首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To understand the contribution of key microbial processes to nitrous oxide (N2O) emission in intensively cultivated black soil, laboratory incubation were conducted at 70% water-holding capacity (WHC) and 25 °C, using different gases (air, oxygen, or argon) within the headspace of the incubation chambers to evaluate gas inhibition effects. Arable black soil was sampled from an experimental field that has received urea since October 1979. Nitrification contributed to 57% of total N2O emission, of which as much as 67% resulted from heterotrophic nitrification. These data strongly suggest that high soil organic carbon concentrations and low pH values are more favorable to N2O production through heterotrophic, rather than autotrophic, nitrification. Nitrous oxide produced by denitrification accounted for 28% of the total N2O emission, and the nitrifier denitrification accounted for 15% of the N2O emitted from the tested soil. These findings indicate that heterotrophic nitrification was the primary N2O production process in the tested soil.  相似文献   

2.
An incubation study investigated the effects of nitrification inhibitors (NIs), dicyandiamide (DCD), and neem oil on the nitrification process in loamy sand soil under different temperatures and fertilizer rates. Results showed that NIs decreased soil nitrification by slowing the conversion of soil ammonium (NH4+)-nitrogen (N) and maintaining soil NH4+-N and nitrate (NO3?)-N throughout the incubation time. DCD and neem oil decreased soil nitrous oxide (N2O) emission by up to 30.9 and 18.8%, respectively. The effectiveness of DCD on reducing cumulative soil N2O emission and retaining soil NH4+-N was inconsistently greater than that of neem oil, but the NI rate was less obvious than temperature. Fertilizer rate had a stronger positive effect on soil nitrification than temperature, indicating that adding N into low-fertility soil had a greater influence on soil nitrification. DCD and neem oil would be a potential tool for slowing N fertilizer loss in a low-fertility soil under warm to hot climatic conditions.  相似文献   

3.
不同灌溉方式设施土壤N2O排放特征及其影响因素   总被引:4,自引:0,他引:4  
为探明3种灌溉方式设施土壤N_2O排放特征及相关因素的影响,通过田间试验与室内分析相结合的方法,采用静态箱—气相色谱法与实时荧光定量PCR(Real-time PCR)技术分析不同灌溉方式(滴灌(D30)、渗灌(S30)、沟灌(G30))土壤N_2O排放特征的差异以及土壤温度、湿度、无机氮、反硝化细菌对土壤N_2O排放的影响。研究结果表明,灌溉后1~8d设施土壤会出现明显的N_2O排放高峰;整个番茄生长季沟灌处理土壤N_2O平均排放通量最大,分别较滴灌和渗灌处理高出52.74%和50.82%;与沟灌处理相比,滴灌处理和渗灌处理土壤N_2O排放总量分别降低了54.31%和53.30%。土壤N_2O排放与硝态氮含量(P0.05),土壤湿度呈极显著正相关(P0.01),与土壤温度、铵态氮含量之间关系不显著。不同灌溉方式土壤反硝化细菌丰度差异显著,表现为G30S30D30;土壤N_2O排放与反硝化细菌nosZ丰度呈极显著正相关(P0.01)。综上,土壤湿度、硝态氮、反硝化细菌nosZ是影响土壤N_2O排放的重要因素。与沟灌相比,滴灌与渗灌能够减少设施土壤N_2O排放量。  相似文献   

4.
We studied the effect of repeated application (once every 2 d) of a fertilizer solution with different ratios of NH4+ - and NO3-N on N2O emission from soil. After the excess fertilizer solution was drained from soil, the water content of soil was adjusted to 50% of the maximum water-holding capacity by suction at 6 × 103 Pa. Repeated application of NH4+- rich fertilizer solution stimulated nitrification in soil more than NO3-rich fertilizer. Although the evolution of N2O through nitrifier denitrification tended to increase with the repeated addition of a fertilizer solution rich in NH4+ rather than in NO3, the contribution of nitrifier denitrification remained at levels of 20 to 36% of the total emission regardless of the inorganic N composition. The total emission of N2O also tended to increase with the application of NH4+- rather than NO3-rich fertilizer. It was suggested that the coupled process of nitrification and denitrification at micro-aerobic sites became important when fertilizer rich in NH4+ was applied to soil under relatively aerobic conditions.  相似文献   

5.
We studied the effect of repeated application (once every 2 d) of a fertilizer solution with different ratios of NH4 + - and NO3 ?-N on N2O emission from soil. After the excess fertilizer solution was drained from soil, the water content of soil was adjusted to 50% of the maximum water-holding capacity by suction at 6 × 103 Pa. Repeated application of NH4 +- rich fertilizer solution stimulated nitrification in soil more than NO3 ?-rich fertilizer. Although the evolution of N2O through nitrifier denitrification tended to increase with the repeated addition of a fertilizer solution rich in NH4 + rather than in NO3 ?, the contribution of nitrifier denitrification remained at levels of 20 to 36% of the total emission regardless of the inorganic N composition. The total emission of N2O also tended to increase with the application of NH4 +- rather than NO3 ?-rich fertilizer. It was suggested that the coupled process of nitrification and denitrification at micro-aerobic sites became important when fertilizer rich in NH4 + was applied to soil under relatively aerobic conditions.  相似文献   

6.
This study aims to determine the effects of compost additions and high temperature on N2O and CO2 emissions from a Vietnamese agricultural soil. Soil samples amended with two compost types (commercial compost, SH and chicken compost, CC) at three rates of 1%, 2% and 4% w/w were aerobically incubated at 25°C, 30°C and 35°C for 28 days in the laboratory. N2O and CO2 emissions were determined on days 1, 3, 5, 7, 14, 21 and 28. Our results showed that N2O and CO2 emissions were significantly affected by temperature, compost additions, and their interactions. Greater N2O and CO2 emissions were seen in CC treatments than SH treatments. Higher application rates of CC led to greater N2O and CO2 emissions. In SH treatments, higher temperature lowered N2O emissions but did not affect CO2 emissions. N2O and CO2 emissions were enhanced with CC addition while they showed different responses to increasing temperature.  相似文献   

7.
Both a laboratory incubation experiment using soils from an agricultural field and a forest and field measurements at the same locations were conducted to determine nitrous oxide (N2O) production and consumption (reduction) potentials using the acetylene (C2H2) inhibition technique. Results from the laboratory experiment show that the agricultural soil had a stronger N2O reduction potential than the forest soil, as indicated by the N2O/N2 ratio in denitrification products. Without C2H2 inhibition, N2O could reach a maximum concentration of 51 and 296 ppmv in headspace of the agricultural and forest soil slurries, respectively. Addition of glucose decreased the maximum N2O concentration to 22 ppmv in headspace of the agricultural soil slurries, but increased to 520 ppmv in the forest soil slurries. Addition of exogenous N2O did not change such N2O accumulation maxima during the incubations. The field measurements show that average N2O emission rates were 0.56 and 0.59 kg N ha?1 in the agricultural field and forest, respectively. When C2H2 was provided in the field measurements, N2O emission rates from the agricultural field and forest increased by 38 and 51%, respectively. Nitrous oxide consumption under elevated N2O condition (about 300 ppmv) was found in all five agricultural field measurements, but only in three of the six forest measurements under the same conditions. Field measurements agreed with the laboratory experiment that N2O reduction activity, which plays a critical role in abating N2O emissions from soils, largely depended on soil characteristics associated with land use.  相似文献   

8.
Maize(Zea mays L.), a staple crop in the North China Plain, contributing substantially to agricultural nitrous oxide(N_2O)emissions in this region. Many studies have focused on various agricultural management measures to reduce N_2O emissions. However, few have investigated soil N_2O emissions in intercropping systems. In the current study, we investigate whether maize-soybean intercropping treatments could reduce N_2O emission rates. Two differently configured maize-soybean intercropping treatments, 2:2 intercropping(two rows of maize and two rows of soybean, 2M2S) and 2:1 intercropping(two rows of maize and one row of soybean,2M1S), and monocultured maize(M) and soybean(S) treatments were performed using a static chamber method. The results showed no distinct yield advantage for the intercropping systems. The total N_2O production from the various treatments was 0.15 ± 0.04–113.85 ± 12.75 μg m~(-2) min~(-1). The cumulative N_2O emission from the M treatment was 16.9 ± 2.3 kg ha~(-1) over the entire growing season(three and a half months), which was significantly higher(P 0.05) than that of the 2M2S and 2M1S treatments by 36.6% and 32.2%, respectively. Two applications of nitrogen(N) fertilizer(as urea) at 240 kg N ha~(-1) each induced considerable soil N_2O fluxes. Short-term N_2O emissions(within one week after each of the two N applications) accounted for 74.4%–83.3% of the total emissions. Soil moisture, temperature, and inorganic N were significantly correlated with soil N_2O emissions(R~2= 0.246–0.365, n =192, P 0.001). Soil nitrate(NO_3~-) and moisture decreased in the intercropping treatments during the growing season. These results indicate that maize-soybean intercropping can reduce soil N_2O emissions relative to monocultured maize.  相似文献   

9.
The nitrification inhibitors (NIs) effects on soil nitrogen (N) fates and maize yields were investigated in a loamy-sand soil in Thailand. The treatments were chemical fertilizer (CF) and CF with dicyandiamide (DCD) or neem oil at two rates of 5% and 10%. Compared to the CF plot, DCD and neem oil reduced the cumulative nitrous oxide (N2O) emission by the equivalent of 26% and 10%, respectively (P < 0.05). DCD and neem oil had a positive effect in slowing ammonium (NH4+)-conversion and prolonging NH4+-N in the soil with a maximum efficiency of 45% and 30%, respectively. NO3N was higher in the NI plots (P < 0.05), but the effect was less pronounced later in the growing season. Adding the NIs increased maize yields and N uptake, but was only significant (P < 0.10) for neem oil. Results indicate that applying NIs is an effective method to mitigate soil N losses and enhancing N use efficiency in a tropical, agricultural field.  相似文献   

10.
王启  兰婷  赖晶晶  高雪松 《土壤》2020,52(6):1170-1178
生物质炭施用可能对土壤中氮素硝化过程和N2O排放产生影响。本研究通过室内培养试验,研究铵态氮肥与玉米秸秆生物质炭施用量(0、1%、2%、5%、10%,m/m)对酸性(pH 5.10)和石灰性(pH 8.15)紫色土氮素硝化率、净硝化速率及N2O排放特征的影响。结果表明:①酸性和石灰性紫色土生物质炭处理平均净硝化速率相比对照分别降低了33.7%~93.7%和7.5%~40.9%,生物质炭添加抑制了酸性和石灰性紫色土硝化作用,在酸性紫色土中生物质炭对硝化作用的抑制作用随施用量的增加而增强,在石灰性紫色土中无明显规律。②与对照相比,酸性紫色土N2O累计排放量在1%生物质炭和2%生物质炭处理下降幅分别为15.9%和27.7%,在5%和10%生物质炭处理下增幅分别为60.1%和93.2%;石灰性紫色土生物质炭各处理N2O累积排放量均显著高于对照。③综合考虑,在酸性紫色土中1%、2%生物质炭施用对硝化作用抑制和N2O减排综合效果最好,但在石灰性紫色土中无明显抑制和减排效果。  相似文献   

11.
农田土壤N_2O排放研究进展   总被引:18,自引:1,他引:18  
黄树辉  吕军 《土壤通报》2004,35(4):516-522
农田土壤的N2O排放主要是在微生物的作用下通过硝化和反硝化作用产生的。土壤中多变的理化性质影响各种微生物的生长,因而硝化和反硝化过程中产生N2O的途径也不同,尤其以硝化过程的研究进展最快。影响N2O的生成和排放有:土壤含水量、温度、O2以及土壤结构和质地等物理因素,pH和氮肥等其它因素。本文详细地阐述旱地和水田土壤中这些影响因子与N2O的作用机理的差异,及农田土壤中的N2O排放估计的方法。区分硝化和反硝化作用中生成N2O的贡献可用15N标记法和不同浓度的乙炔抑制法。  相似文献   

12.
土壤酸化是粘土矿物缓慢风化的自然过程,但近年来随着人类高强度的农业利用,土壤酸化现象逐渐加剧,而铵态氮肥的硝化作用是土壤酸化的主要贡献者之一。传统的施用石灰改良酸性土壤,常常会有反酸现象,并可能导致土壤板结。蒙脱石是碱性或中性土壤的主要粘土矿物组分,而在土壤酸化的过程中,蒙脱石被进一步风化掉。本文通过室内模拟实验,采用硝化动力学拟合及对净硝化速率的计算,分别研究了蒙脱石(Ca-M)和石灰(Ca-OH)对酸性黄壤硝化作用的影响。结果表明:酸性黄壤添加石灰或蒙脱石后,土壤均发生了显著的硝化作用,且硝化过程符合一级动力学模型N_(NO3)=N_0+N_p(1-exp(-k_1t))(P0.001)。Ca-OH处理土壤样品的净硝化速率(3.429 mg·kg~(-1)·d~(-1))显著大于Ca-M处理(2.381 mg·kg~(-1)·d~(-1));Ca-OH处理土壤样品的潜在硝化速率(V_p)和平均硝化速率(V_a)在pH值5.7和6.2时分别为6.42、8.58 mg N·kg~(-1)·d~(-1)和2.71、3.87 mg N·kg~(-1)·d~(-1),均显著大于钙基蒙脱石处理(pH值5.7和6.2时分别为3.40、4.56 mg N·kg~(-1)·d~(-1)和2.36、3.04 mg N·kg~(-1)·day~(-1))。结果表明采用石灰改良酸性土壤发生复酸化现象的可能性及程度大于钙基蒙脱石,本研究为酸性土壤改良提供了新的参考。  相似文献   

13.
The effects of urea, (NH4)2SO4, KNO3, and NH4NO3 on nitrous oxide (N2O) emission from soil at field capacity and submerged condition were studied during 120 days in the laboratory. Soils in both moisture regimes gave higher emissions in the beginning, which were reduced later. Total emission of N2O was higher at submergence as compared to field capacity regardless of fertilizer type. At field capacity soil fertilized with ureaemitted the highest amount of N2O (1903 μg N2O-N kg-1 soil) during 120 days while at submerged condition, soil with NH4NO3 gave the highest emission (4843 μg N2O-N kg-1 soil). In another study, the efficacy of seven nitrification inhibitors in reducing the emission of N2O-N from soil fertilized with urea was tested in the laboratory. Nitrapyrin, 2-amino-4-chloro-6-methylpyrimidine (AM), and dicyandiamide (DCD) reduced the emission to 12, 24, and 63% that of urea, respectively, whereas sodium thiosulphate, sulphur, acetylene,and thiourea had no effect on emission of N2O. In submerged conditions none of the inhibitors reduced the emission.  相似文献   

14.
减氮及硝化抑制剂对菜地氧化亚氮排放的影响   总被引:7,自引:1,他引:7  
陈浩  李博  熊正琴 《土壤学报》2017,54(4):938-947
利用静态暗箱—气相色谱法,周年监测集约化菜地四种蔬菜种植过程中N2O的排放和蔬菜产量变化,探究减氮(640、960 kg hm-2 a-1)以及施用硝化抑制剂氯甲基吡啶(CP)对菜地N2O排放的影响。结果表明,与常规施氮(Nn)处理相比,减量施氮(Nr)在不显著降低产量的情况下平均降低菜地N2O排放27.1%;与仅施用尿素的处理相比,在减量和常规施氮水平的基础上添加硝化抑制剂又分别能降低菜地N2O排放总量29.4%、26.0%,降低N2O排放系数60.9%、42.4%,而对蔬菜产量没有显著影响,因此显著降低菜地单位产量N2O排放量32.1%、30.3%,以减氮结合CP(CP-Nr)处理减排效果最佳。因此,减氮结合CP应用于集约化蔬菜生产是一种有效的菜地减排农业措施。  相似文献   

15.
通过大田试验研究了不同施氮水平对蔬菜地土壤N2O排放的影响。试验设置5个氮水平[0(N0)、430(N1)、860(N2)、1290(N3)、1640(N4)kgN.hm-2],2a试验期间种植的蔬菜有辣椒、萝卜、菠菜和小白菜。结果表明,施氮显著影响N2O排放通量,各施氮水平土壤N2O排放通量范围分别为-8~39、0.4~157、12~626、8.5~982、16~1342μg.m-.2h-1;同时,氮肥施用显著提高了N2O排放总量,各施氮处理(N0、N1、N2、N3和N4)试验期间土壤N2O平均排放总量分别为0.48、1.35、4.49、7.83、10.57kgN.hm-2,土壤N2O排放系数范围是0.33%~1.13%,且施氮水平与土壤N2O排放总量间呈显著的指数函数关系;不同季节蔬菜地土壤N2O排放总量差异很大,其中最大的是辣椒,最小的是菠菜;此外,土壤N2O排放通量季节变化除受施氮水平影响外,还受土壤温度的影响,排放高峰出现在高温的夏季。  相似文献   

16.
The effects of nitrification inhibitors (NIs) on soil nitrous oxide (N2O) emission, soil ammonium (NH4+) and nitrate (NO3?), and cassava (Manihot esculenta Crantz) yields were investigated in a loamy sand soil in eastern Thailand. Treatments were chemical fertilizer (CF) and CF plus dicyandiamide (DCD) or neem (Azadirachta indica) oil at two rates of 5% and 10%. DCD had a greater reduction of soil N2O flux than the neem oil (P<0.10). DCD and neem oil retained NH4+-N in the soil by 79% and 63% (P ≤ 0.10), respectively. The NI effect on soil NO3?-N was small due to a low N fertilizer rate. The cassava root yield and N uptake were increased 4–11% and 2–18%, respectively, by use of NIs, but they were only significant for DCD (P ≤ 0.10). These findings suggest that NIs application may be a promising method for minimizing nitrogen loss and enhancing crop yields in a tropical cassava field.  相似文献   

17.
18.
The aim of the study was to evaluate the degradation and persistence of 2-amino 4-chloro 6-methyl pyrimidine (AM), nitrification inhibitor at 1 and 2 µg g?1 application rates in soil. The extraction of AM was done by QuEChER’s (Quick, Easy. Cheap. Rugged and Safe) method and the quantitative analysis by high-performance liquid chromatography (HPLC). AM decreased with time at both the levels of application with the decline being faster in the beginning up to 7 d. Dissipation of AM occurred in a single phase with the persistence data fitting well to the first-order kinetics. Half-lives of AM were determined to be 14.33 and 16.7 d at 1 and 2 µg g–1 levels application rates. Since AM remains effective for an adequate period of time, it can be used for increasing efficiency of nitrogenous fertilizers in rice–wheat cropping systems as well as a safeguard for controlling environmental pollution in subtropical soils.  相似文献   

19.
To reveal the impact of soil disturbance and surface watering (SW) following soil disturbance on the pulse nitrous oxide (N2O) emissions, incubated experiments were conducted on disturbed soil with two watering regimes [surface watering only (SWO) and subsurface watering followed by surface watering (SUW+SW)]. Intensive soil disturbance led to pulses N2O emissions from SUW + SW soil (>8,693 μg N2O m?2 h?1 with a peak of 30,938 μg N2O m?2 h?1), although the water-filled pore space (WFPS) was substantially lower than the previously reported optimal soil moisture range (45–75% WFPS) for peak N2O emissions. N2O emissions from the disturbed soil after SW were much lower than those from SUW + SW soil, increased as the soil dried, and peaked when the WFPS fell within the optimal soil moisture range. These peaks were considerably less than those resulting from the intensive disturbance in SUW + SW soil. Thus, SW after intensive soil disturbance may be effective for mitigating of pulse N2O emissions caused by soil disturbance.  相似文献   

20.
In this article, a drip-fertigation system was compared to a control without irrigation concerning the amount of nitrous oxide (N2O) emissions under the climatic conditions of north-east Germany. The investigation was carried out at a field research station in the federal state of Brandenburg. The mean N2O emissions under drip-fertigation were significantly higher than under non-irrigation. The higher N2O emissions under drip-fertigation can be explained by a constantly higher water-filled pore space (WFPS). These higher values in WFPS were caused by the necessary nutrient supply in combination with additional water application in periods with frequent rainfall.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号