. Particular emphasis was given to understanding the conditions prevailing in summer. During this season saline water intrudes the estuary along the river bed, despite the existing shallow sill, and forms a thin salt-wedge water mass, which occupies the near bottom layer with its thin end pointed upstream. Particulate metal concentrations within this saline bottom layer are considerably higher than in the riverine and marine sections of the estuary. Since the metal content of particles collected upstream is higher than that of the marine ones, there is a clear evidence that the salt-wedge acts as a ‘sink’ for most metals during the summer. Coexistance in the same zone of high dissolved metal concentrations indicate that loosely associated metals are desorbed from riverine particles, whereas newly formed suspended matter is deposited together with particles, transported by the river. The accumulation of metals in the near bottom layer affects directly their distribution in the sediments. The maximum concentrations of the metal fraction which is loosely held in sediments, are found primarily at the same site. The distribution of the ‘non-labile’ metal fraction of the sediments (particularly for Cu and Pb) is broadly constant throughout the estuary, confirming the absence of any significant natural or industrial point sources, at the lower part of the river. However, the analysis of sediment cores reveals an enrichment of this metal fraction at the top, near surface sections of the mouth area, indicating relatively recent pollution.  相似文献   

10.
This study assesses the possible use of suspended sediment as an indirect measurement of phosphorus (P) concentrations in a rural headwater catchment located in NW Spain. Particulate P accounted for about 70 percent of the P export, indicating that P transport is linked to sediment in this catchment. The relationship between P and suspended sediment concentrations showed that particulate P was strongly dependent on suspended sediment, although the relationship is not consistent throughout seasons. The particulate P–suspended sediment relationship behaved differently at low flow and runoff events; the relationship was only significant during runoff events. This is because low flow is dominated by dissolved P and by pathways that do not mobilize or transport sediment. The particulate P–suspended sediment ratio was lower during runoff events than during low flow, which is consistent with enrichment ratio effects.  相似文献   

11.
Changes in metal speciation occurring along the river Vormbäckenhave been investigated, and the potential for using such changes to reduce metal transport to areas further downstream has been evaluated.Vormbäcken is situated in a mining region in northern Sweden. Catchment area features likely to influence metal speciation include wetlands situated along the river, addition of treated (liming) effluent water from a mine area, and addition of other surface waters and groundwater. Surface water samples were collected from seven stations along the river on six occasions, representing different flow regimes. The total As, Ca, Cd, Cu, Fe, Pb, and Zn concentrations in the samples were partitioned into particulate (>0.4 μm and 0.2–0.4 μm, or only >0.2 μm) and dissolved (<0.2 μm, either associated with organiccarbon, or as free metal ions and inorganic complexes) fractions by means of filtration and an ion-exchange technique. The most important finding is that, with the exception of Ca, the fraction of particulate bound metals increased with increasing concentrations of particulate Fe. This Fe has its origin in surface waters and groundwater that join the river on its way through the catchment area. It is suggested that adsorption to, or co-precipitation with, such Fe-containing particles may have potential to be used as the initial step in a treatment method based on natural attenuation processes. Furthermore, the fraction of particulate bound metals decreased dramatically upon passing the lake Vormträsket, suggesting that some of these metals may be removed from the river system, at least temporally.  相似文献   

12.
Surface water discharge measurements and metals concentrations in the North Fork of the American Fork River, Utah, its tributaries, and the groundwater in the vicinity of the Pacific Mine were used to evaluate the impact of groundwater on loading rates of metals and As to the river. Fish in the river contain As, Cd, and Pb at concentrations that are hazardous to human health if consumed. The results suggest that dissolved As, Cd, Cu, Fe, Mn, Pb, and Zn enter the river when it is a gaining stream. However, the suspended metals load is significantly greater than the dissolved load, and generally decreases through the reach of river adjacent to the mine site. Cadmium and Mn travel as dissolved species while Cu, Fe, Pb, and Zn travel as suspended solids. Arsenic seems to travel both with the suspended solids and in the dissolved state. The geochemical modeling program PHREEQC and a diffuse double layer surface complexation model were used to investigate the chemical controls on metals mobility and attenuation in the surface and groundwaters at the site. Based on the PHREEQC results, the most important process in these waters is the precipitation of ferrihydrite, also referred to as hydrous ferric oxide (HFO). Copper, Pb, most importantly Zn, and to a lesser degree As sorb to HFO.  相似文献   

13.
Metal (Cu, Mn, Ni, Zn, Fe) concentrations in marine sediment and zooplankton were investigated in Izmir Bay of the Eastern Aegean Sea, Turkey. The study aimed to assess the levels of metal in different environmental compartments of the Izmir Bay. Metal concentrations in the sediment (dry weight) ranged between 4.26–70.8 μg g?1 for Cu, 233–923 μg g?1 for Mn, 14.9–127 μg g?1 for Ni, 25.6–295 μg g?1 for Zn, 12,404–76,899 μg g?1 for Fe and 38,226–91,532 μg g?1 for Al in the Izmir Bay. Maximum metal concentrations in zooplankton were observed during summer season in the inner bay. Significant relationships existed between the concentrations of certain metals (Al, Fe, Mn and Ni) in sediment, suggesting similar sources and/or similar geochemical processes controlling such metals. Higher concentrations of Cu, Zn and percent organic matter contents were found in the middle-inner bays sediments. Based on the correlation matrix obtained for metal data, organic matter was found to be the dominant factor controlling Cu and Zn distributions in the sediment. In general, mean Cu and Zn levels in the bay were above background concentrations in Mediterranean sediments. Zooplankton metal concentrations were similar to sediment distributions.  相似文献   

14.
The Odiel river emerges in Sierra de Aracena (N Huelva, Spain) as a clean, circumneutral river which shows abundant fish and fluvial microfauna. At 20km from the riverhead and along a 7km-long reach, this river receives four small discharges of acid mine water emanating from several abandoned mines of the Iberian Pyrite Belt (namely, Concepción, San Platón, Esperanza and La Poderosa-El Soldado). During two field studies performed in October 2003 and May 2004, it has been observed that these acidic waters (with flow rate of 0.2–8.5L/s and pH 2.3–2.8) transfer to the Odiel river significant amounts of acidity and dissolved metals (specially Fe, Al, Mn, Cu, Zn, Cd, Co and Ni) and sulphate. Despite this mine-related pollution, the pH of the river remains near-neutral (pH = 7–8, flow rate = 220–1,000L/s), as the alkalinity of the river (108–155mg/L CaCO3 eq.) neutralizes the acidity and causes the precipitation of dissolved Fe and Al in the form of ochreous to whitish minerals (ferrihydrite, Al-oxyhydroxides). These poorly crystallized minerals retain, by sorption, large amounts of trace metals (specially Cu and Zn). Subsequently, the Odiel river converges with the acidic Tintillo river (pH = 2.5–2.8, flow rate = 48–240L/s), which drains a vast mining area occupied by large waste-rock piles and tailings impoundments around Corta Atalaya (Riotinto mines). At this confluence, all the alkalinity is totally consumed and the pH drastically decreases to around 3. The mineral paragenesis of the ochreous precipitates is then dominated by schwertmannite, which shows a very limited sorption capacity under such acidic conditions. Consequently, metal concentrations are sharply increased from near-zero to tens of mg/L (e.g., 18mg/L Fe, 76mg/L Al, 14mg/L Mn, 10mg/L Cu, and 20mg/L Zn in May 2004). The buffering capacity of the Fe(III) hydrolysis stabilizes the pH of the Odiel river around 3± 0.5 along the rest of its course to the Huelva estuary, and the water quality of the river is thus irreversibly damaged.  相似文献   

15.
Pollution assessment in a given area depends mostly on the precise determination of the so-called background values. In this work, enrichment factors (EFs) for iron (Fe), manganese (Mn), copper (Cu), and zinc (Zn) in suspended solids (SS) of a stream draining a rural catchment (NW Spain) were determined to assess whether the observed concentrations of these metals represent natural or contaminated levels. Aluminum was used as a normalizer element. Four approaches were used for defining background values used in the EF analyses: a local background value for metals concentrations in SS, a local background value for metals concentrations in C-horizon soils, mean crust values, and mean shale values. The most satisfactory result was obtained when using local background values for metals concentrations of SS, suggesting that on average the Fe, Mn, Cu, and Zn concentrations measured represent natural levels. However, some signs of enrichment were observed (16–28 percent of the samples with EF > 1.5).  相似文献   

16.
Abstract

Chemical fractions of copper (Cu) and zinc (Zn) in the organic‐rich particles collected from filtered aqueous extracts (<20 μm) of an acid soil were determined. A sequential extraction procedure was used to partition the particulate Cu and Zn into four operationally defined chemical fractions: adsorbed (ADS), iron (Fe) and manganese (Mn) oxides bound (FeMnOX), organic matter bound (OM) and residual (RESD). Total extractable concentrations of Cu and Zn in the fine particles were higher than their total concentrations in the original bulk soil. The concentration of particulate Cu was usually much higher than that of particulate Zn. Addition of lime stabilized sewage sludge cake and/or inorganic metal salts markedly increased the concentrations of particulate Cu and Zn in aqueous extracts, especially from limed soil. The proportional distributions of particulate Cu and Zn were quite similar. The two particulate metals were present predominantly in the ADS and FeMnOX fractions, with less (about 20%) in the OM and RESD fractions. Some of the ADS metal fraction was associated with dissolved organic substances. The concentrations of particulate Cu and Zn in the various extractable fractions were significantly affected by the application of lime, lime stabilized sewage sludge cake, or inorganic metal salts.  相似文献   

17.
The study was performed in mountain streams in Central Sweden where a dramatic decrease in fish populations has been observed during the latest years. The spring runoff caused acid surges of pH 4.4 to 5.5 and high concentrations of Fe, Mn and Al occured in the stream waters. Water samples were collected during fish cage experiments performed during spring flood of 1985. The metal fractions were separated with filtration, in-situ dialysis and ion-exchange technique and determined using atomic absorption spectroscopy. The elements analyzed included Fe, Mn, Al, Zn, Cu, Pb and Cd. During spring flood, when a 100 % fish mortality was observed, particulate forms of Fe, Al and Mn dominated and were probably responsible for the toxic action. The high leaching of Fe, Mn and Al at spring flood during the recent years is a new phenomenon and seems to be caused by the increased acid deposition to the area.  相似文献   

18.
To evaluate adverse impacts of metal pollution originating from smelting activities on the aquatic ecosystem of Deûle river in northern France, water samples were collected from five selected stations along a contaminated region of this river (during two surveys: April–June 2005 and April–May 2007). All samples were analysed using inductively coupled plasma (ICP) atomic emission spectroscopy and/or ICP-mass spectrometry. Both the concentrations of dissolved and particulate elements were determined, and analytical data were compared with national and international water/particle quality guidelines as well as with some values reported in the literature for polluted rivers. For all the metals studied (i.e. Cd, Cr, Cu, Mn, Ni, Pb and Zn), our investigations showed that the effects of the dissolved phase on this aquatic medium were weak, according to water quality status established by US Environmental Protection Agency, USEPA (1994, 1999). Conversely, the levels of metals in suspended particulate matter were found to be much higher than local background contents and natural reference levels in French catchments. These levels were further quantified as “serious” contamination, i.e. above the “red” range that was previously elaborated by most existing metal-contamination scales in French basins of similar geology. The affinity of these metals for the particulate phase in Deûle waters follows the order: Cd >Cr > Pb > Zn = Mn > Cu > Ni. The trace metals released from anthropogenic activities were found to be partly bound to the reactive particulate phase, calcite, which is sensitive to physico-chemical variations occurring in the river ecosystem. To appraise the risk of ecotoxicity by metals, predictions on the ability to release metallic pollutants from calcite into waters were made successfully by testing three equilibrium geochemical speciation models (JCHESS, VISUAL MINTEQ and WINHUMIC) in which soluble organic matter was taken into account. Calculations showed that metal–water–calcite systems in Deûle River are close to thermodynamic equilibrium with generation of solid solutions, MeαCa1-αCO3, by (co)precipitation and/or adsorption reactions. On the basis of results mentioned here, more measurements of river chemistry and assessments of predictive capabilities of chosen water-quality guidelines with time would be developed in aquatic and calcareous areas for controlled dredging operations or other treatment engineering works.  相似文献   

19.
Former mining activities lasting 140 years in the Ducktown Mining District, Tennessee, USA, has contaminated the streams draining the district with acid-mine drainage (AMD). North Potato Creek and its major tributary, Burra Burra Creek, are two of the most heavily AMD-impacted streams in the district. The removal of dissolved metals from the water in these creeks is largely attributable to the sorption of Cu, Zn, Co, Al, and Mn on suspended hydroxide precipitates of Fe. The fraction of trace metals remaining in solution decreases with increasing pH in the sequence Pb?<?Cu?<?Zn?<?Co. The concentration of Fe in solution also decreases with increasing pH due to the formation of ferric hydroxide precipitates which accounted for up to 81.4% by weight of the total suspended sediment. The concentration of suspended sediment substantially decreases as the water of North Potato Creek flows through a large settling basin, where 1.3 (±0.3)?×?106 kg/year of trace-metal-laden suspended sediment would be annually deposited. In spite of this attempt to purify it, the water discharged into the river is acidic (pH 3.6) and still contains high concentrations of dissolved trace metals, which would resorb on to suspended sediment and be ultimately transported to a downstream reservoir, Ocoee No. 3 Lake.  相似文献   

20.
Atmospheric emissions of metals have decreased in North America; yet, metals remain an environmental concern due to their environmental persistence and toxicity to biota. In this study, pools and mass budgets were calculated for 15 metals in an acidified forested catchment in Central Ontario. Metals that were enriched in bulk deposition over background average values (As, Cd, Pb, Zn) were generally enriched in the forest floor and upper lake sediment. While the metal pool in vegetation is small compared with the soil pool, internal cycling of metals via litterfall is comparable to atmospheric deposition, soil water, and stream fluxes. Partitioning coefficients calculated from metal concentrations in soil water and bulk soil suggest that Cd, Mn, Ni, and Zn are the most mobile. The mineral soil and lake sediments were sinks for most metals, while the wetland was a source of metals during the study year, which was a drought year. Overall, lithogenic metals (Al, Ba, Co, Fe, Mn, Rb, Sr, Zn) primarily from a weathering source generally exhibited net export from the catchment, while metals contained in atmospheric pollution (As, Cd, Cr, Cu, Ni, Pb, V) exhibited net retention. Despite the acidified nature of the catchment, it functions to retain many pollutant metals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号